blob: e9feb1b6aa794a19fc7dbe1229160b8f1b2191de [file] [log] [blame]
/*
* Copyright (c) 2010-2015 Advanced Micro Devices, Inc.
* All rights reserved.
*
* For use for simulation and test purposes only
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
machine(MachineType:TCC, "TCC Cache")
: CacheMemory * L2cache;
WireBuffer * w_reqToTCCDir;
WireBuffer * w_respToTCCDir;
WireBuffer * w_TCCUnblockToTCCDir;
WireBuffer * w_reqToTCC;
WireBuffer * w_probeToTCC;
WireBuffer * w_respToTCC;
int TCC_select_num_bits;
Cycles l2_request_latency := 1;
Cycles l2_response_latency := 20;
// To the general response network
MessageBuffer * responseFromTCC, network="To", virtual_network="3", vnet_type="response";
// From the general response network
MessageBuffer * responseToTCC, network="From", virtual_network="3", vnet_type="response";
{
// EVENTS
enumeration(Event, desc="TCC Events") {
// Requests coming from the Cores
RdBlk, desc="CPU RdBlk event";
RdBlkM, desc="CPU RdBlkM event";
RdBlkS, desc="CPU RdBlkS event";
CtoD, desc="Change to Dirty request";
WrVicBlk, desc="L1 Victim (dirty)";
WrVicBlkShared, desc="L1 Victim (dirty)";
ClVicBlk, desc="L1 Victim (clean)";
ClVicBlkShared, desc="L1 Victim (clean)";
CPUData, desc="WB data from CPU";
CPUDataShared, desc="WB data from CPU, NBReqShared 1";
StaleWB, desc="Stale WB, No data";
L2_Repl, desc="L2 Replacement";
// Probes
PrbInvData, desc="Invalidating probe, return dirty data";
PrbInv, desc="Invalidating probe, no need to return data";
PrbShrData, desc="Downgrading probe, return data";
// Coming from Memory Controller
WBAck, desc="ack from memory";
CancelWB, desc="Cancel WB from L2";
}
// STATES
state_declaration(State, desc="TCC State", default="TCC_State_I") {
M, AccessPermission:Read_Write, desc="Modified"; // No other cache has copy, memory stale
O, AccessPermission:Read_Only, desc="Owned"; // Correct most recent copy, others may exist in S
E, AccessPermission:Read_Write, desc="Exclusive"; // Correct, most recent, and only copy (and == Memory)
S, AccessPermission:Read_Only, desc="Shared"; // Correct, most recent. If no one in O, then == Memory
I, AccessPermission:Invalid, desc="Invalid";
I_M, AccessPermission:Busy, desc="Invalid, received WrVicBlk, sent Ack, waiting for Data";
I_O, AccessPermission:Busy, desc="Invalid, received WrVicBlk, sent Ack, waiting for Data";
I_E, AccessPermission:Busy, desc="Invalid, receive ClVicBlk, sent Ack, waiting for Data";
I_S, AccessPermission:Busy, desc="Invalid, receive ClVicBlk, sent Ack, waiting for Data";
S_M, AccessPermission:Busy, desc="received WrVicBlk, sent Ack, waiting for Data, then go to M";
S_O, AccessPermission:Busy, desc="received WrVicBlkShared, sent Ack, waiting for Data, then go to O";
S_E, AccessPermission:Busy, desc="Shared, received ClVicBlk, sent Ack, waiting for Data, then go to E";
S_S, AccessPermission:Busy, desc="Shared, received ClVicBlk, sent Ack, waiting for Data, then go to S";
E_M, AccessPermission:Busy, desc="received WrVicBlk, sent Ack, waiting for Data, then go to O";
E_O, AccessPermission:Busy, desc="received WrVicBlkShared, sent Ack, waiting for Data, then go to O";
E_E, AccessPermission:Busy, desc="received WrVicBlk, sent Ack, waiting for Data, then go to O";
E_S, AccessPermission:Busy, desc="Shared, received WrVicBlk, sent Ack, waiting for Data";
O_M, AccessPermission:Busy, desc="...";
O_O, AccessPermission:Busy, desc="...";
O_E, AccessPermission:Busy, desc="...";
M_M, AccessPermission:Busy, desc="...";
M_O, AccessPermission:Busy, desc="...";
M_E, AccessPermission:Busy, desc="...";
M_S, AccessPermission:Busy, desc="...";
D_I, AccessPermission:Invalid, desc="drop WB data on the floor when receive";
MOD_I, AccessPermission:Busy, desc="drop WB data on the floor, waiting for WBAck from Mem";
MO_I, AccessPermission:Busy, desc="M or O, received L2_Repl, waiting for WBAck from Mem";
ES_I, AccessPermission:Busy, desc="E or S, received L2_Repl, waiting for WBAck from Mem";
I_C, AccessPermission:Invalid, desc="sent cancel, just waiting to receive mem wb ack so nothing gets confused";
}
enumeration(RequestType, desc="To communicate stats from transitions to recordStats") {
DataArrayRead, desc="Read the data array";
DataArrayWrite, desc="Write the data array";
TagArrayRead, desc="Read the data array";
