| |
| /* |
| * Copyright (c) 2010-2014, 2017-2020 ARM Limited |
| * Copyright (c) 2013 Advanced Micro Devices, Inc. |
| * All rights reserved |
| * |
| * The license below extends only to copyright in the software and shall |
| * not be construed as granting a license to any other intellectual |
| * property including but not limited to intellectual property relating |
| * to a hardware implementation of the functionality of the software |
| * licensed hereunder. You may use the software subject to the license |
| * terms below provided that you ensure that this notice is replicated |
| * unmodified and in its entirety in all distributions of the software, |
| * modified or unmodified, in source code or in binary form. |
| * |
| * Copyright (c) 2004-2005 The Regents of The University of Michigan |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are |
| * met: redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer; |
| * redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution; |
| * neither the name of the copyright holders nor the names of its |
| * contributors may be used to endorse or promote products derived from |
| * this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #ifndef __CPU_O3_LSQ_UNIT_IMPL_HH__ |
| #define __CPU_O3_LSQ_UNIT_IMPL_HH__ |
| |
| #include "arch/generic/debugfaults.hh" |
| #include "arch/locked_mem.hh" |
| #include "base/str.hh" |
| #include "config/the_isa.hh" |
| #include "cpu/checker/cpu.hh" |
| #include "cpu/o3/lsq.hh" |
| #include "cpu/o3/lsq_unit.hh" |
| #include "debug/Activity.hh" |
| #include "debug/HtmCpu.hh" |
| #include "debug/IEW.hh" |
| #include "debug/LSQUnit.hh" |
| #include "debug/O3PipeView.hh" |
| #include "mem/packet.hh" |
| #include "mem/request.hh" |
| |
| template<class Impl> |
| LSQUnit<Impl>::WritebackEvent::WritebackEvent(const DynInstPtr &_inst, |
| PacketPtr _pkt, LSQUnit *lsq_ptr) |
| : Event(Default_Pri, AutoDelete), |
| inst(_inst), pkt(_pkt), lsqPtr(lsq_ptr) |
| { |
| assert(_inst->savedReq); |
| _inst->savedReq->writebackScheduled(); |
| } |
| |
| template<class Impl> |
| void |
| LSQUnit<Impl>::WritebackEvent::process() |
| { |
| assert(!lsqPtr->cpu->switchedOut()); |
| |
| lsqPtr->writeback(inst, pkt); |
| |
| assert(inst->savedReq); |
| inst->savedReq->writebackDone(); |
| delete pkt; |
| } |
| |
| template<class Impl> |
| const char * |
| LSQUnit<Impl>::WritebackEvent::description() const |
| { |
| return "Store writeback"; |
| } |
| |
| template <class Impl> |
| bool |
| LSQUnit<Impl>::recvTimingResp(PacketPtr pkt) |
| { |
| auto senderState = dynamic_cast<LSQSenderState*>(pkt->senderState); |
| LSQRequest* req = senderState->request(); |
| assert(req != nullptr); |
| bool ret = true; |
| /* Check that the request is still alive before any further action. */ |
| if (senderState->alive()) { |
| ret = req->recvTimingResp(pkt); |
| } else { |
| senderState->outstanding--; |
| } |
| return ret; |
| |
| } |
| |
| template<class Impl> |
| void |
| LSQUnit<Impl>::completeDataAccess(PacketPtr pkt) |
| { |
| LSQSenderState *state = dynamic_cast<LSQSenderState *>(pkt->senderState); |
| DynInstPtr inst = state->inst; |
| |
| // hardware transactional memory |
| // sanity check |
| if (pkt->isHtmTransactional() && !inst->isSquashed()) { |
| assert(inst->getHtmTransactionUid() == pkt->getHtmTransactionUid()); |
| } |
| |
| // if in a HTM transaction, it's possible |
