| /* |
| * Copyright (c) 2019 ARM Limited |
| * All rights reserved |
| * |
| * The license below extends only to copyright in the software and shall |
| * not be construed as granting a license to any other intellectual |
| * property including but not limited to intellectual property relating |
| * to a hardware implementation of the functionality of the software |
| * licensed hereunder. You may use the software subject to the license |
| * terms below provided that you ensure that this notice is replicated |
| * unmodified and in its entirety in all distributions of the software, |
| * modified or unmodified, in source code or in binary form. |
| * |
| * Copyright (c) 1999-2013 Mark D. Hill and David A. Wood |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are |
| * met: redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer; |
| * redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution; |
| * neither the name of the copyright holders nor the names of its |
| * contributors may be used to endorse or promote products derived from |
| * this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| machine(MachineType:L1Cache, "L1 cache protocol") |
| : Sequencer * sequencer; |
| CacheMemory * L1Icache; |
| CacheMemory * L1Dcache; |
| Cycles request_latency := 1; |
| Cycles response_latency := 1; |
| Cycles use_timeout_latency := 50; |
| bool send_evictions; |
| |
| // Message Queues |
| // From this node's L1 cache TO the network |
| // a local L1 -> this L2 bank, currently ordered with directory forwarded requests |
| MessageBuffer * requestFromL1Cache, network="To", virtual_network="0", |
| vnet_type="request"; |
| // a local L1 -> this L2 bank |
| MessageBuffer * responseFromL1Cache, network="To", virtual_network="2", |
| vnet_type="response"; |
| |
| // To this node's L1 cache FROM the network |
| // a L2 bank -> this L1 |
| MessageBuffer * requestToL1Cache, network="From", virtual_network="0", |
| vnet_type="request"; |
| // a L2 bank -> this L1 |
| MessageBuffer * responseToL1Cache, network="From", virtual_network="2", |
| vnet_type="response"; |
| |
| MessageBuffer * triggerQueue; |
| |
| MessageBuffer * mandatoryQueue; |
| { |
| // STATES |
| state_declaration(State, desc="Cache states", default="L1Cache_State_I") { |
| // Base states |
| I, AccessPermission:Invalid, desc="Idle"; |
| S, AccessPermission:Read_Only, desc="Shared"; |
| O, AccessPermission:Read_Only, desc="Owned"; |
| M, AccessPermission:Read_Only, desc="Modified (dirty)"; |
| M_W, AccessPermission:Read_Only, desc="Modified (dirty)"; |
| MM, AccessPermission:Read_Write, desc="Modified (dirty and locally modified)"; |
| MM_W, AccessPermission:Read_Write, desc="Modified (dirty and locally modified)"; |
| |
| // Transient States |
| IM, AccessPermission:Busy, "IM", desc="Issued GetX"; |
| SM, AccessPermission:Read_Only, "SM", desc="Issued GetX, we still have an old copy of the line"; |
| OM, AccessPermission:Read_Only, "SM", desc="Issued GetX, received data"; |
| IS, AccessPermission:Busy, "IS", desc="Issued GetS"; |
| SI, AccessPermission:Busy, "OI", desc="Issued PutS, waiting for ack"; |
| OI, AccessPermission:Busy, "OI", desc="Issued PutO, waiting for ack"; |
| MI, AccessPermission:Busy, "MI", desc="Issued PutX, waiting for ack"; |
| II, AccessPermission:Busy, "II", desc="Issued PutX/O, saw Fwd_GETS or Fwd_GETX, waiting for ack"; |
| } |
| |
| // EVENTS |
| enumeration(Event, desc="Cache events") { |
| Load, desc="Load request from the processor"; |
| Ifetch, desc="I-fetch request from the processor"; |
| Store, desc="Store request from the processor"; |
| L1_Replacement, desc="Replacement"; |
| |
| // Requests |
| Own_GETX, desc="We observe our own GetX forwarded back to us"; |
| Fwd_GETX, desc="A GetX from another processor"; |
| Fwd_GETS, desc="A GetS from another processor"; |
| Fwd_DMA, desc="A GetS from another processor"; |
| Inv, desc="Invalidations from the directory"; |
| |
| // Responses |
| Ack, desc="Received an ack message"; |
| Data, desc="Received a data message, responder has a shared copy"; |
| Exclusive_Data, desc="Received a data message"; |
| |
| Writeback_Ack, desc="Writeback O.K. from directory"; |
| Writeback_Ack_Data, desc="Writeback O.K. from directory"; |
| Writeback_Nack, desc="Writeback not O.K. from directory"; |
| |
| // Triggers |
| All_acks, desc="Received all required data and message acks"; |
| |
| // Timeouts |
| Use_Timeout, desc="lockout period ended"; |
| } |
| |
| // TYPES |
| |
| // CacheEntry |
| structure(Entry, desc="...", interface="AbstractCacheEntry") { |
| State CacheState, desc="cache state"; |
| bool Dirty, desc="Is the data dirty (different than memory)?"; |
| DataBlock DataBlk, desc="data for the block"; |
| } |
| |
| // TBE fields |
| structure(TBE, desc="...") { |
| Addr addr, desc="Physical address for this TBE"; |
| State TBEState, desc="Transient state"; |
| DataBlock DataBlk, desc="data for the block, required for concurrent writebacks"; |
| bool Dirty, desc="Is the data dirty (different than memory)?"; |
| int NumPendingMsgs, default="0", desc="Number of acks/data messages that this processor is waiting for"; |