TagArrayWrite, desc="Write the data array";
}
// STRUCTURES
structure(Entry, desc="...", interface="AbstractCacheEntry") {
State CacheState, desc="cache state";
bool Dirty, desc="Is the data dirty (diff from memory?)";
DataBlock DataBlk, desc="Data for the block";
}
structure(TBE, desc="...") {
State TBEState, desc="Transient state";
DataBlock DataBlk, desc="data for the block";
bool Dirty, desc="Is the data dirty?";
bool Shared, desc="Victim hit by shared probe";
MachineID From, desc="Waiting for writeback from...";
}
structure(TBETable, external="yes") {
TBE lookup(Addr);
void allocate(Addr);
void deallocate(Addr);
bool isPresent(Addr);
}
TBETable TBEs, template="<TCC_TBE>", constructor="m_number_of_TBEs";
int TCC_select_low_bit, default="RubySystem::getBlockSizeBits()";
void set_cache_entry(AbstractCacheEntry b);
void unset_cache_entry();
void set_tbe(TBE b);
void unset_tbe();
void wakeUpAllBuffers();
void wakeUpBuffers(Addr a);
// FUNCTION DEFINITIONS
Tick clockEdge();
Tick cyclesToTicks(Cycles c);
Entry getCacheEntry(Addr addr), return_by_pointer="yes" {
return static_cast(Entry, "pointer", L2cache.lookup(addr));
}
DataBlock getDataBlock(Addr addr), return_by_ref="yes" {
return getCacheEntry(addr).DataBlk;
}
bool presentOrAvail(Addr addr) {
return L2cache.isTagPresent(addr) || L2cache.cacheAvail(addr);
}
State getState(TBE tbe, Entry cache_entry, Addr addr) {
if (is_valid(tbe)) {
return tbe.TBEState;
} else if (is_valid(cache_entry)) {
return cache_entry.CacheState;
}
return State:I;
}
void setState(TBE tbe, Entry cache_entry, Addr addr, State state) {
if (is_valid(tbe)) {
tbe.TBEState := state;
}
if (is_valid(cache_entry)) {
cache_entry.CacheState := state;
}
}
AccessPermission getAccessPermission(Addr addr) {
TBE tbe := TBEs.lookup(addr);
if(is_valid(tbe)) {
return TCC_State_to_permission(tbe.TBEState);
}
Entry cache_entry := getCacheEntry(addr);
if(is_valid(cache_entry)) {
return TCC_State_to_permission(cache_entry.CacheState);
}
return AccessPermission:NotPresent;
}
void setAccessPermission(Entry cache_entry, Addr addr, State state) {
if (is_valid(cache_entry)) {
cache_entry.changePermission(TCC_State_to_permission(state));
}
}
void functionalRead(Addr addr, Packet *pkt) {
TBE tbe := TBEs.lookup(addr);
if(is_valid(tbe)) {
testAndRead(addr, tbe.DataBlk, pkt);
} else {
functionalMemoryRead(pkt);
}
}
int functionalWrite(Addr addr, Packet *pkt) {
int num_functional_writes := 0;
TBE tbe := TBEs.lookup(addr);
if(is_valid(tbe)) {
num_functional_writes := num_functional_writes +
testAndWrite(addr, tbe.DataBlk, pkt);
}
num_functional_writes := num_functional_writes + functionalMemoryWrite(pkt);
return num_functional_writes;
}
void recordRequestType(RequestType request_type, Addr addr) {
if (request_type == RequestType:DataArrayRead) {
L2cache.recordRequestType(CacheRequestType:DataArrayRead, addr);
} else if (request_type == RequestType:DataArrayWrite) {
L2cache.recordRequestType(CacheRequestType:DataArrayWrite, addr);
} else if (request_type == RequestType:TagArrayRead) {
L2cache.recordRequestType(CacheRequestType:TagArrayRead, addr);
} else if (request_type == RequestType:TagArrayWrite) {
L2cache.recordRequestType(CacheRequestType:TagArrayWrite, addr);
}
}
bool checkResourceAvailable(RequestType request_type, Addr addr) {
if (request_type == RequestType:DataArrayRead) {
return L2cache.checkResourceAvailable(CacheResourceType:DataArray, addr);
} else if (request_type == RequestType:DataArrayWrite) {
return L2cache.checkResourceAvailable(CacheResourceType:DataArray, addr);
} else if (request_type == RequestType:TagArrayRead) {
return L2cache.checkResourceAvailable(CacheResourceType:TagArray, addr);
} else if (request_type == RequestType:TagArrayWrite) {
return L2cache.checkResourceAvailable(CacheResourceType:TagArray, addr);
} else {
error("Invalid RequestType type in checkResourceAvailable");
return true;
}
}
// OUT PORTS
out_port(w_requestNetwork_out, CPURequestMsg, w_reqToTCCDir);
out_port(w_TCCResp_out, ResponseMsg, w_respToTCCDir);
out_port(responseNetwork_out, ResponseMsg, responseFromTCC);
out_port(w_unblockNetwork_out, UnblockMsg, w_TCCUnblockToTCCDir);
// IN PORTS
in_port(TDResponse_in, ResponseMsg, w_respToTCC) {
if (TDResponse_in.isReady(clockEdge())) {