| // to abort within the cache hierarchy. |
| // This is signalled back to the processor |
| // through responses to memory requests. |
| if (pkt->htmTransactionFailedInCache()) { |
| // cannot do this for write requests because |
| // they cannot tolerate faults |
| const HtmCacheFailure htm_rc = |
| pkt->getHtmTransactionFailedInCacheRC(); |
| if(pkt->isWrite()) { |
| DPRINTF(HtmCpu, |
| "store notification (ignored) of HTM transaction failure " |
| "in cache - addr=0x%lx - rc=%s - htmUid=%d\n", |
| pkt->getAddr(), htmFailureToStr(htm_rc), |
| pkt->getHtmTransactionUid()); |
| } else { |
| HtmFailureFaultCause fail_reason = |
| HtmFailureFaultCause::INVALID; |
| |
| if (htm_rc == HtmCacheFailure::FAIL_SELF) { |
| fail_reason = HtmFailureFaultCause::SIZE; |
| } else if (htm_rc == HtmCacheFailure::FAIL_REMOTE) { |
| fail_reason = HtmFailureFaultCause::MEMORY; |
| } else if (htm_rc == HtmCacheFailure::FAIL_OTHER) { |
| // these are likely loads that were issued out of order |
| // they are faulted here, but it's unlikely that these will |
| // ever reach the commit head. |
| fail_reason = HtmFailureFaultCause::OTHER; |
| } else { |
| panic("HTM error - unhandled return code from cache (%s)", |
| htmFailureToStr(htm_rc)); |
| } |
| |
| inst->fault = |
| std::make_shared<GenericHtmFailureFault>( |
| inst->getHtmTransactionUid(), |
| fail_reason); |
| |
| DPRINTF(HtmCpu, |
| "load notification of HTM transaction failure " |
| "in cache - pc=%s - addr=0x%lx - " |
| "rc=%u - htmUid=%d\n", |
| inst->pcState(), pkt->getAddr(), |
| htmFailureToStr(htm_rc), pkt->getHtmTransactionUid()); |
| } |
| } |
| |
| cpu->ppDataAccessComplete->notify(std::make_pair(inst, pkt)); |
| |
| /* Notify the sender state that the access is complete (for ownership |
| * tracking). */ |
| state->complete(); |
| |
| assert(!cpu->switchedOut()); |
| if (!inst->isSquashed()) { |
| if (state->needWB) { |
| // Only loads, store conditionals and atomics perform the writeback |
| // after receving the response from the memory |
| assert(inst->isLoad() || inst->isStoreConditional() || |
| inst->isAtomic()); |
| |
| // hardware transactional memory |
| if (pkt->htmTransactionFailedInCache()) { |
| state->request()->mainPacket()->setHtmTransactionFailedInCache( |
| pkt->getHtmTransactionFailedInCacheRC() ); |
| } |
| |
| writeback(inst, state->request()->mainPacket()); |
| if (inst->isStore() || inst->isAtomic()) { |
| auto ss = dynamic_cast<SQSenderState*>(state); |
| ss->writebackDone(); |
| completeStore(ss->idx); |
| } |
| } else if (inst->isStore()) { |
| // This is a regular store (i.e., not store conditionals and |
| // atomics), so it can complete without writing back |
| completeStore(dynamic_cast<SQSenderState*>(state)->idx); |
| } |
| } |
| } |
| |
| template <class Impl> |
| LSQUnit<Impl>::LSQUnit(uint32_t lqEntries, uint32_t sqEntries) |
| : lsqID(-1), storeQueue(sqEntries+1), loadQueue(lqEntries+1), |
| loads(0), stores(0), storesToWB(0), |
| htmStarts(0), htmStops(0), |
| lastRetiredHtmUid(0), |
| cacheBlockMask(0), stalled(false), |
| isStoreBlocked(false), storeInFlight(false), hasPendingRequest(false), |
| pendingRequest(nullptr), stats(nullptr) |
| { |
| } |
| |
| template<class Impl> |
| void |
| LSQUnit<Impl>::init(O3CPU *cpu_ptr, IEW *iew_ptr, |
| const DerivO3CPUParams ¶ms, LSQ *lsq_ptr, unsigned id) |
| { |
| lsqID = id; |
| |
| cpu = cpu_ptr; |
| iewStage = iew_ptr; |
| |
