| /* |
| * Copyright (c) 2012-2013,2017-2018 ARM Limited |
| * All rights reserved |
| * |
| * The license below extends only to copyright in the software and shall |
| * not be construed as granting a license to any other intellectual |
| * property including but not limited to intellectual property relating |
| * to a hardware implementation of the functionality of the software |
| * licensed hereunder. You may use the software subject to the license |
| * terms below provided that you ensure that this notice is replicated |
| * unmodified and in its entirety in all distributions of the software, |
| * modified or unmodified, in source code or in binary form. |
| * |
| * Copyright (c) 2002-2005 The Regents of The University of Michigan |
| * Copyright (c) 2010,2015 Advanced Micro Devices, Inc. |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are |
| * met: redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer; |
| * redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution; |
| * neither the name of the copyright holders nor the names of its |
| * contributors may be used to endorse or promote products derived from |
| * this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| * Authors: Ron Dreslinski |
| * Steve Reinhardt |
| * Ali Saidi |
| */ |
| |
| /** |
| * @file |
| * Declaration of a request, the overall memory request consisting of |
| the parts of the request that are persistent throughout the transaction. |
| */ |
| |
| #ifndef __MEM_REQUEST_HH__ |
| #define __MEM_REQUEST_HH__ |
| |
| #include <cassert> |
| #include <climits> |
| |
| #include "base/flags.hh" |
| #include "base/logging.hh" |
| #include "base/types.hh" |
| #include "cpu/inst_seq.hh" |
| #include "sim/core.hh" |
| |
| /** |
| * Special TaskIds that are used for per-context-switch stats dumps |
| * and Cache Occupancy. Having too many tasks seems to be a problem |
| * with vector stats. 1024 seems to be a reasonable number that |
| * doesn't cause a problem with stats and is large enough to realistic |
| * benchmarks (Linux/Android boot, BBench, etc.) |
| */ |
| |
| namespace ContextSwitchTaskId { |
| enum TaskId { |
| MaxNormalTaskId = 1021, /* Maximum number of normal tasks */ |
| Prefetcher = 1022, /* For cache lines brought in by prefetcher */ |
| DMA = 1023, /* Mostly Table Walker */ |
| Unknown = 1024, |
| NumTaskId |
| }; |
| } |
| |
| class Request; |
| |
| typedef std::shared_ptr<Request> RequestPtr; |
| typedef uint16_t MasterID; |
| |
| class Request |
| { |
| public: |
| typedef uint64_t FlagsType; |
| typedef uint8_t ArchFlagsType; |
| typedef ::Flags<FlagsType> Flags; |
| |
| enum : FlagsType { |
| /** |
| * Architecture specific flags. |
| * |
| * These bits int the flag field are reserved for |
| * architecture-specific code. For example, SPARC uses them to |
| * represent ASIs. |
| */ |
| ARCH_BITS = 0x000000FF, |
| /** The request was an instruction fetch. */ |
| INST_FETCH = 0x00000100, |
| /** The virtual address is also the physical address. */ |
| PHYSICAL = 0x00000200, |
| /** |
| * The request is to an uncacheable address. |
| * |
| * @note Uncacheable accesses may be reordered by CPU models. The |
| * STRICT_ORDER flag should be set if such reordering is |
| * undesirable. |
| */ |
| UNCACHEABLE = 0x00000400, |
| /** |
| * The request is required to be strictly ordered by <i>CPU |
| * models</i> and is non-speculative. |
| * |
| * A strictly ordered request is guaranteed to never be |
| * re-ordered or executed speculatively by a CPU model. The |
| * memory system may still reorder requests in caches unless |