| } |
| |
| structure(TBETable, external ="yes") { |
| TBE lookup(Addr); |
| void allocate(Addr); |
| void deallocate(Addr); |
| bool isPresent(Addr); |
| } |
| |
| Tick clockEdge(); |
| Tick cyclesToTicks(Cycles c); |
| void set_cache_entry(AbstractCacheEntry b); |
| void unset_cache_entry(); |
| void set_tbe(TBE b); |
| void unset_tbe(); |
| MachineID mapAddressToMachine(Addr addr, MachineType mtype); |
| |
| TBETable TBEs, template="<L1Cache_TBE>", constructor="m_number_of_TBEs"; |
| TimerTable useTimerTable; |
| |
| Entry getCacheEntry(Addr addr), return_by_pointer="yes" { |
| Entry L1Dcache_entry := static_cast(Entry, "pointer", L1Dcache.lookup(addr)); |
| if(is_valid(L1Dcache_entry)) { |
| return L1Dcache_entry; |
| } |
| |
| Entry L1Icache_entry := static_cast(Entry, "pointer", L1Icache.lookup(addr)); |
| return L1Icache_entry; |
| } |
| |
| Entry getL1DCacheEntry(Addr addr), return_by_pointer="yes" { |
| return static_cast(Entry, "pointer", L1Dcache.lookup(addr)); |
| } |
| |
| Entry getL1ICacheEntry(Addr addr), return_by_pointer="yes" { |
| return static_cast(Entry, "pointer", L1Icache.lookup(addr)); |
| } |
| |
| State getState(TBE tbe, Entry cache_entry, Addr addr) { |
| if(is_valid(tbe)) { |
| return tbe.TBEState; |
| } else if (is_valid(cache_entry)) { |
| return cache_entry.CacheState; |
| } |
| return State:I; |
| } |
| |
| // L1 hit latency |
| Cycles mandatoryQueueLatency(RubyRequestType type) { |
| if (type == RubyRequestType:IFETCH) { |
| return L1Icache.getTagLatency(); |
| } else { |
| return L1Dcache.getTagLatency(); |
| } |
| } |
| |
| // Latency for responses that fetch data from cache |
| Cycles cacheResponseLatency() { |
| if (L1Dcache.getTagLatency() > response_latency) { |
| return L1Dcache.getTagLatency(); |
| } else { |
| return response_latency; |
| } |
| } |
| |
| void setState(TBE tbe, Entry cache_entry, Addr addr, State state) { |
| assert((L1Dcache.isTagPresent(addr) && L1Icache.isTagPresent(addr)) == false); |
| |
| if (is_valid(tbe)) { |
| tbe.TBEState := state; |
| } |
| |
| if (is_valid(cache_entry)) { |
| if ( ((cache_entry.CacheState != State:M) && (state == State:M)) || |
| ((cache_entry.CacheState != State:MM) && (state == State:MM)) || |
| ((cache_entry.CacheState != State:S) && (state == State:S)) || |
| ((cache_entry.CacheState != State:O) && (state == State:O)) ) { |
| |
| cache_entry.CacheState := state; |
| sequencer.checkCoherence(addr); |
| } |
| else { |
| cache_entry.CacheState := state; |
| } |
| } |
| } |
| |
| AccessPermission getAccessPermission(Addr addr) { |
| TBE tbe := TBEs[addr]; |
| if(is_valid(tbe)) { |
| DPRINTF(RubySlicc, "%s\n", L1Cache_State_to_permission(tbe.TBEState)); |
| return L1Cache_State_to_permission(tbe.TBEState); |
| } |
| |
| Entry cache_entry := getCacheEntry(addr); |
| if(is_valid(cache_entry)) { |
| DPRINTF(RubySlicc, "%s\n", L1Cache_State_to_permission(cache_entry.CacheState)); |
| return L1Cache_State_to_permission(cache_entry.CacheState); |
| } |
| |
| DPRINTF(RubySlicc, "AccessPermission_NotPresent\n"); |
| return AccessPermission:NotPresent; |
| } |
| |
| void setAccessPermission(Entry cache_entry, Addr addr, State state) { |
| if (is_valid(cache_entry)) { |
| cache_entry.changePermission(L1Cache_State_to_permission(state)); |
| } |
| } |
| |
| void functionalRead(Addr addr, Packet *pkt) { |
| Entry cache_entry := getCacheEntry(addr); |
| if(is_valid(cache_entry)) { |
| testAndRead(addr, cache_entry.DataBlk, pkt); |
| } else { |
| TBE tbe := TBEs[addr]; |
| if(is_valid(tbe)) { |
| testAndRead(addr, tbe.DataBlk, pkt); |
| } else { |
| error("Data block missing!"); |
| } |
| } |
| } |
| |
| int functionalWrite(Addr addr, Packet *pkt) { |
| int num_functional_writes := 0; |
| |
| Entry cache_entry := getCacheEntry(addr); |
| if(is_valid(cache_entry)) { |
| num_functional_writes := num_functional_writes + |
| testAndWrite(addr, cache_entry.DataBlk, pkt); |
| return num_functional_writes; |
| } |
| |
| TBE tbe := TBEs[addr]; |
| num_functional_writes := num_functional_writes + |
| testAndWrite(addr, tbe.DataBlk, pkt); |
| return num_functional_writes; |
| } |
| |
| Event mandatory_request_type_to_event(RubyRequestType type) { |
| if (type == RubyRequestType:LD) { |
| return Event:Load; |
| } else if (type == RubyRequestType:IFETCH) { |
| return Event:Ifetch; |
| } else if ((type == RubyRequestType:ST) || (type == RubyRequestType:ATOMIC)) { |
| return Event:Store; |
| } else { |
| error("Invalid RubyRequestType"); |
| } |
| } |
| |
| // ** OUT_PORTS ** |
| |
| out_port(requestNetwork_out, RequestMsg, requestFromL1Cache); |
| out_port(responseNetwork_out, ResponseMsg, responseFromL1Cache); |
| out_port(triggerQueue_out, TriggerMsg, triggerQueue); |
| |
| // ** IN_PORTS ** |
| |
| // Use Timer |
| in_port(useTimerTable_in, Addr, useTimerTable, rank=4) { |
| if (useTimerTable_in.isReady(clockEdge())) { |
| Addr readyAddress := useTimerTable.nextAddress(); |
| trigger(Event:Use_Timeout, readyAddress, getCacheEntry(readyAddress), |
| TBEs.lookup(readyAddress)); |
| } |
| } |
| |
| // Trigger Queue |
| in_port(triggerQueue_in, TriggerMsg, triggerQueue, rank=3) { |