peek(TDResponse_in, ResponseMsg) {
Entry cache_entry := getCacheEntry(in_msg.addr);
TBE tbe := TBEs.lookup(in_msg.addr);
if (in_msg.Type == CoherenceResponseType:TDSysWBAck) {
trigger(Event:WBAck, in_msg.addr, cache_entry, tbe);
}
else {
DPRINTF(RubySlicc, "%s\n", in_msg);
error("Error on TDResponse Type");
}
}
}
}
// Response Network
in_port(responseNetwork_in, ResponseMsg, responseToTCC) {
if (responseNetwork_in.isReady(clockEdge())) {
peek(responseNetwork_in, ResponseMsg) {
Entry cache_entry := getCacheEntry(in_msg.addr);
TBE tbe := TBEs.lookup(in_msg.addr);
if (in_msg.Type == CoherenceResponseType:CPUData) {
if (in_msg.NbReqShared) {
trigger(Event:CPUDataShared, in_msg.addr, cache_entry, tbe);
} else {
trigger(Event:CPUData, in_msg.addr, cache_entry, tbe);
}
} else if (in_msg.Type == CoherenceResponseType:StaleNotif) {
trigger(Event:StaleWB, in_msg.addr, cache_entry, tbe);
} else {
DPRINTF(RubySlicc, "%s\n", in_msg);
error("Error on TDResponse Type");
}
}
}
}
// probe network
in_port(probeNetwork_in, TDProbeRequestMsg, w_probeToTCC) {
if (probeNetwork_in.isReady(clockEdge())) {
peek(probeNetwork_in, TDProbeRequestMsg) {
Entry cache_entry := getCacheEntry(in_msg.addr);
TBE tbe := TBEs.lookup(in_msg.addr);
if (in_msg.Type == ProbeRequestType:PrbInv) {
if (in_msg.ReturnData) {
trigger(Event:PrbInvData, in_msg.addr, cache_entry, tbe);
} else {
trigger(Event:PrbInv, in_msg.addr, cache_entry, tbe);
}
} else if (in_msg.Type == ProbeRequestType:PrbDowngrade) {
if (in_msg.ReturnData) {
trigger(Event:PrbShrData, in_msg.addr, cache_entry, tbe);
} else {
error("Don't think I should get any of these");
}
}
}
}
}
// Request Network
in_port(requestNetwork_in, CPURequestMsg, w_reqToTCC) {
if (requestNetwork_in.isReady(clockEdge())) {
peek(requestNetwork_in, CPURequestMsg) {
assert(in_msg.Destination.isElement(machineID));
Entry cache_entry := getCacheEntry(in_msg.addr);
TBE tbe := TBEs.lookup(in_msg.addr);
if (in_msg.Type == CoherenceRequestType:RdBlk) {
trigger(Event:RdBlk, in_msg.addr, cache_entry, tbe);
} else if (in_msg.Type == CoherenceRequestType:RdBlkS) {
trigger(Event:RdBlkS, in_msg.addr, cache_entry, tbe);
} else if (in_msg.Type == CoherenceRequestType:RdBlkM) {
trigger(Event:RdBlkM, in_msg.addr, cache_entry, tbe);
} else if (in_msg.Type == CoherenceRequestType:VicClean) {
if (presentOrAvail(in_msg.addr)) {
if (in_msg.Shared) {
trigger(Event:ClVicBlkShared, in_msg.addr, cache_entry, tbe);
} else {
trigger(Event:ClVicBlk, in_msg.addr, cache_entry, tbe);
}
} else {
Addr victim := L2cache.cacheProbe(in_msg.addr);
trigger(Event:L2_Repl, victim, getCacheEntry(victim), TBEs.lookup(victim));
}
} else if (in_msg.Type == CoherenceRequestType:VicDirty) {
if (presentOrAvail(in_msg.addr)) {
if (in_msg.Shared) {
trigger(Event:WrVicBlkShared, in_msg.addr, cache_entry, tbe);
} else {
trigger(Event:WrVicBlk, in_msg.addr, cache_entry, tbe);
}
} else {
Addr victim := L2cache.cacheProbe(in_msg.addr);
trigger(Event:L2_Repl, victim, getCacheEntry(victim), TBEs.lookup(victim));
}
} else {
requestNetwork_in.recycle(clockEdge(), cyclesToTicks(recycle_latency));
}
}
}
}
// BEGIN ACTIONS
action(i_invL2, "i", desc="invalidate TCC cache block") {
if (is_valid(cache_entry)) {
L2cache.deallocate(address);
}
unset_cache_entry();
}
action(rm_sendResponseM, "rm", desc="send Modified response") {
peek(requestNetwork_in, CPURequestMsg) {
enqueue(responseNetwork_out, ResponseMsg, l2_response_latency) {
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:TDSysResp;
out_msg.Sender := machineID;
out_msg.Destination.add(in_msg.Requestor);
out_msg.DataBlk := cache_entry.DataBlk;
out_msg.MessageSize := MessageSizeType:Response_Data;
out_msg.Dirty := cache_entry.Dirty;
out_msg.State := CoherenceState:Modified;
DPRINTF(RubySlicc, "%s\n", out_msg);
}
}
}
action(rs_sendResponseS, "rs", desc="send Shared response") {
peek(requestNetwork_in, CPURequestMsg) {
enqueue(responseNetwork_out, ResponseMsg, l2_response_latency) {
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:TDSysResp;
out_msg.Sender := machineID;
out_msg.Destination.add(in_msg.Requestor);
out_msg.DataBlk := cache_entry.DataBlk;
out_msg.MessageSize := MessageSizeType:Response_Data;
out_msg.Dirty := cache_entry.Dirty;
out_msg.State := CoherenceState:Shared;