| * the UNCACHEABLE flag is set as well. |
| */ |
| STRICT_ORDER = 0x00000800, |
| /** This request is to a memory mapped register. */ |
| MMAPPED_IPR = 0x00002000, |
| /** This request is made in privileged mode. */ |
| PRIVILEGED = 0x00008000, |
| |
| /** |
| * This is a write that is targeted and zeroing an entire |
| * cache block. There is no need for a read/modify/write |
| */ |
| CACHE_BLOCK_ZERO = 0x00010000, |
| |
| /** The request should not cause a memory access. */ |
| NO_ACCESS = 0x00080000, |
| /** |
| * This request will lock or unlock the accessed memory. When |
| * used with a load, the access locks the particular chunk of |
| * memory. When used with a store, it unlocks. The rule is |
| * that locked accesses have to be made up of a locked load, |
| * some operation on the data, and then a locked store. |
| */ |
| LOCKED_RMW = 0x00100000, |
| /** The request is a Load locked/store conditional. */ |
| LLSC = 0x00200000, |
| /** This request is for a memory swap. */ |
| MEM_SWAP = 0x00400000, |
| MEM_SWAP_COND = 0x00800000, |
| |
| /** The request is a prefetch. */ |
| PREFETCH = 0x01000000, |
| /** The request should be prefetched into the exclusive state. */ |
| PF_EXCLUSIVE = 0x02000000, |
| /** The request should be marked as LRU. */ |
| EVICT_NEXT = 0x04000000, |
| /** The request should be marked with ACQUIRE. */ |
| ACQUIRE = 0x00020000, |
| /** The request should be marked with RELEASE. */ |
| RELEASE = 0x00040000, |
| |
| /** The request is an atomic that returns data. */ |
| ATOMIC_RETURN_OP = 0x40000000, |
| /** The request is an atomic that does not return data. */ |
| ATOMIC_NO_RETURN_OP = 0x80000000, |
| |
| /** The request should be marked with KERNEL. |
| * Used to indicate the synchronization associated with a GPU kernel |
| * launch or completion. |
| */ |
| KERNEL = 0x00001000, |
| |
| /** |
| * The request should be handled by the generic IPR code (only |
| * valid together with MMAPPED_IPR) |
| */ |
| GENERIC_IPR = 0x08000000, |
| |
| /** The request targets the secure memory space. */ |
| SECURE = 0x10000000, |
| /** The request is a page table walk */ |
| PT_WALK = 0x20000000, |
| |
| /** The request invalidates a memory location */ |
| INVALIDATE = 0x0000000100000000, |
| /** The request cleans a memory location */ |
| CLEAN = 0x0000000200000000, |
| |
| /** The request targets the point of unification */ |
| DST_POU = 0x0000001000000000, |
| |
| /** The request targets the point of coherence */ |
| DST_POC = 0x0000002000000000, |
| |
| /** Bits to define the destination of a request */ |
| DST_BITS = 0x0000003000000000, |
| |
| /** |
| * These flags are *not* cleared when a Request object is |
| * reused (assigned a new address). |
| */ |
| STICKY_FLAGS = INST_FETCH |
| }; |
| static const FlagsType STORE_NO_DATA = CACHE_BLOCK_ZERO | |
| CLEAN | INVALIDATE; |
| |
| /** Master Ids that are statically allocated |
| * @{*/ |
| enum : MasterID { |
| /** This master id is used for writeback requests by the caches */ |
| wbMasterId = 0, |
| /** |
| * This master id is used for functional requests that |
| * don't come from a particular device |
| */ |
| funcMasterId = 1, |
| /** This master id is used for message signaled interrupts */ |
| intMasterId = 2, |
| /** |
| * Invalid master id for assertion checking only. It is |
| * invalid behavior to ever send this id as part of a request. |
| */ |
| invldMasterId = std::numeric_limits<MasterID>::max() |
| }; |
| /** @} */ |
| |
| typedef uint32_t MemSpaceConfigFlagsType; |
| typedef ::Flags<MemSpaceConfigFlagsType> MemSpaceConfigFlags; |
| |