| if (triggerQueue_in.isReady(clockEdge())) { |
| peek(triggerQueue_in, TriggerMsg) { |
| if (in_msg.Type == TriggerType:ALL_ACKS) { |
| trigger(Event:All_acks, in_msg.addr, |
| getCacheEntry(in_msg.addr), TBEs[in_msg.addr]); |
| } else { |
| error("Unexpected message"); |
| } |
| } |
| } |
| } |
| |
| // Response Network |
| in_port(responseToL1Cache_in, ResponseMsg, responseToL1Cache, rank=2) { |
| if (responseToL1Cache_in.isReady(clockEdge())) { |
| peek(responseToL1Cache_in, ResponseMsg, block_on="addr") { |
| if (in_msg.Type == CoherenceResponseType:ACK) { |
| trigger(Event:Ack, in_msg.addr, |
| getCacheEntry(in_msg.addr), TBEs[in_msg.addr]); |
| } else if (in_msg.Type == CoherenceResponseType:DATA) { |
| trigger(Event:Data, in_msg.addr, |
| getCacheEntry(in_msg.addr), TBEs[in_msg.addr]); |
| } else if (in_msg.Type == CoherenceResponseType:DATA_EXCLUSIVE) { |
| trigger(Event:Exclusive_Data, in_msg.addr, |
| getCacheEntry(in_msg.addr), TBEs[in_msg.addr]); |
| } else if (in_msg.Type == CoherenceResponseType:WB_ACK) { |
| trigger(Event:Writeback_Ack, in_msg.addr, |
| getCacheEntry(in_msg.addr), TBEs[in_msg.addr]); |
| } else if (in_msg.Type == CoherenceResponseType:WB_ACK_DATA) { |
| trigger(Event:Writeback_Ack_Data, in_msg.addr, |
| getCacheEntry(in_msg.addr), TBEs[in_msg.addr]); |
| } else if (in_msg.Type == CoherenceResponseType:WB_NACK) { |
| trigger(Event:Writeback_Nack, in_msg.addr, |
| getCacheEntry(in_msg.addr), TBEs[in_msg.addr]); |
| } else { |
| error("Unexpected message"); |
| } |
| } |
| } |
| } |
| |
| |
| // Request Network |
| in_port(requestNetwork_in, RequestMsg, requestToL1Cache, rank=1) { |
| if (requestNetwork_in.isReady(clockEdge())) { |
| peek(requestNetwork_in, RequestMsg, block_on="addr") { |
| assert(in_msg.Destination.isElement(machineID)); |
| DPRINTF(RubySlicc, "L1 received: %s\n", in_msg.Type); |
| |
| if (in_msg.Type == CoherenceRequestType:GETX || in_msg.Type == CoherenceRequestType:DMA_WRITE) { |
| if (in_msg.Requestor == machineID && in_msg.RequestorMachine == MachineType:L1Cache) { |
| trigger(Event:Own_GETX, in_msg.addr, |
| getCacheEntry(in_msg.addr), TBEs[in_msg.addr]); |
| } else { |
| trigger(Event:Fwd_GETX, in_msg.addr, |
| getCacheEntry(in_msg.addr), TBEs[in_msg.addr]); |
| } |
| } else if (in_msg.Type == CoherenceRequestType:GETS) { |
| trigger(Event:Fwd_GETS, in_msg.addr, |
| getCacheEntry(in_msg.addr), TBEs[in_msg.addr]); |
| } else if (in_msg.Type == CoherenceRequestType:DMA_READ) { |
| trigger(Event:Fwd_DMA, in_msg.addr, |
| getCacheEntry(in_msg.addr), TBEs[in_msg.addr]); |
| } else if (in_msg.Type == CoherenceRequestType:INV) { |
| trigger(Event:Inv, in_msg.addr, |
| getCacheEntry(in_msg.addr), TBEs[in_msg.addr]); |
| } else { |
| error("Unexpected message"); |
| } |
| } |
| } |
| } |
| |
| // Mandatory Queue betweens Node's CPU and it's L1 caches |
| in_port(mandatoryQueue_in, RubyRequest, mandatoryQueue, rank=0) { |
| if (mandatoryQueue_in.isReady(clockEdge())) { |
| peek(mandatoryQueue_in, RubyRequest, block_on="LineAddress") { |
| |
| // Check for data access to blocks in I-cache and ifetchs to blocks in D-cache |
| |
| if (in_msg.Type == RubyRequestType:IFETCH) { |
| // ** INSTRUCTION ACCESS *** |
| |
| Entry L1Icache_entry := getL1ICacheEntry(in_msg.LineAddress); |
| if (is_valid(L1Icache_entry)) { |
| // The tag matches for the L1, so the L1 asks the L2 for it. |
| trigger(mandatory_request_type_to_event(in_msg.Type), |
| in_msg.LineAddress, L1Icache_entry, |
| TBEs[in_msg.LineAddress]); |
| } else { |
| |
| Entry L1Dcache_entry := getL1DCacheEntry(in_msg.LineAddress); |
| // Check to see if it is in the OTHER L1 |
| if (is_valid(L1Dcache_entry)) { |
| // The block is in the wrong L1, put the request on the queue to the shared L2 |
| trigger(Event:L1_Replacement, in_msg.LineAddress, L1Dcache_entry, |
| TBEs[in_msg.LineAddress]); |
| } |
| if (L1Icache.cacheAvail(in_msg.LineAddress)) { |
| // L1 does't have the line, but we have space for it in the L1 so let's see if the L2 has it |
| trigger(mandatory_request_type_to_event(in_msg.Type), |
| in_msg.LineAddress, L1Icache_entry, |
| TBEs[in_msg.LineAddress]); |
| } else { |
| // No room in the L1, so we need to make room in the L1 |
| // Check if the line we want to evict is not locked |
| Addr addr := L1Icache.cacheProbe(in_msg.LineAddress); |
| check_on_cache_probe(mandatoryQueue_in, addr); |
| trigger(Event:L1_Replacement, |
| addr, |
| getL1ICacheEntry(addr), |
| TBEs[addr]); |
| } |
| } |
| } else { |
| // *** DATA ACCESS *** |
| |
| Entry L1Dcache_entry := getL1DCacheEntry(in_msg.LineAddress); |
| if (is_valid(L1Dcache_entry)) { |
| // The tag matches for the L1, so the L1 ask the L2 for it |
| trigger(mandatory_request_type_to_event(in_msg.Type), |
| in_msg.LineAddress, L1Dcache_entry, |
| TBEs[in_msg.LineAddress]); |
| } else { |
| |
| Entry L1Icache_entry := getL1ICacheEntry(in_msg.LineAddress); |
| // Check to see if it is in the OTHER L1 |
| if (is_valid(L1Icache_entry)) { |
| // The block is in the wrong L1, put the request on the queue to the shared L2 |
| trigger(Event:L1_Replacement, in_msg.LineAddress, |