DPRINTF(RubySlicc, "%s\n", out_msg);
}
}
}
action(r_requestToTD, "r", desc="Miss in L2, pass on") {
peek(requestNetwork_in, CPURequestMsg) {
enqueue(w_requestNetwork_out, CPURequestMsg, l2_request_latency) {
out_msg.addr := address;
out_msg.Type := in_msg.Type;
out_msg.Requestor := in_msg.Requestor;
out_msg.Destination.add(mapAddressToRange(address,MachineType:TCCdir,
TCC_select_low_bit, TCC_select_num_bits));
out_msg.Shared := false; // unneeded for this request
out_msg.MessageSize := in_msg.MessageSize;
DPRINTF(RubySlicc, "%s\n", out_msg);
}
}
}
action(t_allocateTBE, "t", desc="allocate TBE Entry") {
TBEs.allocate(address);
set_tbe(TBEs.lookup(address));
if (is_valid(cache_entry)) {
tbe.DataBlk := cache_entry.DataBlk; // Data only for WBs
tbe.Dirty := cache_entry.Dirty;
}
tbe.From := machineID;
}
action(dt_deallocateTBE, "dt", desc="deallocate TBE Entry") {
TBEs.deallocate(address);
unset_tbe();
}
action(vc_vicClean, "vc", desc="Victimize Clean L2 data") {
enqueue(w_requestNetwork_out, CPURequestMsg, l2_request_latency) {
out_msg.addr := address;
out_msg.Type := CoherenceRequestType:VicClean;
out_msg.Requestor := machineID;
out_msg.DataBlk := cache_entry.DataBlk;
out_msg.Destination.add(mapAddressToRange(address,MachineType:TCCdir,
TCC_select_low_bit, TCC_select_num_bits));
out_msg.MessageSize := MessageSizeType:Response_Data;
}
}
action(vd_vicDirty, "vd", desc="Victimize dirty L2 data") {
enqueue(w_requestNetwork_out, CPURequestMsg, l2_request_latency) {
out_msg.addr := address;
out_msg.Type := CoherenceRequestType:VicDirty;
out_msg.Requestor := machineID;
out_msg.DataBlk := cache_entry.DataBlk;
out_msg.Destination.add(mapAddressToRange(address,MachineType:TCCdir,
TCC_select_low_bit, TCC_select_num_bits));
out_msg.MessageSize := MessageSizeType:Response_Data;
}
}
action(w_sendResponseWBAck, "w", desc="send WB Ack") {
peek(requestNetwork_in, CPURequestMsg) {
enqueue(responseNetwork_out, ResponseMsg, l2_response_latency) {
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:TDSysWBAck;
out_msg.Destination.add(in_msg.Requestor);
out_msg.Sender := machineID;
out_msg.MessageSize := MessageSizeType:Writeback_Control;
}
}
}
action(pi_sendProbeResponseInv, "pi", desc="send probe ack inv, no data") {
enqueue(w_TCCResp_out, ResponseMsg, l2_request_latency) {
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:CPUPrbResp; // TCC and CPUs respond in same way to probes
out_msg.Sender := machineID;
// will this always be ok? probably not for multisocket
out_msg.Destination.add(mapAddressToRange(address,MachineType:TCCdir,
TCC_select_low_bit, TCC_select_num_bits));
out_msg.Dirty := false;
out_msg.Hit := false;
out_msg.Ntsl := true;
out_msg.State := CoherenceState:NA;
out_msg.MessageSize := MessageSizeType:Response_Control;
}
}
action(ph_sendProbeResponseHit, "ph", desc="send probe ack, no data") {
enqueue(w_TCCResp_out, ResponseMsg, l2_request_latency) {
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:CPUPrbResp; // TCC and CPUs respond in same way to probes
out_msg.Sender := machineID;
// will this always be ok? probably not for multisocket
out_msg.Destination.add(mapAddressToRange(address,MachineType:TCCdir,
TCC_select_low_bit, TCC_select_num_bits));
out_msg.Dirty := false;
out_msg.Hit := true;
out_msg.Ntsl := false;
out_msg.State := CoherenceState:NA;
out_msg.MessageSize := MessageSizeType:Response_Control;
}
}
action(pm_sendProbeResponseMiss, "pm", desc="send probe ack, no data") {
enqueue(w_TCCResp_out, ResponseMsg, l2_request_latency) {
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:CPUPrbResp; // TCC and CPUs respond in same way to probes
out_msg.Sender := machineID;
// will this always be ok? probably not for multisocket
out_msg.Destination.add(mapAddressToRange(address,MachineType:TCCdir,
TCC_select_low_bit, TCC_select_num_bits));
out_msg.Dirty := false;
out_msg.Hit := false;
out_msg.Ntsl := false;
out_msg.State := CoherenceState:NA;
out_msg.MessageSize := MessageSizeType:Response_Control;
}
}
action(pd_sendProbeResponseData, "pd", desc="send probe ack, with data") {
enqueue(w_TCCResp_out, ResponseMsg, l2_request_latency) {
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:CPUPrbResp; // TCC and CPUs respond in same way to probes
out_msg.Sender := machineID;