| enum : MemSpaceConfigFlagsType { |
| /** Has a synchronization scope been set? */ |
| SCOPE_VALID = 0x00000001, |
| /** Access has Wavefront scope visibility */ |
| WAVEFRONT_SCOPE = 0x00000002, |
| /** Access has Workgroup scope visibility */ |
| WORKGROUP_SCOPE = 0x00000004, |
| /** Access has Device (e.g., GPU) scope visibility */ |
| DEVICE_SCOPE = 0x00000008, |
| /** Access has System (e.g., CPU + GPU) scope visibility */ |
| SYSTEM_SCOPE = 0x00000010, |
| |
| /** Global Segment */ |
| GLOBAL_SEGMENT = 0x00000020, |
| /** Group Segment */ |
| GROUP_SEGMENT = 0x00000040, |
| /** Private Segment */ |
| PRIVATE_SEGMENT = 0x00000080, |
| /** Kergarg Segment */ |
| KERNARG_SEGMENT = 0x00000100, |
| /** Readonly Segment */ |
| READONLY_SEGMENT = 0x00000200, |
| /** Spill Segment */ |
| SPILL_SEGMENT = 0x00000400, |
| /** Arg Segment */ |
| ARG_SEGMENT = 0x00000800, |
| }; |
| |
| private: |
| typedef uint16_t PrivateFlagsType; |
| typedef ::Flags<PrivateFlagsType> PrivateFlags; |
| |
| enum : PrivateFlagsType { |
| /** Whether or not the size is valid. */ |
| VALID_SIZE = 0x00000001, |
| /** Whether or not paddr is valid (has been written yet). */ |
| VALID_PADDR = 0x00000002, |
| /** Whether or not the vaddr & asid are valid. */ |
| VALID_VADDR = 0x00000004, |
| /** Whether or not the instruction sequence number is valid. */ |
| VALID_INST_SEQ_NUM = 0x00000008, |
| /** Whether or not the pc is valid. */ |
| VALID_PC = 0x00000010, |
| /** Whether or not the context ID is valid. */ |
| VALID_CONTEXT_ID = 0x00000020, |
| /** Whether or not the sc result is valid. */ |
| VALID_EXTRA_DATA = 0x00000080, |
| /** Whether or not the stream ID and substream ID is valid. */ |
| VALID_STREAM_ID = 0x00000100, |
| VALID_SUBSTREAM_ID = 0x00000200, |
| /** |
| * These flags are *not* cleared when a Request object is reused |
| * (assigned a new address). |
| */ |
| STICKY_PRIVATE_FLAGS = VALID_CONTEXT_ID |
| }; |
| |
| private: |
| |
| /** |
| * Set up a physical (e.g. device) request in a previously |
| * allocated Request object. |
| */ |
| void |
| setPhys(Addr paddr, unsigned size, Flags flags, MasterID mid, Tick time) |
| { |
| _paddr = paddr; |
| _size = size; |
| _time = time; |
| _masterId = mid; |
| _flags.clear(~STICKY_FLAGS); |
| _flags.set(flags); |
| privateFlags.clear(~STICKY_PRIVATE_FLAGS); |
| privateFlags.set(VALID_PADDR|VALID_SIZE); |
| depth = 0; |
| accessDelta = 0; |
| //translateDelta = 0; |
| } |
| |
| /** |
| * The physical address of the request. Valid only if validPaddr |
| * is set. |
| */ |
| Addr _paddr; |
| |
| /** |
| * The size of the request. This field must be set when vaddr or |
| * paddr is written via setVirt() or setPhys(), so it is always |
| * valid as long as one of the address fields is valid. |
| */ |
| unsigned _size; |
| |
| /** Byte-enable mask for writes. */ |
| std::vector<bool> _byteEnable; |
| |
| /** The requestor ID which is unique in the system for all ports |
| * that are capable of issuing a transaction |
| */ |
| MasterID _masterId; |
| |
| /** Flag structure for the request. */ |
| Flags _flags; |
| |
| /** Memory space configuraiton flag structure for the request. */ |
| MemSpaceConfigFlags _memSpaceConfigFlags; |
| |
| /** Private flags for field validity checking. */ |
| PrivateFlags privateFlags; |
| |
| /** |
| * The time this request was started. Used to calculate |
| * latencies. This field is set to curTick() any time paddr or vaddr |
| * is written. |
| */ |
| Tick _time; |
| |
| /** |
| * The task id associated with this request |
| */ |
| uint32_t _taskId; |
| |
| union { |
| struct { |