| L1Icache_entry, TBEs[in_msg.LineAddress]); |
| } |
| if (L1Dcache.cacheAvail(in_msg.LineAddress)) { |
| // L1 does't have the line, but we have space for it in the L1 let's see if the L2 has it |
| trigger(mandatory_request_type_to_event(in_msg.Type), |
| in_msg.LineAddress, L1Dcache_entry, |
| TBEs[in_msg.LineAddress]); |
| } else { |
| // No room in the L1, so we need to make room in the L1 |
| // Check if the line we want to evict is not locked |
| Addr addr := L1Dcache.cacheProbe(in_msg.LineAddress); |
| check_on_cache_probe(mandatoryQueue_in, addr); |
| trigger(Event:L1_Replacement, |
| addr, |
| getL1DCacheEntry(addr), |
| TBEs[addr]); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| |
| // ACTIONS |
| |
| action(a_issueGETS, "a", desc="Issue GETS") { |
| peek(mandatoryQueue_in, RubyRequest) { |
| enqueue(requestNetwork_out, RequestMsg, request_latency) { |
| out_msg.addr := address; |
| out_msg.Type := CoherenceRequestType:GETS; |
| out_msg.Requestor := machineID; |
| out_msg.RequestorMachine := MachineType:L1Cache; |
| out_msg.Destination.add(mapAddressToMachine(address, |
| MachineType:L2Cache)); |
| out_msg.MessageSize := MessageSizeType:Request_Control; |
| out_msg.AccessMode := in_msg.AccessMode; |
| out_msg.Prefetch := in_msg.Prefetch; |
| } |
| } |
| } |
| |
| action(b_issueGETX, "b", desc="Issue GETX") { |
| peek(mandatoryQueue_in, RubyRequest) { |
| enqueue(requestNetwork_out, RequestMsg, request_latency) { |
| out_msg.addr := address; |
| out_msg.Type := CoherenceRequestType:GETX; |
| out_msg.Requestor := machineID; |
| out_msg.RequestorMachine := MachineType:L1Cache; |
| out_msg.Destination.add(mapAddressToMachine(address, |
| MachineType:L2Cache)); |
| out_msg.MessageSize := MessageSizeType:Request_Control; |
| out_msg.AccessMode := in_msg.AccessMode; |
| out_msg.Prefetch := in_msg.Prefetch; |
| } |
| } |
| } |
| |
| action(d_issuePUTX, "d", desc="Issue PUTX") { |
| enqueue(requestNetwork_out, RequestMsg, request_latency) { |
| out_msg.addr := address; |
| out_msg.Type := CoherenceRequestType:PUTX; |
| out_msg.Requestor := machineID; |
| out_msg.RequestorMachine := MachineType:L1Cache; |
| out_msg.Destination.add(mapAddressToMachine(address, |
| MachineType:L2Cache)); |
| out_msg.MessageSize := MessageSizeType:Writeback_Control; |
| } |
| } |
| |
| action(dd_issuePUTO, "\d", desc="Issue PUTO") { |
| enqueue(requestNetwork_out, RequestMsg, request_latency) { |
| out_msg.addr := address; |
| out_msg.Type := CoherenceRequestType:PUTO; |
| out_msg.Requestor := machineID; |
| out_msg.RequestorMachine := MachineType:L1Cache; |
| out_msg.Destination.add(mapAddressToMachine(address, |
| MachineType:L2Cache)); |
| out_msg.MessageSize := MessageSizeType:Writeback_Control; |
| } |
| } |
| |
| action(dd_issuePUTS, "\ds", desc="Issue PUTS") { |
| enqueue(requestNetwork_out, RequestMsg, request_latency) { |
| out_msg.addr := address; |
| out_msg.Type := CoherenceRequestType:PUTS; |
| out_msg.Requestor := machineID; |
| out_msg.RequestorMachine := MachineType:L1Cache; |
| out_msg.Destination.add(mapAddressToMachine(address, |
| MachineType:L2Cache)); |
| out_msg.MessageSize := MessageSizeType:Writeback_Control; |
| } |
| } |
| |
| action(e_sendData, "e", desc="Send data from cache to requestor") { |
| peek(requestNetwork_in, RequestMsg) { |
| assert(is_valid(cache_entry)); |
| if (in_msg.RequestorMachine == MachineType:L2Cache) { |
| enqueue(responseNetwork_out, ResponseMsg, cacheResponseLatency()) { |
| out_msg.addr := address; |
| out_msg.Type := CoherenceResponseType:DATA; |
| out_msg.Sender := machineID; |
| out_msg.SenderMachine := MachineType:L1Cache; |
| out_msg.Destination.add(mapAddressToMachine(address, |
| MachineType:L2Cache)); |
| out_msg.DataBlk := cache_entry.DataBlk; |
| // out_msg.Dirty := cache_entry.Dirty; |
| out_msg.Dirty := false; |
| out_msg.Acks := in_msg.Acks; |
| out_msg.MessageSize := MessageSizeType:Response_Data; |
| } |
| DPRINTF(RubySlicc, "Sending data to L2: %#x\n", in_msg.addr); |
| } |
| else { |
| enqueue(responseNetwork_out, ResponseMsg, cacheResponseLatency()) { |
| out_msg.addr := address; |
| out_msg.Type := CoherenceResponseType:DATA; |
| out_msg.Sender := machineID; |
| out_msg.SenderMachine := MachineType:L1Cache; |
| out_msg.Destination.add(in_msg.Requestor); |
| out_msg.DataBlk := cache_entry.DataBlk; |
| // out_msg.Dirty := cache_entry.Dirty; |
| out_msg.Dirty := false; |
| out_msg.Acks := in_msg.Acks; |
| out_msg.MessageSize := MessageSizeType:ResponseLocal_Data; |
| } |
| DPRINTF(RubySlicc, "Sending data to L1\n"); |
| } |
| } |
| } |
| |
| action(ee_sendDataExclusive, "\e", desc="Send data from cache to requestor, don't keep a shared copy") { |
| peek(requestNetwork_in, RequestMsg) { |
| assert(is_valid(cache_entry)); |
| if (in_msg.RequestorMachine == MachineType:L2Cache) { |
| enqueue(responseNetwork_out, ResponseMsg, cacheResponseLatency()) { |
| out_msg.addr := address; |
| out_msg.Type := CoherenceResponseType:DATA_EXCLUSIVE; |
| out_msg.Sender := machineID; |
| out_msg.SenderMachine := MachineType:L1Cache; |
| out_msg.Destination.add(mapAddressToMachine(address, |