// will this always be ok? probably not for multisocket
out_msg.Destination.add(mapAddressToRange(address,MachineType:TCCdir,
TCC_select_low_bit, TCC_select_num_bits));
out_msg.DataBlk := cache_entry.DataBlk;
//assert(cache_entry.Dirty); Not needed in TCC where TCC can supply clean data
out_msg.Dirty := cache_entry.Dirty;
out_msg.Hit := true;
out_msg.State := CoherenceState:NA;
out_msg.MessageSize := MessageSizeType:Response_Data;
}
}
action(pdt_sendProbeResponseDataFromTBE, "pdt", desc="send probe ack with data") {
enqueue(w_TCCResp_out, ResponseMsg, l2_request_latency) {
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:CPUPrbResp;
out_msg.Sender := machineID;
out_msg.Destination.add(mapAddressToRange(address,MachineType:TCCdir,
TCC_select_low_bit, TCC_select_num_bits));
out_msg.DataBlk := tbe.DataBlk;
//assert(tbe.Dirty);
out_msg.Dirty := tbe.Dirty;
out_msg.Hit := true;
out_msg.MessageSize := MessageSizeType:Response_Data;
out_msg.State := CoherenceState:NA;
DPRINTF(RubySlicc, "%s\n", out_msg);
}
}
action(mc_cancelMemWriteback, "mc", desc="send writeback cancel to memory") {
enqueue(w_requestNetwork_out, CPURequestMsg, l2_request_latency) {
out_msg.addr := address;
out_msg.Type := CoherenceRequestType:WrCancel;
out_msg.Requestor := machineID;
out_msg.Destination.add(mapAddressToRange(address,MachineType:TCCdir,
TCC_select_low_bit, TCC_select_num_bits));
out_msg.MessageSize := MessageSizeType:Request_Control;
}
}
action(a_allocateBlock, "a", desc="allocate TCC block") {
if (is_invalid(cache_entry)) {
set_cache_entry(L2cache.allocate(address, new Entry));
}
}
action(d_writeData, "d", desc="write data to TCC") {
peek(responseNetwork_in, ResponseMsg) {
if (in_msg.Dirty) {
cache_entry.Dirty := in_msg.Dirty;
}
cache_entry.DataBlk := in_msg.DataBlk;
DPRINTF(RubySlicc, "Writing to TCC: %s\n", in_msg);
}
}
action(rd_copyDataFromRequest, "rd", desc="write data to TCC") {
peek(requestNetwork_in, CPURequestMsg) {
cache_entry.DataBlk := in_msg.DataBlk;
cache_entry.Dirty := true;
}
}
action(f_setFrom, "f", desc="set who WB is expected to come from") {
peek(requestNetwork_in, CPURequestMsg) {
tbe.From := in_msg.Requestor;
}
}
action(rf_resetFrom, "rf", desc="reset From") {
tbe.From := machineID;
}
action(wb_data, "wb", desc="write back data") {
enqueue(w_TCCResp_out, ResponseMsg, l2_request_latency) {
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:CPUData;
out_msg.Sender := machineID;
out_msg.Destination.add(mapAddressToRange(address,MachineType:TCCdir,
TCC_select_low_bit, TCC_select_num_bits));
out_msg.DataBlk := tbe.DataBlk;
out_msg.Dirty := tbe.Dirty;
if (tbe.Shared) {
out_msg.NbReqShared := true;
} else {
out_msg.NbReqShared := false;
}
out_msg.State := CoherenceState:Shared; // faux info
out_msg.MessageSize := MessageSizeType:Writeback_Data;
DPRINTF(RubySlicc, "%s\n", out_msg);
}
}
action(wt_writeDataToTBE, "wt", desc="write WB data to TBE") {
peek(responseNetwork_in, ResponseMsg) {
tbe.DataBlk := in_msg.DataBlk;
tbe.Dirty := in_msg.Dirty;
}
}
action(uo_sendUnblockOwner, "uo", desc="state changed to E, M, or O, unblock") {
enqueue(w_unblockNetwork_out, UnblockMsg, l2_request_latency) {
out_msg.addr := address;
out_msg.Sender := machineID;
out_msg.Destination.add(mapAddressToRange(address,MachineType:TCCdir,
TCC_select_low_bit, TCC_select_num_bits));
out_msg.MessageSize := MessageSizeType:Unblock_Control;
out_msg.currentOwner := true;
out_msg.valid := true;
DPRINTF(RubySlicc, "%s\n", out_msg);
}
}
action(us_sendUnblockSharer, "us", desc="state changed to S , unblock") {
enqueue(w_unblockNetwork_out, UnblockMsg, l2_request_latency) {
out_msg.addr := address;
out_msg.Sender := machineID;
out_msg.Destination.add(mapAddressToRange(address,MachineType:TCCdir,
TCC_select_low_bit, TCC_select_num_bits));
out_msg.MessageSize := MessageSizeType:Unblock_Control;
out_msg.currentOwner := false;
out_msg.valid := true;
DPRINTF(RubySlicc, "%s\n", out_msg);
}
}
action(un_sendUnblockNotValid, "un", desc="state changed toI, unblock") {
enqueue(w_unblockNetwork_out, UnblockMsg, l2_request_latency) {
out_msg.addr := address;
out_msg.Sender := machineID;
out_msg.Destination.add(mapAddressToRange(address,MachineType:TCCdir,
TCC_select_low_bit, TCC_select_num_bits));