| /** |
| * The stream ID uniquely identifies a device behind the |
| * SMMU/IOMMU Each transaction arriving at the SMMU/IOMMU is |
| * associated with exactly one stream ID. |
| */ |
| uint32_t _streamId; |
| |
| /** |
| * The substream ID identifies an "execution context" within a |
| * device behind an SMMU/IOMMU. It's intended to map 1-to-1 to |
| * PCIe PASID (Process Address Space ID). The presence of a |
| * substream ID is optional. |
| */ |
| uint32_t _substreamId; |
| }; |
| |
| /** The address space ID. */ |
| uint64_t _asid; |
| }; |
| |
| /** The virtual address of the request. */ |
| Addr _vaddr; |
| |
| /** |
| * Extra data for the request, such as the return value of |
| * store conditional or the compare value for a CAS. */ |
| uint64_t _extraData; |
| |
| /** The context ID (for statistics, locks, and wakeups). */ |
| ContextID _contextId; |
| |
| /** program counter of initiating access; for tracing/debugging */ |
| Addr _pc; |
| |
| /** Sequence number of the instruction that creates the request */ |
| InstSeqNum _reqInstSeqNum; |
| |
| /** A pointer to an atomic operation */ |
| AtomicOpFunctorPtr atomicOpFunctor; |
| |
| public: |
| |
| /** |
| * Minimal constructor. No fields are initialized. (Note that |
| * _flags and privateFlags are cleared by Flags default |
| * constructor.) |
| */ |
| Request() |
| : _paddr(0), _size(0), _masterId(invldMasterId), _time(0), |
| _taskId(ContextSwitchTaskId::Unknown), _asid(0), _vaddr(0), |
| _extraData(0), _contextId(0), _pc(0), |
| _reqInstSeqNum(0), atomicOpFunctor(nullptr), translateDelta(0), |
| accessDelta(0), depth(0) |
| {} |
| |
| Request(Addr paddr, unsigned size, Flags flags, MasterID mid, |
| InstSeqNum seq_num, ContextID cid) |
| : _paddr(0), _size(0), _masterId(invldMasterId), _time(0), |
| _taskId(ContextSwitchTaskId::Unknown), _asid(0), _vaddr(0), |
| _extraData(0), _contextId(0), _pc(0), |
| _reqInstSeqNum(seq_num), atomicOpFunctor(nullptr), translateDelta(0), |
| accessDelta(0), depth(0) |
| { |
| setPhys(paddr, size, flags, mid, curTick()); |
| setContext(cid); |
| privateFlags.set(VALID_INST_SEQ_NUM); |
| } |
| |
| /** |
| * Constructor for physical (e.g. device) requests. Initializes |
| * just physical address, size, flags, and timestamp (to curTick()). |
| * These fields are adequate to perform a request. |
| */ |
| Request(Addr paddr, unsigned size, Flags flags, MasterID mid) |
| : _paddr(0), _size(0), _masterId(invldMasterId), _time(0), |
| _taskId(ContextSwitchTaskId::Unknown), _asid(0), _vaddr(0), |
| _extraData(0), _contextId(0), _pc(0), |
| _reqInstSeqNum(0), atomicOpFunctor(nullptr), translateDelta(0), |
| accessDelta(0), depth(0) |
| { |
| setPhys(paddr, size, flags, mid, curTick()); |
| } |
| |
| Request(Addr paddr, unsigned size, Flags flags, MasterID mid, Tick time) |
| : _paddr(0), _size(0), _masterId(invldMasterId), _time(0), |
| _taskId(ContextSwitchTaskId::Unknown), _asid(0), _vaddr(0), |
| _extraData(0), _contextId(0), _pc(0), |
| _reqInstSeqNum(0), atomicOpFunctor(nullptr), translateDelta(0), |
| accessDelta(0), depth(0) |
| { |
| setPhys(paddr, size, flags, mid, time); |
| } |
| |
| Request(Addr paddr, unsigned size, Flags flags, MasterID mid, Tick time, |
| Addr pc) |
| : _paddr(0), _size(0), _masterId(invldMasterId), _time(0), |
| _taskId(ContextSwitchTaskId::Unknown), _asid(0), _vaddr(0), |
| _extraData(0), _contextId(0), _pc(pc), |
| _reqInstSeqNum(0), atomicOpFunctor(nullptr), translateDelta(0), |
| accessDelta(0), depth(0) |
| { |
| setPhys(paddr, size, flags, mid, time); |
| privateFlags.set(VALID_PC); |
| } |
| |