| MachineType:L2Cache)); |
| out_msg.DataBlk := cache_entry.DataBlk; |
| out_msg.Dirty := cache_entry.Dirty; |
| out_msg.Acks := in_msg.Acks; |
| out_msg.MessageSize := MessageSizeType:Response_Data; |
| } |
| DPRINTF(RubySlicc, "Sending exclusive data to L2\n"); |
| } |
| else { |
| enqueue(responseNetwork_out, ResponseMsg, cacheResponseLatency()) { |
| out_msg.addr := address; |
| out_msg.Type := CoherenceResponseType:DATA_EXCLUSIVE; |
| out_msg.Sender := machineID; |
| out_msg.SenderMachine := MachineType:L1Cache; |
| out_msg.Destination.add(in_msg.Requestor); |
| out_msg.DataBlk := cache_entry.DataBlk; |
| out_msg.Dirty := cache_entry.Dirty; |
| out_msg.Acks := in_msg.Acks; |
| out_msg.MessageSize := MessageSizeType:ResponseLocal_Data; |
| } |
| DPRINTF(RubySlicc, "Sending exclusive data to L1\n"); |
| } |
| } |
| } |
| |
| action(f_sendAck, "f", desc="Send ack from cache to requestor") { |
| peek(requestNetwork_in, RequestMsg) { |
| if (in_msg.RequestorMachine == MachineType:L1Cache) { |
| enqueue(responseNetwork_out, ResponseMsg, response_latency) { |
| out_msg.addr := address; |
| out_msg.Type := CoherenceResponseType:ACK; |
| out_msg.Sender := machineID; |
| out_msg.SenderMachine := MachineType:L1Cache; |
| out_msg.Destination.add(in_msg.Requestor); |
| out_msg.Acks := 0 - 1; // -1 |
| out_msg.MessageSize := MessageSizeType:Response_Control; |
| } |
| } |
| else { |
| enqueue(responseNetwork_out, ResponseMsg, response_latency) { |
| out_msg.addr := address; |
| out_msg.Type := CoherenceResponseType:ACK; |
| out_msg.Sender := machineID; |
| out_msg.SenderMachine := MachineType:L1Cache; |
| out_msg.Destination.add(mapAddressToMachine(address, |
| MachineType:L2Cache)); |
| out_msg.Acks := 0 - 1; // -1 |
| out_msg.MessageSize := MessageSizeType:Response_Control; |
| } |
| } |
| } |
| } |
| |
| action(g_sendUnblock, "g", desc="Send unblock to memory") { |
| enqueue(responseNetwork_out, ResponseMsg, response_latency) { |
| out_msg.addr := address; |
| out_msg.Type := CoherenceResponseType:UNBLOCK; |
| out_msg.Sender := machineID; |
| out_msg.SenderMachine := MachineType:L1Cache; |
| out_msg.Destination.add(mapAddressToMachine(address, |
| MachineType:L2Cache)); |
| out_msg.MessageSize := MessageSizeType:Unblock_Control; |
| } |
| } |
| |
| action(gg_sendUnblockExclusive, "\g", desc="Send unblock exclusive to memory") { |
| enqueue(responseNetwork_out, ResponseMsg, response_latency) { |
| out_msg.addr := address; |
| out_msg.Type := CoherenceResponseType:UNBLOCK_EXCLUSIVE; |
| out_msg.Sender := machineID; |
| out_msg.SenderMachine := MachineType:L1Cache; |
| out_msg.Destination.add(mapAddressToMachine(address, |
| MachineType:L2Cache)); |
| out_msg.MessageSize := MessageSizeType:Unblock_Control; |
| } |
| } |
| |
| action(h_load_hit, "hd", desc="Notify sequencer the load completed.") { |
| assert(is_valid(cache_entry)); |
| DPRINTF(RubySlicc, "%s\n", cache_entry.DataBlk); |
| L1Dcache.setMRU(cache_entry); |
| sequencer.readCallback(address, cache_entry.DataBlk); |
| } |
| |
| action(h_ifetch_hit, "hi", desc="Notify the sequencer about ifetch completion.") { |
| assert(is_valid(cache_entry)); |
| DPRINTF(RubySlicc, "%s\n", cache_entry.DataBlk); |
| L1Icache.setMRU(cache_entry); |
| sequencer.readCallback(address, cache_entry.DataBlk); |
| } |
| |
| action(hx_load_hit, "hx", desc="Notify sequencer the load completed.") { |
| assert(is_valid(cache_entry)); |
| DPRINTF(RubySlicc, "%s\n", cache_entry.DataBlk); |
| L1Icache.setMRU(address); |
| L1Dcache.setMRU(address); |
| sequencer.readCallback(address, cache_entry.DataBlk, true); |
| } |
| |
| action(hh_store_hit, "\h", desc="Notify sequencer that store completed.") { |
| assert(is_valid(cache_entry)); |
| DPRINTF(RubySlicc, "%s\n", cache_entry.DataBlk); |
| L1Dcache.setMRU(cache_entry); |
| sequencer.writeCallback(address, cache_entry.DataBlk); |
| cache_entry.Dirty := true; |
| } |
| |
| action(xx_store_hit, "\xx", desc="Notify sequencer that store completed.") { |
| assert(is_valid(cache_entry)); |
| DPRINTF(RubySlicc, "%s\n", cache_entry.DataBlk); |
| L1Icache.setMRU(address); |
| L1Dcache.setMRU(address); |
| sequencer.writeCallback(address, cache_entry.DataBlk, true); |
| cache_entry.Dirty := true; |
| } |
| |
| action(i_allocateTBE, "i", desc="Allocate TBE") { |
| check_allocate(TBEs); |
| TBEs.allocate(address); |
| set_tbe(TBEs[address]); |
| assert(is_valid(cache_entry)); |
| tbe.DataBlk := cache_entry.DataBlk; // Data only used for writebacks |
| tbe.Dirty := cache_entry.Dirty; |
| } |
| |
| action(j_popTriggerQueue, "j", desc="Pop trigger queue.") { |
| triggerQueue_in.dequeue(clockEdge()); |
| } |
| |
| action(jj_unsetUseTimer, "\jj", desc="Unset use timer.") { |
| useTimerTable.unset(address); |
| } |
| |
| action(k_popMandatoryQueue, "k", desc="Pop mandatory queue.") { |
| mandatoryQueue_in.dequeue(clockEdge()); |
| } |
| |
| action(l_popForwardQueue, "l", desc="Pop forwarded request queue.") { |
| requestNetwork_in.dequeue(clockEdge()); |
| } |
| |
| action(m_decrementNumberOfMessages, "m", desc="Decrement the number of messages for which we're waiting") { |