out_msg.MessageSize := MessageSizeType:Unblock_Control;
out_msg.currentOwner := false;
out_msg.valid := false;
DPRINTF(RubySlicc, "%s\n", out_msg);
}
}
action(ut_updateTag, "ut", desc="update Tag (i.e. set MRU)") {
L2cache.setMRU(address);
}
action(p_popRequestQueue, "p", desc="pop request queue") {
requestNetwork_in.dequeue(clockEdge());
}
action(pr_popResponseQueue, "pr", desc="pop response queue") {
responseNetwork_in.dequeue(clockEdge());
}
action(pn_popTDResponseQueue, "pn", desc="pop TD response queue") {
TDResponse_in.dequeue(clockEdge());
}
action(pp_popProbeQueue, "pp", desc="pop probe queue") {
probeNetwork_in.dequeue(clockEdge());
}
action(zz_recycleRequestQueue, "\z", desc="recycle request queue") {
requestNetwork_in.recycle(clockEdge(), cyclesToTicks(recycle_latency));
}
// END ACTIONS
// BEGIN TRANSITIONS
// transitions from base
transition({I, I_C}, {RdBlk, RdBlkS, RdBlkM, CtoD}){TagArrayRead} {
// TCCdir already knows that the block is not here. This is to allocate and get the block.
r_requestToTD;
p_popRequestQueue;
}
// check
transition({M, O}, RdBlk, O){TagArrayRead, TagArrayWrite} {
rs_sendResponseS;
ut_updateTag;
// detect 2nd chancing
p_popRequestQueue;
}
//check
transition({E, S}, RdBlk, S){TagArrayRead, TagArrayWrite} {
rs_sendResponseS;
ut_updateTag;
// detect 2nd chancing
p_popRequestQueue;
}
// check
transition({M, O}, RdBlkS, O){TagArrayRead, TagArrayWrite} {
rs_sendResponseS;
ut_updateTag;
// detect 2nd chance sharing
p_popRequestQueue;
}
//check
transition({E, S}, RdBlkS, S){TagArrayRead, TagArrayWrite} {
rs_sendResponseS;
ut_updateTag;
// detect 2nd chance sharing
p_popRequestQueue;
}
// check
transition(M, RdBlkM, I){TagArrayRead, TagArrayWrite} {
rm_sendResponseM;
i_invL2;
p_popRequestQueue;
}
//check
transition(E, RdBlkM, I){TagArrayRead, TagArrayWrite} {
rm_sendResponseM;
i_invL2;
p_popRequestQueue;
}
// check
transition({I}, WrVicBlk, I_M){TagArrayRead} {
a_allocateBlock;
t_allocateTBE;
f_setFrom;
w_sendResponseWBAck;
p_popRequestQueue;
}
transition(I_C, {WrVicBlk, WrVicBlkShared, ClVicBlk, ClVicBlkShared}) {
zz_recycleRequestQueue;
}
//check
transition({I}, WrVicBlkShared, I_O) {TagArrayRead}{
a_allocateBlock;
t_allocateTBE;
f_setFrom;
// rd_copyDataFromRequest;
w_sendResponseWBAck;
p_popRequestQueue;
}
//check
transition(S, WrVicBlkShared, S_O){TagArrayRead} {
t_allocateTBE;
f_setFrom;
w_sendResponseWBAck;
p_popRequestQueue;
}
// a stale writeback
transition(S, WrVicBlk, S_S){TagArrayRead} {
t_allocateTBE;
f_setFrom;
w_sendResponseWBAck;
p_popRequestQueue;
}
// a stale writeback
transition(E, WrVicBlk, E_E){TagArrayRead} {
t_allocateTBE;
f_setFrom;
w_sendResponseWBAck;
p_popRequestQueue;
}
// a stale writeback
transition(E, WrVicBlkShared, E_E){TagArrayRead} {
t_allocateTBE;
f_setFrom;
w_sendResponseWBAck;
p_popRequestQueue;
}
// a stale writeback
transition(O, WrVicBlk, O_O){TagArrayRead} {
t_allocateTBE;
f_setFrom;
w_sendResponseWBAck;
p_popRequestQueue;
}
// a stale writeback
transition(O, WrVicBlkShared, O_O){TagArrayRead} {
t_allocateTBE;
f_setFrom;
w_sendResponseWBAck;
p_popRequestQueue;
}
// a stale writeback
transition(M, WrVicBlk, M_M){TagArrayRead} {
t_allocateTBE;
f_setFrom;
w_sendResponseWBAck;
p_popRequestQueue;
}
// a stale writeback
transition(M, WrVicBlkShared, M_O){TagArrayRead} {
t_allocateTBE;
f_setFrom;
w_sendResponseWBAck;
p_popRequestQueue;
}
//check
transition({I}, ClVicBlk, I_E){TagArrayRead} {
t_allocateTBE;
f_setFrom;
a_allocateBlock;
w_sendResponseWBAck;
p_popRequestQueue;
}
transition({I}, ClVicBlkShared, I_S){TagArrayRead} {
t_allocateTBE;
f_setFrom;
a_allocateBlock;
w_sendResponseWBAck;
p_popRequestQueue;
}
//check
transition(S, ClVicBlkShared, S_S){TagArrayRead} {
t_allocateTBE;
f_setFrom;
w_sendResponseWBAck;
p_popRequestQueue;
}
// a stale writeback
transition(E, ClVicBlk, E_E){TagArrayRead} {
t_allocateTBE;
f_setFrom;
w_sendResponseWBAck;
p_popRequestQueue;
}
// a stale writeback
transition(E, ClVicBlkShared, E_S){TagArrayRead} {
t_allocateTBE;
f_setFrom;
w_sendResponseWBAck;
p_popRequestQueue;
}
// a stale writeback
transition(O, ClVicBlk, O_O){TagArrayRead} {
t_allocateTBE;
f_setFrom;
w_sendResponseWBAck;
p_popRequestQueue;
}
// check. Original L3 ahd it going from O to O_S. Something can go from O to S only on writeback.