| Request(uint64_t asid, Addr vaddr, unsigned size, Flags flags, |
| MasterID mid, Addr pc, ContextID cid) |
| : _paddr(0), _size(0), _masterId(invldMasterId), _time(0), |
| _taskId(ContextSwitchTaskId::Unknown), _asid(0), _vaddr(0), |
| _extraData(0), _contextId(0), _pc(0), |
| _reqInstSeqNum(0), atomicOpFunctor(nullptr), translateDelta(0), |
| accessDelta(0), depth(0) |
| { |
| setVirt(asid, vaddr, size, flags, mid, pc); |
| setContext(cid); |
| } |
| |
| Request(uint64_t asid, Addr vaddr, unsigned size, Flags flags, |
| MasterID mid, Addr pc, ContextID cid, |
| AtomicOpFunctorPtr atomic_op) |
| { |
| setVirt(asid, vaddr, size, flags, mid, pc, std::move(atomic_op)); |
| setContext(cid); |
| } |
| |
| Request(const Request& other) |
| : _paddr(other._paddr), _size(other._size), |
| _masterId(other._masterId), |
| _flags(other._flags), |
| _memSpaceConfigFlags(other._memSpaceConfigFlags), |
| privateFlags(other.privateFlags), |
| _time(other._time), |
| _taskId(other._taskId), _asid(other._asid), _vaddr(other._vaddr), |
| _extraData(other._extraData), _contextId(other._contextId), |
| _pc(other._pc), _reqInstSeqNum(other._reqInstSeqNum), |
| translateDelta(other.translateDelta), |
| accessDelta(other.accessDelta), depth(other.depth) |
| { |
| |
| atomicOpFunctor.reset(other.atomicOpFunctor ? |
| other.atomicOpFunctor->clone() : nullptr); |
| } |
| |
| ~Request() {} |
| |
| /** |
| * Set up Context numbers. |
| */ |
| void |
| setContext(ContextID context_id) |
| { |
| _contextId = context_id; |
| privateFlags.set(VALID_CONTEXT_ID); |
| } |
| |
| void |
| setStreamId(uint32_t sid) |
| { |
| _streamId = sid; |
| privateFlags.set(VALID_STREAM_ID); |
| } |
| |
| void |
| setSubStreamId(uint32_t ssid) |
| { |
| assert(privateFlags.isSet(VALID_STREAM_ID)); |
| _substreamId = ssid; |
| privateFlags.set(VALID_SUBSTREAM_ID); |
| } |
| |
| /** |
| * Set up a virtual (e.g., CPU) request in a previously |
| * allocated Request object. |
| */ |
| void |
| setVirt(uint64_t asid, Addr vaddr, unsigned size, Flags flags, |
| MasterID mid, Addr pc, AtomicOpFunctorPtr amo_op = nullptr) |
| { |
| _asid = asid; |
| _vaddr = vaddr; |
| _size = size; |
| _masterId = mid; |
| _pc = pc; |
| _time = curTick(); |
| |
| _flags.clear(~STICKY_FLAGS); |
| _flags.set(flags); |
| privateFlags.clear(~STICKY_PRIVATE_FLAGS); |
| privateFlags.set(VALID_VADDR|VALID_SIZE|VALID_PC); |
| depth = 0; |
| accessDelta = 0; |
| translateDelta = 0; |
| atomicOpFunctor = std::move(amo_op); |
| } |
| |
| /** |
| * Set just the physical address. This usually used to record the |
| * result of a translation. However, when using virtualized CPUs |
| * setPhys() is sometimes called to finalize a physical address |
| * without a virtual address, so we can't check if the virtual |
| * address is valid. |
| */ |
| void |
| setPaddr(Addr paddr) |
| { |
| _paddr = paddr; |
| privateFlags.set(VALID_PADDR); |
| } |
| |
| /** |
| * Generate two requests as if this request had been split into two |
| * pieces. The original request can't have been translated already. |
| */ |
| // TODO: this function is still required by TimingSimpleCPU - should be |
| // removed once TimingSimpleCPU will support arbitrarily long multi-line |
| // mem. accesses |
| void splitOnVaddr(Addr split_addr, RequestPtr &req1, RequestPtr &req2) |
| { |
| assert(privateFlags.isSet(VALID_VADDR)); |
| assert(privateFlags.noneSet(VALID_PADDR)); |
| assert(split_addr > _vaddr && split_addr < _vaddr + _size); |
| req1 = std::make_shared<Request>(*this); |
| req2 = std::make_shared<Request>(*this); |
| req1->_size = split_addr - _vaddr; |