| peek(responseToL1Cache_in, ResponseMsg) { |
| assert(is_valid(tbe)); |
| DPRINTF(RubySlicc, "L1 decrementNumberOfMessages: %d\n", in_msg.Acks); |
| tbe.NumPendingMsgs := tbe.NumPendingMsgs - in_msg.Acks; |
| } |
| } |
| |
| action(mm_decrementNumberOfMessages, "\m", desc="Decrement the number of messages for which we're waiting") { |
| peek(requestNetwork_in, RequestMsg) { |
| assert(is_valid(tbe)); |
| tbe.NumPendingMsgs := tbe.NumPendingMsgs - in_msg.Acks; |
| } |
| } |
| |
| action(n_popResponseQueue, "n", desc="Pop response queue") { |
| responseToL1Cache_in.dequeue(clockEdge()); |
| } |
| |
| action(o_checkForCompletion, "o", desc="Check if we have received all the messages required for completion") { |
| assert(is_valid(tbe)); |
| if (tbe.NumPendingMsgs == 0) { |
| enqueue(triggerQueue_out, TriggerMsg) { |
| out_msg.addr := address; |
| out_msg.Type := TriggerType:ALL_ACKS; |
| } |
| } |
| } |
| |
| action(o_scheduleUseTimeout, "oo", desc="Schedule a use timeout.") { |
| useTimerTable.set(address, |
| clockEdge() + cyclesToTicks(use_timeout_latency)); |
| } |
| |
| action(ub_dmaUnblockL2Cache, "ub", desc="Send dma ack to l2 cache") { |
| peek(requestNetwork_in, RequestMsg) { |
| enqueue(responseNetwork_out, ResponseMsg, response_latency) { |
| out_msg.addr := address; |
| out_msg.Type := CoherenceResponseType:DMA_ACK; |
| out_msg.Sender := machineID; |
| out_msg.SenderMachine := MachineType:L1Cache; |
| out_msg.Destination.add(mapAddressToMachine(address, |
| MachineType:L2Cache)); |
| out_msg.Dirty := false; |
| out_msg.Acks := 1; |
| out_msg.MessageSize := MessageSizeType:Response_Control; |
| } |
| } |
| } |
| |
| action(q_sendDataFromTBEToCache, "q", desc="Send data from TBE to cache") { |
| peek(requestNetwork_in, RequestMsg) { |
| assert(is_valid(tbe)); |
| if (in_msg.RequestorMachine == MachineType:L1Cache || |
| in_msg.RequestorMachine == MachineType:DMA) { |
| enqueue(responseNetwork_out, ResponseMsg, response_latency) { |
| out_msg.addr := address; |
| out_msg.Type := CoherenceResponseType:DATA; |
| out_msg.Sender := machineID; |
| out_msg.SenderMachine := MachineType:L1Cache; |
| out_msg.Destination.add(in_msg.Requestor); |
| out_msg.DataBlk := tbe.DataBlk; |
| // out_msg.Dirty := tbe.Dirty; |
| out_msg.Dirty := false; |
| out_msg.Acks := in_msg.Acks; |
| out_msg.MessageSize := MessageSizeType:ResponseLocal_Data; |
| } |
| } |
| else { |
| enqueue(responseNetwork_out, ResponseMsg, response_latency) { |
| out_msg.addr := address; |
| out_msg.Type := CoherenceResponseType:DATA; |
| out_msg.Sender := machineID; |
| out_msg.SenderMachine := MachineType:L1Cache; |
| out_msg.Destination.add(mapAddressToMachine(address, |
| MachineType:L2Cache)); |
| out_msg.DataBlk := tbe.DataBlk; |
| // out_msg.Dirty := tbe.Dirty; |
| out_msg.Dirty := false; |
| out_msg.Acks := in_msg.Acks; |
| out_msg.MessageSize := MessageSizeType:Response_Data; |
| } |
| } |
| } |
| } |
| |
| action(q_sendExclusiveDataFromTBEToCache, "qq", desc="Send data from TBE to cache") { |
| peek(requestNetwork_in, RequestMsg) { |
| assert(is_valid(tbe)); |
| if (in_msg.RequestorMachine == MachineType:L1Cache) { |
| enqueue(responseNetwork_out, ResponseMsg, response_latency) { |
| out_msg.addr := address; |
| out_msg.Type := CoherenceResponseType:DATA_EXCLUSIVE; |
| out_msg.Sender := machineID; |
| out_msg.SenderMachine := MachineType:L1Cache; |
| out_msg.Destination.add(in_msg.Requestor); |
| out_msg.DataBlk := tbe.DataBlk; |
| out_msg.Dirty := tbe.Dirty; |
| out_msg.Acks := in_msg.Acks; |
| out_msg.MessageSize := MessageSizeType:ResponseLocal_Data; |
| } |
| } |
| else { |
| enqueue(responseNetwork_out, ResponseMsg, response_latency) { |
| out_msg.addr := address; |
| out_msg.Type := CoherenceResponseType:DATA_EXCLUSIVE; |
| out_msg.Sender := machineID; |
| out_msg.SenderMachine := MachineType:L1Cache; |
| out_msg.Destination.add(mapAddressToMachine(address, |
| MachineType:L2Cache)); |
| out_msg.DataBlk := tbe.DataBlk; |
| out_msg.Dirty := tbe.Dirty; |
| out_msg.Acks := in_msg.Acks; |
| out_msg.MessageSize := MessageSizeType:Response_Data; |
| } |
| } |
| } |
| } |
| |
| // L2 will usually request data for a writeback |
| action(qq_sendWBDataFromTBEToL2, "\q", desc="Send data from TBE to L2") { |
| enqueue(requestNetwork_out, RequestMsg, request_latency) { |
| assert(is_valid(tbe)); |
| out_msg.addr := address; |
| out_msg.Requestor := machineID; |
| out_msg.RequestorMachine := MachineType:L1Cache; |
| out_msg.Destination.add(mapAddressToMachine(address, |
| MachineType:L2Cache)); |
| if (tbe.Dirty) { |
| out_msg.Type := CoherenceRequestType:WRITEBACK_DIRTY_DATA; |
| } else { |
| out_msg.Type := CoherenceRequestType:WRITEBACK_CLEAN_DATA; |
| } |
| out_msg.DataBlk := tbe.DataBlk; |
| out_msg.MessageSize := MessageSizeType:Writeback_Data; |
| } |
| } |
| |
| action(s_deallocateTBE, "s", desc="Deallocate TBE") { |
| TBEs.deallocate(address); |
| unset_tbe(); |
| } |
| |
| action(u_writeDataToCache, "u", desc="Write data to cache") { |
| peek(responseToL1Cache_in, ResponseMsg) { |
| assert(is_valid(cache_entry)); |
| cache_entry.DataBlk := in_msg.DataBlk; |