transition(O, ClVicBlkShared, O_O){TagArrayRead} {
t_allocateTBE;
f_setFrom;
w_sendResponseWBAck;
p_popRequestQueue;
}
// a stale writeback
transition(M, ClVicBlk, M_E){TagArrayRead} {
t_allocateTBE;
f_setFrom;
w_sendResponseWBAck;
p_popRequestQueue;
}
// a stale writeback
transition(M, ClVicBlkShared, M_S){TagArrayRead} {
t_allocateTBE;
f_setFrom;
w_sendResponseWBAck;
p_popRequestQueue;
}
transition({MO_I}, {RdBlk, RdBlkS, RdBlkM, CtoD}) {
a_allocateBlock;
t_allocateTBE;
f_setFrom;
r_requestToTD;
p_popRequestQueue;
}
transition(MO_I, {WrVicBlkShared, WrVicBlk, ClVicBlk, ClVicBlkShared}, MOD_I) {
f_setFrom;
w_sendResponseWBAck;
p_popRequestQueue;
}
transition(I_M, CPUData, M){TagArrayWrite} {
uo_sendUnblockOwner;
dt_deallocateTBE;
d_writeData;
pr_popResponseQueue;
}
transition(I_M, CPUDataShared, O){TagArrayWrite, DataArrayWrite} {
uo_sendUnblockOwner;
dt_deallocateTBE;
d_writeData;
pr_popResponseQueue;
}
transition(I_O, {CPUData, CPUDataShared}, O){TagArrayWrite, DataArrayWrite} {
uo_sendUnblockOwner;
dt_deallocateTBE;
d_writeData;
pr_popResponseQueue;
}
transition(I_E, CPUData, E){TagArrayWrite, DataArrayWrite} {
uo_sendUnblockOwner;
dt_deallocateTBE;
d_writeData;
pr_popResponseQueue;
}
transition(I_E, CPUDataShared, S){TagArrayWrite, DataArrayWrite} {
us_sendUnblockSharer;
dt_deallocateTBE;
d_writeData;
pr_popResponseQueue;
}
transition(I_S, {CPUData, CPUDataShared}, S){TagArrayWrite, DataArrayWrite} {
us_sendUnblockSharer;
dt_deallocateTBE;
d_writeData;
pr_popResponseQueue;
}
transition(S_M, CPUDataShared, O){TagArrayWrite, DataArrayWrite} {
uo_sendUnblockOwner;
dt_deallocateTBE;
d_writeData;
ut_updateTag; // update tag on writeback hits.
pr_popResponseQueue;
}
transition(S_O, {CPUData, CPUDataShared}, O){TagArrayWrite, DataArrayWrite} {
uo_sendUnblockOwner;
dt_deallocateTBE;
d_writeData;
ut_updateTag; // update tag on writeback hits.
pr_popResponseQueue;
}
transition(S_E, CPUDataShared, S){TagArrayWrite, DataArrayWrite} {
us_sendUnblockSharer;
dt_deallocateTBE;
d_writeData;
ut_updateTag; // update tag on writeback hits.
pr_popResponseQueue;
}
transition(S_S, {CPUData, CPUDataShared}, S){TagArrayWrite, DataArrayWrite} {
us_sendUnblockSharer;
dt_deallocateTBE;
d_writeData;
ut_updateTag; // update tag on writeback hits.
pr_popResponseQueue;
}
transition(O_E, CPUDataShared, O){TagArrayWrite, DataArrayWrite} {
uo_sendUnblockOwner;
dt_deallocateTBE;
d_writeData;
ut_updateTag; // update tag on writeback hits.
pr_popResponseQueue;
}
transition(O_O, {CPUData, CPUDataShared}, O){TagArrayWrite, DataArrayWrite} {
uo_sendUnblockOwner;
dt_deallocateTBE;
d_writeData;
ut_updateTag; // update tag on writeback hits.