| req2->_vaddr = split_addr; |
| req2->_size = _size - req1->_size; |
| if (!_byteEnable.empty()) { |
| req1->_byteEnable = std::vector<bool>( |
| _byteEnable.begin(), |
| _byteEnable.begin() + req1->_size); |
| req2->_byteEnable = std::vector<bool>( |
| _byteEnable.begin() + req1->_size, |
| _byteEnable.end()); |
| } |
| } |
| |
| /** |
| * Accessor for paddr. |
| */ |
| bool |
| hasPaddr() const |
| { |
| return privateFlags.isSet(VALID_PADDR); |
| } |
| |
| Addr |
| getPaddr() const |
| { |
| assert(privateFlags.isSet(VALID_PADDR)); |
| return _paddr; |
| } |
| |
| /** |
| * Time for the TLB/table walker to successfully translate this request. |
| */ |
| Tick translateDelta; |
| |
| /** |
| * Access latency to complete this memory transaction not including |
| * translation time. |
| */ |
| Tick accessDelta; |
| |
| /** |
| * Level of the cache hierachy where this request was responded to |
| * (e.g. 0 = L1; 1 = L2). |
| */ |
| mutable int depth; |
| |
| /** |
| * Accessor for size. |
| */ |
| bool |
| hasSize() const |
| { |
| return privateFlags.isSet(VALID_SIZE); |
| } |
| |
| unsigned |
| getSize() const |
| { |
| assert(privateFlags.isSet(VALID_SIZE)); |
| return _size; |
| } |
| |
| const std::vector<bool>& |
| getByteEnable() const |
| { |
| return _byteEnable; |
| } |
| |
| void |
| setByteEnable(const std::vector<bool>& be) |
| { |
| assert(be.empty() || be.size() == _size); |
| _byteEnable = be; |
| } |
| |
| /** Accessor for time. */ |
| Tick |
| time() const |
| { |
| assert(privateFlags.isSet(VALID_PADDR|VALID_VADDR)); |
| return _time; |
| } |
| |
| /** |
| * Accessor for atomic-op functor. |
| */ |
| bool |
| hasAtomicOpFunctor() |
| { |
| return (bool)atomicOpFunctor; |
| } |
| |
| AtomicOpFunctor * |
| getAtomicOpFunctor() |
| { |
| assert(atomicOpFunctor); |
| return atomicOpFunctor.get(); |
| } |
| |
| /** Accessor for flags. */ |
| Flags |
| getFlags() |
| { |
| assert(privateFlags.isSet(VALID_PADDR|VALID_VADDR)); |
| return _flags; |
| } |
| |
| /** Note that unlike other accessors, this function sets *specific |
| flags* (ORs them in); it does not assign its argument to the |
| _flags field. Thus this method should rightly be called |
| setFlags() and not just flags(). */ |
| void |
| setFlags(Flags flags) |
| { |
| assert(privateFlags.isSet(VALID_PADDR|VALID_VADDR)); |
| _flags.set(flags); |
| } |
| |
| void |
| setMemSpaceConfigFlags(MemSpaceConfigFlags extraFlags) |
| { |
| assert(privateFlags.isSet(VALID_PADDR | VALID_VADDR)); |
| _memSpaceConfigFlags.set(extraFlags); |
| } |
| |
| /** Accessor function for vaddr.*/ |
| bool |
| hasVaddr() const |
| { |
| return privateFlags.isSet(VALID_VADDR); |
| } |
| |
| Addr |
| getVaddr() const |
| { |
| assert(privateFlags.isSet(VALID_VADDR)); |
| return _vaddr; |
| } |
| |
| /** Accesssor for the requestor id. */ |
| MasterID |
| masterId() const |
| { |
| return _masterId; |
| } |
| |
| uint32_t |
| taskId() const |
| { |
| return _taskId; |
| } |
| |
| void |
| taskId(uint32_t id) { |
| _taskId = id; |
| } |
| |
| /** Accessor function for asid.*/ |
| uint64_t |
| getAsid() const |
| { |
| assert(privateFlags.isSet(VALID_VADDR)); |
| return _asid; |
| } |
| |
| /** Accessor function for asid.*/ |
| void |
| setAsid(uint64_t asid) |
| { |
| _asid = asid; |
| } |
| |
| /** Accessor function for architecture-specific flags.*/ |
| ArchFlagsType |
| getArchFlags() const |
| { |
| assert(privateFlags.isSet(VALID_PADDR|VALID_VADDR)); |
| return _flags & ARCH_BITS; |
| } |
| |
| /** Accessor function to check if sc result is valid. */ |
| bool |
| extraDataValid() const |