| cache_entry.Dirty := in_msg.Dirty; |
| |
| if (in_msg.Type == CoherenceResponseType:DATA) { |
| //assert(in_msg.Dirty == false); |
| } |
| } |
| } |
| |
| action(kk_deallocateL1CacheBlock, "\k", desc="Deallocate cache block. Sets the cache to invalid, allowing a replacement in parallel with a fetch.") { |
| if (L1Dcache.isTagPresent(address)) { |
| L1Dcache.deallocate(address); |
| } else { |
| L1Icache.deallocate(address); |
| } |
| unset_cache_entry(); |
| } |
| |
| action(ii_allocateL1DCacheBlock, "\i", desc="Set L1 D-cache tag equal to tag of block B.") { |
| if ((is_invalid(cache_entry))) { |
| set_cache_entry(L1Dcache.allocate(address, new Entry)); |
| } |
| } |
| |
| action(jj_allocateL1ICacheBlock, "\j", desc="Set L1 I-cache tag equal to tag of block B.") { |
| if ((is_invalid(cache_entry))) { |
| set_cache_entry(L1Icache.allocate(address, new Entry)); |
| } |
| } |
| |
| action(forward_eviction_to_cpu, "\cc", desc="sends eviction information to the processor") { |
| if (send_evictions) { |
| DPRINTF(RubySlicc, "Sending invalidation for %#x to the CPU\n", address); |
| sequencer.evictionCallback(address); |
| } |
| } |
| |
| action(uu_profileInstMiss, "\uim", desc="Profile the demand miss") { |
| ++L1Icache.demand_misses; |
| } |
| |
| action(uu_profileInstHit, "\uih", desc="Profile the demand hit") { |
| ++L1Icache.demand_hits; |
| } |
| |
| action(uu_profileDataMiss, "\udm", desc="Profile the demand miss") { |
| ++L1Dcache.demand_misses; |
| } |
| |
| action(uu_profileDataHit, "\udh", desc="Profile the demand hit") { |
| ++L1Dcache.demand_hits; |
| } |
| |
| action(z_recycleRequestQueue, "z", desc="Send the head of the mandatory queue to the back of the queue.") { |
| requestNetwork_in.recycle(clockEdge(), cyclesToTicks(recycle_latency)); |
| } |
| |
| action(zz_recycleMandatoryQueue, "\z", desc="Send the head of the mandatory queue to the back of the queue.") { |
| mandatoryQueue_in.recycle(clockEdge(), cyclesToTicks(recycle_latency)); |
| } |
| |
| //***************************************************** |
| // TRANSITIONS |
| //***************************************************** |
| |
| // Transitions for Load/Store/L2_Replacement from transient states |
| transition({IM, SM, OM, IS, OI, SI, MI, II}, {Store, L1_Replacement}) { |
| zz_recycleMandatoryQueue; |
| } |
| |
| transition({M_W, MM_W}, L1_Replacement) { |
| zz_recycleMandatoryQueue; |
| } |
| |
| transition({M_W, MM_W}, {Fwd_GETS, Fwd_DMA, Fwd_GETX, Own_GETX, Inv}) { |
| z_recycleRequestQueue; |
| } |
| |
| transition({IM, IS, OI, MI, SI, II}, {Load, Ifetch}) { |
| zz_recycleMandatoryQueue; |
| } |
| |
| // Transitions from Idle |
| transition(I, Load, IS) { |
| ii_allocateL1DCacheBlock; |
| i_allocateTBE; |
| a_issueGETS; |
| uu_profileDataMiss; |
| k_popMandatoryQueue; |
| } |
| |
| transition(I, Ifetch, IS) { |
| jj_allocateL1ICacheBlock; |
| i_allocateTBE; |
| a_issueGETS; |
| uu_profileInstMiss; |
| k_popMandatoryQueue; |
| } |
| |
| transition(I, Store, IM) { |
| ii_allocateL1DCacheBlock; |
| i_allocateTBE; |
| b_issueGETX; |
| uu_profileDataMiss; |
| k_popMandatoryQueue; |
| } |
| |
| transition(I, L1_Replacement) { |
| kk_deallocateL1CacheBlock; |
| } |
| |
| transition(I, Inv) { |
| f_sendAck; |
| l_popForwardQueue; |
| } |
| |
| transition({S, SM, O, OM, MM, MM_W, M, M_W}, Load) { |
| h_load_hit; |
| uu_profileDataHit; |
| k_popMandatoryQueue; |
| } |
| |
| transition({S, SM, O, OM, MM, MM_W, M, M_W}, Ifetch) { |
| h_ifetch_hit; |
| uu_profileInstHit; |
| k_popMandatoryQueue; |
| } |
| |
| // Transitions from Shared |
| transition(S, Store, SM) { |
| i_allocateTBE; |
| b_issueGETX; |
| uu_profileDataMiss; |
| k_popMandatoryQueue; |
| } |
| |
| transition(S, L1_Replacement, SI) { |
| i_allocateTBE; |
| dd_issuePUTS; |
| forward_eviction_to_cpu; |
| kk_deallocateL1CacheBlock; |
| } |
| |
| transition(S, Inv, I) { |
| f_sendAck; |
| forward_eviction_to_cpu; |
| l_popForwardQueue; |
| } |
| |
| transition(S, Fwd_GETS) { |
| e_sendData; |
| l_popForwardQueue; |
| } |
| |
| transition(S, Fwd_DMA) { |
| e_sendData; |
| ub_dmaUnblockL2Cache; |
| l_popForwardQueue; |
| } |
| |
| // Transitions from Owned |
| transition(O, Store, OM) { |
| i_allocateTBE; |
| b_issueGETX; |
| uu_profileDataMiss; |
| k_popMandatoryQueue; |
| } |
| |
| transition(O, L1_Replacement, OI) { |
| i_allocateTBE; |
| dd_issuePUTO; |
| forward_eviction_to_cpu; |
| kk_deallocateL1CacheBlock; |
| } |
| |
| transition(O, Fwd_GETX, I) { |
| ee_sendDataExclusive; |
| forward_eviction_to_cpu; |
| l_popForwardQueue; |
| } |
| |
| transition(O, Fwd_GETS) { |
| e_sendData; |
| l_popForwardQueue; |
| } |
| |
| transition(O, Fwd_DMA) { |
| e_sendData; |
| ub_dmaUnblockL2Cache; |
| l_popForwardQueue; |
| } |
| |
| // Transitions from MM |
| transition({MM, MM_W}, Store) { |
| hh_store_hit; |
| uu_profileDataHit; |
| k_popMandatoryQueue; |
| } |
| |
| transition(MM, L1_Replacement, MI) { |
| i_allocateTBE; |
| d_issuePUTX; |
| forward_eviction_to_cpu; |
| kk_deallocateL1CacheBlock; |
| } |
| |
| transition(MM, Fwd_GETX, I) { |
| ee_sendDataExclusive; |
| forward_eviction_to_cpu; |
| l_popForwardQueue; |
| } |
| |