pr_popResponseQueue;
}
transition({D_I}, {CPUData, CPUDataShared}, I){TagArrayWrite} {
un_sendUnblockNotValid;
dt_deallocateTBE;
pr_popResponseQueue;
}
transition(MOD_I, {CPUData, CPUDataShared}, MO_I) {
un_sendUnblockNotValid;
rf_resetFrom;
pr_popResponseQueue;
}
transition({O,S,I}, CPUData) {
pr_popResponseQueue;
}
transition({M, O}, L2_Repl, MO_I){TagArrayRead, DataArrayRead} {
t_allocateTBE;
vd_vicDirty;
i_invL2;
}
transition({E, S,}, L2_Repl, ES_I){TagArrayRead, DataArrayRead} {
t_allocateTBE;
vc_vicClean;
i_invL2;
}
transition({I_M, I_O, S_M, S_O, E_M, E_O}, L2_Repl) {
zz_recycleRequestQueue;
}
transition({O_M, O_O, O_E, M_M, M_O, M_E, M_S}, L2_Repl) {
zz_recycleRequestQueue;
}
transition({I_E, I_S, S_E, S_S, E_E, E_S}, L2_Repl) {
zz_recycleRequestQueue;
}
transition({M, O}, PrbInvData, I){TagArrayRead, TagArrayWrite} {
pd_sendProbeResponseData;
i_invL2;
pp_popProbeQueue;
}
transition(I, PrbInvData){TagArrayRead, TagArrayWrite} {
pi_sendProbeResponseInv;
pp_popProbeQueue;
}
transition({E, S}, PrbInvData, I){TagArrayRead, TagArrayWrite} {
pd_sendProbeResponseData;
i_invL2;
pp_popProbeQueue;
}
transition({M, O, E, S, I}, PrbInv, I){TagArrayRead, TagArrayWrite} {
pi_sendProbeResponseInv;
i_invL2; // nothing will happen in I
pp_popProbeQueue;
}
transition({M, O}, PrbShrData, O){TagArrayRead, TagArrayWrite} {
pd_sendProbeResponseData;
pp_popProbeQueue;
}
transition({E, S}, PrbShrData, S){TagArrayRead, TagArrayWrite} {
pd_sendProbeResponseData;
pp_popProbeQueue;
}
transition(I, PrbShrData){TagArrayRead} {
pm_sendProbeResponseMiss;
pp_popProbeQueue;
}
transition(MO_I, PrbInvData, I_C) {
pdt_sendProbeResponseDataFromTBE;
pp_popProbeQueue;
}
transition(ES_I, PrbInvData, I_C) {
pi_sendProbeResponseInv;
pp_popProbeQueue;
}
transition({ES_I,MO_I}, PrbInv, I_C) {
pi_sendProbeResponseInv;
pp_popProbeQueue;
}
transition({ES_I, MO_I}, PrbShrData) {
pdt_sendProbeResponseDataFromTBE;
pp_popProbeQueue;
}
transition(I_C, {PrbInvData, PrbInv}) {
pi_sendProbeResponseInv;
pp_popProbeQueue;
}
transition(I_C, PrbShrData) {
pm_sendProbeResponseMiss;
pp_popProbeQueue;
}
transition(MOD_I, WBAck, D_I) {
pn_popTDResponseQueue;
}
transition(MO_I, WBAck, I){TagArrayWrite} {
dt_deallocateTBE;
pn_popTDResponseQueue;
}
// this can only be a spurious CPUData from a shared block.
transition(MO_I, CPUData) {
pr_popResponseQueue;
}
transition(ES_I, WBAck, I){TagArrayWrite} {
dt_deallocateTBE;
pn_popTDResponseQueue;
}
transition(I_C, {WBAck}, I){TagArrayWrite} {
dt_deallocateTBE;
pn_popTDResponseQueue;
}
transition({I_M, I_O, I_E, I_S}, StaleWB, I){TagArrayWrite} {
un_sendUnblockNotValid;
dt_deallocateTBE;
i_invL2;
pr_popResponseQueue;
}
transition({S_S, S_O, S_M, S_E}, StaleWB, S){TagArrayWrite} {
us_sendUnblockSharer;
dt_deallocateTBE;
pr_popResponseQueue;
}
transition({E_M, E_O, E_E, E_S}, StaleWB, E){TagArrayWrite} {
uo_sendUnblockOwner;
dt_deallocateTBE;
pr_popResponseQueue;
}
transition({O_M, O_O, O_E}, StaleWB, O){TagArrayWrite} {
uo_sendUnblockOwner;
dt_deallocateTBE;
pr_popResponseQueue;
}
transition({M_M, M_O, M_E, M_S}, StaleWB, M){TagArrayWrite} {
uo_sendUnblockOwner;
dt_deallocateTBE;
pr_popResponseQueue;
}
transition(D_I, StaleWB, I) {TagArrayWrite}{
un_sendUnblockNotValid;
dt_deallocateTBE;
pr_popResponseQueue;
}
transition(MOD_I, StaleWB, MO_I) {
un_sendUnblockNotValid;
rf_resetFrom;
pr_popResponseQueue;
}
}