| { |
| return privateFlags.isSet(VALID_EXTRA_DATA); |
| } |
| |
| /** Accessor function for store conditional return value.*/ |
| uint64_t |
| getExtraData() const |
| { |
| assert(privateFlags.isSet(VALID_EXTRA_DATA)); |
| return _extraData; |
| } |
| |
| /** Accessor function for store conditional return value.*/ |
| void |
| setExtraData(uint64_t extraData) |
| { |
| _extraData = extraData; |
| privateFlags.set(VALID_EXTRA_DATA); |
| } |
| |
| bool |
| hasContextId() const |
| { |
| return privateFlags.isSet(VALID_CONTEXT_ID); |
| } |
| |
| /** Accessor function for context ID.*/ |
| ContextID |
| contextId() const |
| { |
| assert(privateFlags.isSet(VALID_CONTEXT_ID)); |
| return _contextId; |
| } |
| |
| uint32_t |
| streamId() const |
| { |
| assert(privateFlags.isSet(VALID_STREAM_ID)); |
| return _streamId; |
| } |
| |
| bool |
| hasSubstreamId() const |
| { |
| return privateFlags.isSet(VALID_SUBSTREAM_ID); |
| } |
| |
| uint32_t |
| substreamId() const |
| { |
| assert(privateFlags.isSet(VALID_SUBSTREAM_ID)); |
| return _substreamId; |
| } |
| |
| void |
| setPC(Addr pc) |
| { |
| privateFlags.set(VALID_PC); |
| _pc = pc; |
| } |
| |
| bool |
| hasPC() const |
| { |
| return privateFlags.isSet(VALID_PC); |
| } |
| |
| /** Accessor function for pc.*/ |
| Addr |
| getPC() const |
| { |
| assert(privateFlags.isSet(VALID_PC)); |
| return _pc; |
| } |
| |
| /** |
| * Increment/Get the depth at which this request is responded to. |
| * This currently happens when the request misses in any cache level. |
| */ |
| void incAccessDepth() const { depth++; } |
| int getAccessDepth() const { return depth; } |
| |
| /** |
| * Set/Get the time taken for this request to be successfully translated. |
| */ |
| void setTranslateLatency() { translateDelta = curTick() - _time; } |
| Tick getTranslateLatency() const { return translateDelta; } |
| |
| /** |
| * Set/Get the time taken to complete this request's access, not including |
| * the time to successfully translate the request. |
| */ |
| void setAccessLatency() { accessDelta = curTick() - _time - translateDelta; } |
| Tick getAccessLatency() const { return accessDelta; } |
| |
| /** |
| * Accessor for the sequence number of instruction that creates the |
| * request. |
| */ |
| bool |
| hasInstSeqNum() const |
| { |
| return privateFlags.isSet(VALID_INST_SEQ_NUM); |
| } |
| |
| InstSeqNum |
| getReqInstSeqNum() const |
| { |
| assert(privateFlags.isSet(VALID_INST_SEQ_NUM)); |
| return _reqInstSeqNum; |
| } |
| |
| void |
| setReqInstSeqNum(const InstSeqNum seq_num) |
| { |
| privateFlags.set(VALID_INST_SEQ_NUM); |
| _reqInstSeqNum = seq_num; |
| } |
| |
| /** Accessor functions for flags. Note that these are for testing |
| only; setting flags should be done via setFlags(). */ |
| bool isUncacheable() const { return _flags.isSet(UNCACHEABLE); } |
| bool isStrictlyOrdered() const { return _flags.isSet(STRICT_ORDER); } |
| bool isInstFetch() const { return _flags.isSet(INST_FETCH); } |
| bool isPrefetch() const { return (_flags.isSet(PREFETCH) || |
| _flags.isSet(PF_EXCLUSIVE)); } |
| bool isPrefetchEx() const { return _flags.isSet(PF_EXCLUSIVE); } |
| bool isLLSC() const { return _flags.isSet(LLSC); } |
| bool isPriv() const { return _flags.isSet(PRIVILEGED); } |
| bool isLockedRMW() const { return _flags.isSet(LOCKED_RMW); } |
| bool isSwap() const { return _flags.isSet(MEM_SWAP|MEM_SWAP_COND); } |
| bool isCondSwap() const { return _flags.isSet(MEM_SWAP_COND); } |
| bool isMmappedIpr() const { return _flags.isSet(MMAPPED_IPR); } |
| bool isSecure() const { return _flags.isSet(SECURE); } |