| transition(MM, Fwd_GETS, I) { |
| ee_sendDataExclusive; |
| forward_eviction_to_cpu; |
| l_popForwardQueue; |
| } |
| |
| transition(MM, Fwd_DMA, MM) { |
| e_sendData; |
| ub_dmaUnblockL2Cache; |
| l_popForwardQueue; |
| } |
| |
| // Transitions from M |
| transition(M, Store, MM) { |
| hh_store_hit; |
| uu_profileDataHit; |
| k_popMandatoryQueue; |
| } |
| |
| transition(M_W, Store, MM_W) { |
| hh_store_hit; |
| uu_profileDataHit; |
| k_popMandatoryQueue; |
| } |
| |
| transition(M, L1_Replacement, MI) { |
| i_allocateTBE; |
| d_issuePUTX; |
| forward_eviction_to_cpu; |
| kk_deallocateL1CacheBlock; |
| } |
| |
| transition(M, Fwd_GETX, I) { |
| // e_sendData; |
| ee_sendDataExclusive; |
| forward_eviction_to_cpu; |
| l_popForwardQueue; |
| } |
| |
| transition(M, Fwd_GETS, O) { |
| e_sendData; |
| l_popForwardQueue; |
| } |
| |
| transition(M, Fwd_DMA) { |
| e_sendData; |
| ub_dmaUnblockL2Cache; |
| l_popForwardQueue; |
| } |
| |
| // Transitions from IM |
| |
| transition(IM, Inv) { |
| f_sendAck; |
| l_popForwardQueue; |
| } |
| |
| transition(IM, Ack) { |
| m_decrementNumberOfMessages; |
| o_checkForCompletion; |
| n_popResponseQueue; |
| } |
| |
| transition(IM, {Exclusive_Data, Data}, OM) { |
| u_writeDataToCache; |
| m_decrementNumberOfMessages; |
| o_checkForCompletion; |
| n_popResponseQueue; |
| } |
| |
| // Transitions from SM |
| transition(SM, Inv, IM) { |
| f_sendAck; |
| forward_eviction_to_cpu; |
| l_popForwardQueue; |
| } |
| |
| transition(SM, Ack) { |
| m_decrementNumberOfMessages; |
| o_checkForCompletion; |
| n_popResponseQueue; |
| } |
| |
| transition(SM, {Data, Exclusive_Data}, OM) { |
| // v_writeDataToCacheVerify; |
| m_decrementNumberOfMessages; |
| o_checkForCompletion; |
| n_popResponseQueue; |
| } |
| |
| transition(SM, Fwd_GETS) { |
| e_sendData; |
| l_popForwardQueue; |
| } |
| |
| transition(SM, Fwd_DMA) { |
| e_sendData; |
| ub_dmaUnblockL2Cache; |
| l_popForwardQueue; |
| } |
| |
| // Transitions from OM |
| transition(OM, Own_GETX) { |
| mm_decrementNumberOfMessages; |
| o_checkForCompletion; |
| l_popForwardQueue; |
| } |
| |
| |
| // transition(OM, Fwd_GETX, OMF) { |
| transition(OM, Fwd_GETX, IM) { |
| ee_sendDataExclusive; |
| l_popForwardQueue; |
| } |
| |
| transition(OM, Fwd_GETS) { |
| e_sendData; |
| l_popForwardQueue; |
| } |
| |
| transition(OM, Fwd_DMA) { |
| e_sendData; |
| ub_dmaUnblockL2Cache; |
| l_popForwardQueue; |
| } |
| |
| //transition({OM, OMF}, Ack) { |
| transition(OM, Ack) { |
| m_decrementNumberOfMessages; |
| o_checkForCompletion; |
| n_popResponseQueue; |
| } |
| |
| transition(OM, All_acks, MM_W) { |
| xx_store_hit; |
| gg_sendUnblockExclusive; |
| s_deallocateTBE; |
| o_scheduleUseTimeout; |
| j_popTriggerQueue; |
| } |
| |
| transition(MM_W, Use_Timeout, MM) { |
| jj_unsetUseTimer; |
| } |
| |
| // Transitions from IS |
| |
| transition(IS, Inv) { |
| f_sendAck; |
| l_popForwardQueue; |
| } |
| |
| transition(IS, Data, S) { |
| u_writeDataToCache; |
| m_decrementNumberOfMessages; |
| hx_load_hit; |
| g_sendUnblock; |
| s_deallocateTBE; |
| n_popResponseQueue; |
| } |
| |
| transition(IS, Exclusive_Data, M_W) { |
| u_writeDataToCache; |
| m_decrementNumberOfMessages; |
| hx_load_hit; |
| gg_sendUnblockExclusive; |
| o_scheduleUseTimeout; |
| s_deallocateTBE; |
| n_popResponseQueue; |
| } |
| |
| transition(M_W, Use_Timeout, M) { |
| jj_unsetUseTimer; |
| } |
| |
| // Transitions from OI/MI |
| |
| transition(MI, Fwd_GETS, OI) { |
| q_sendDataFromTBEToCache; |
| l_popForwardQueue; |
| } |
| |
| transition(MI, Fwd_DMA) { |
| q_sendDataFromTBEToCache; |
| ub_dmaUnblockL2Cache; |
| l_popForwardQueue; |
| } |
| |
| transition(MI, Fwd_GETX, II) { |
| q_sendExclusiveDataFromTBEToCache; |
| l_popForwardQueue; |
| } |
| |
| transition({SI, OI}, Fwd_GETS) { |
| q_sendDataFromTBEToCache; |
| l_popForwardQueue; |
| } |
| |
| transition({SI, OI}, Fwd_DMA) { |
| q_sendDataFromTBEToCache; |
| ub_dmaUnblockL2Cache; |
| l_popForwardQueue; |
| } |
| |
| transition(OI, Fwd_GETX, II) { |
| q_sendExclusiveDataFromTBEToCache; |
| l_popForwardQueue; |
| } |
| |
| transition({SI, OI, MI}, Writeback_Ack_Data, I) { |
| qq_sendWBDataFromTBEToL2; // always send data |
| s_deallocateTBE; |
| n_popResponseQueue; |
| } |
| |
| transition({SI, OI, MI}, Writeback_Ack, I) { |
| g_sendUnblock; |
| s_deallocateTBE; |
| n_popResponseQueue; |
| } |
| |
| transition({MI, OI}, Writeback_Nack, OI) { |
| // FIXME: This might cause deadlock by re-using the writeback |
| // channel, we should handle this case differently. |
| dd_issuePUTO; |
| n_popResponseQueue; |
| } |
| |
| // Transitions from II |
| transition(II, {Writeback_Ack, Writeback_Ack_Data}, I) { |
| g_sendUnblock; |
| s_deallocateTBE; |
| n_popResponseQueue; |
| } |
| |
| // transition({II, SI}, Writeback_Nack, I) { |
| transition(II, Writeback_Nack, I) { |
| s_deallocateTBE; |
| n_popResponseQueue; |
| } |
| |
| transition(SI, Writeback_Nack) { |
| dd_issuePUTS; |
| n_popResponseQueue; |
| } |
| |
| transition(II, Inv) { |
| f_sendAck; |
| l_popForwardQueue; |
| } |
| |
| transition(SI, Inv, II) { |
| f_sendAck; |
| l_popForwardQueue; |
| } |
| } |