| bool isPTWalk() const { return _flags.isSet(PT_WALK); } |
| bool isAcquire() const { return _flags.isSet(ACQUIRE); } |
| bool isRelease() const { return _flags.isSet(RELEASE); } |
| bool isKernel() const { return _flags.isSet(KERNEL); } |
| bool isAtomicReturn() const { return _flags.isSet(ATOMIC_RETURN_OP); } |
| bool isAtomicNoReturn() const { return _flags.isSet(ATOMIC_NO_RETURN_OP); } |
| |
| bool |
| isAtomic() const |
| { |
| return _flags.isSet(ATOMIC_RETURN_OP) || |
| _flags.isSet(ATOMIC_NO_RETURN_OP); |
| } |
| |
| /** |
| * Accessor functions for the destination of a memory request. The |
| * destination flag can specify a point of reference for the |
| * operation (e.g. a cache block clean to the the point of |
| * unification). At the moment the destination is only used by the |
| * cache maintenance operations. |
| */ |
| bool isToPOU() const { return _flags.isSet(DST_POU); } |
| bool isToPOC() const { return _flags.isSet(DST_POC); } |
| Flags getDest() const { return _flags & DST_BITS; } |
| |
| /** |
| * Accessor functions for the memory space configuration flags and used by |
| * GPU ISAs such as the Heterogeneous System Architecture (HSA). Note that |
| * these are for testing only; setting extraFlags should be done via |
| * setMemSpaceConfigFlags(). |
| */ |
| bool isScoped() const { return _memSpaceConfigFlags.isSet(SCOPE_VALID); } |
| |
| bool |
| isWavefrontScope() const |
| { |
| assert(isScoped()); |
| return _memSpaceConfigFlags.isSet(WAVEFRONT_SCOPE); |
| } |
| |
| bool |
| isWorkgroupScope() const |
| { |
| assert(isScoped()); |
| return _memSpaceConfigFlags.isSet(WORKGROUP_SCOPE); |
| } |
| |
| bool |
| isDeviceScope() const |
| { |
| assert(isScoped()); |
| return _memSpaceConfigFlags.isSet(DEVICE_SCOPE); |
| } |
| |
| bool |
| isSystemScope() const |
| { |
| assert(isScoped()); |
| return _memSpaceConfigFlags.isSet(SYSTEM_SCOPE); |
| } |
| |
| bool |
| isGlobalSegment() const |
| { |
| return _memSpaceConfigFlags.isSet(GLOBAL_SEGMENT) || |
| (!isGroupSegment() && !isPrivateSegment() && |
| !isKernargSegment() && !isReadonlySegment() && |
| !isSpillSegment() && !isArgSegment()); |
| } |
| |
| bool |
| isGroupSegment() const |
| { |
| return _memSpaceConfigFlags.isSet(GROUP_SEGMENT); |
| } |
| |
| bool |
| isPrivateSegment() const |
| { |
| return _memSpaceConfigFlags.isSet(PRIVATE_SEGMENT); |
| } |
| |
| bool |
| isKernargSegment() const |
| { |
| return _memSpaceConfigFlags.isSet(KERNARG_SEGMENT); |
| } |
| |
| bool |
| isReadonlySegment() const |
| { |
| return _memSpaceConfigFlags.isSet(READONLY_SEGMENT); |
| } |
| |
| bool |
| isSpillSegment() const |
| { |
| return _memSpaceConfigFlags.isSet(SPILL_SEGMENT); |
| } |
| |
| bool |
| isArgSegment() const |
| { |
| return _memSpaceConfigFlags.isSet(ARG_SEGMENT); |
| } |
| |
| /** |
| * Accessor functions to determine whether this request is part of |
| * a cache maintenance operation. At the moment three operations |
| * are supported: |
| |
| * 1) A cache clean operation updates all copies of a memory |
| * location to the point of reference, |
| * 2) A cache invalidate operation invalidates all copies of the |
| * specified block in the memory above the point of reference, |
| * 3) A clean and invalidate operation is a combination of the two |
| * operations. |
| * @{ */ |
| bool isCacheClean() const { return _flags.isSet(CLEAN); } |
| bool isCacheInvalidate() const { return _flags.isSet(INVALIDATE); } |
| bool isCacheMaintenance() const { return _flags.isSet(CLEAN|INVALIDATE); } |
| /** @} */ |
| }; |
| |
| #endif // __MEM_REQUEST_HH__ |