| lsq = lsq_ptr; |
| |
| cpu->addStatGroup(csprintf("lsq%i", lsqID).c_str(), &stats); |
| |
| DPRINTF(LSQUnit, "Creating LSQUnit%i object.\n",lsqID); |
| |
| depCheckShift = params.LSQDepCheckShift; |
| checkLoads = params.LSQCheckLoads; |
| needsTSO = params.needsTSO; |
| |
| resetState(); |
| } |
| |
| |
| template<class Impl> |
| void |
| LSQUnit<Impl>::resetState() |
| { |
| loads = stores = storesToWB = 0; |
| |
| // hardware transactional memory |
| // nesting depth |
| htmStarts = htmStops = 0; |
| |
| storeWBIt = storeQueue.begin(); |
| |
| retryPkt = NULL; |
| memDepViolator = NULL; |
| |
| stalled = false; |
| |
| cacheBlockMask = ~(cpu->cacheLineSize() - 1); |
| } |
| |
| template<class Impl> |
| std::string |
| LSQUnit<Impl>::name() const |
| { |
| if (Impl::MaxThreads == 1) { |
| return iewStage->name() + ".lsq"; |
| } else { |
| return iewStage->name() + ".lsq.thread" + std::to_string(lsqID); |
| } |
| } |
| |
| template <class Impl> |
| LSQUnit<Impl>::LSQUnitStats::LSQUnitStats(Stats::Group *parent) |
| : Stats::Group(parent), |
| ADD_STAT(forwLoads, UNIT_COUNT, |
| "Number of loads that had data forwarded from stores"), |
| ADD_STAT(squashedLoads, UNIT_COUNT, |
| "Number of loads squashed"), |
| ADD_STAT(ignoredResponses, UNIT_COUNT, |
| "Number of memory responses ignored because the instruction is " |
| "squashed"), |
| ADD_STAT(memOrderViolation, UNIT_COUNT, |
| "Number of memory ordering violations"), |
| ADD_STAT(squashedStores, UNIT_COUNT, "Number of stores squashed"), |
| ADD_STAT(rescheduledLoads, UNIT_COUNT, |
| "Number of loads that were rescheduled"), |
| ADD_STAT(blockedByCache, UNIT_COUNT, |
| "Number of times an access to memory failed due to the cache " |
| "being blocked") |
| { |
| } |
| |
| template<class Impl> |
| void |
| LSQUnit<Impl>::setDcachePort(RequestPort *dcache_port) |
| { |
| dcachePort = dcache_port; |
| } |
| |
| template<class Impl> |
| void |
| LSQUnit<Impl>::drainSanityCheck() const |
| { |
| for (int i = 0; i < loadQueue.capacity(); ++i) |
| assert(!loadQueue[i].valid()); |
| |
| assert(storesToWB == 0); |
| assert(!retryPkt); |
| } |
| |
| template<class Impl> |
| void |
| LSQUnit<Impl>::takeOverFrom() |
| { |
| resetState(); |
| } |
| |
| template <class Impl> |
| void |
| LSQUnit<Impl>::insert(const DynInstPtr &inst) |
| { |
| assert(inst->isMemRef()); |
| |
| assert(inst->isLoad() || inst->isStore() || inst->isAtomic()); |
| |
| if (inst->isLoad()) { |
| insertLoad(inst); |
| } else { |
| insertStore(inst); |
| } |
| |
| inst->setInLSQ(); |
| } |
| |
| template <class Impl> |
| void |
| LSQUnit<Impl>::insertLoad(const DynInstPtr &load_inst) |
| { |
| assert(!loadQueue.full()); |
| assert(loads < loadQueue.capacity()); |
| |
| DPRINTF(LSQUnit, "Inserting load PC %s, idx:%i [sn:%lli]\n", |
| load_inst->pcState(), loadQueue.tail(), load_inst->seqNum); |
| |
| /* Grow the queue. */ |
| loadQueue.advance_tail(); |
| |
| load_inst->sqIt = storeQueue.end(); |
| |
| assert(!loadQueue.back().valid()); |
| loadQueue.back().set(load_inst); |
| load_inst->lqIdx = loadQueue.tail(); |
| assert(load_inst->lqIdx > 0); |
| load_inst->lqIt = loadQueue.getIterator(load_inst->lqIdx); |
| |
| ++loads; |
| |
| // hardware transactional memory |
| // transactional state and nesting depth must be tracked |
| // in the in-order part of the core. |
| if (load_inst->isHtmStart()) { |
| htmStarts++; |
| DPRINTF(HtmCpu, ">> htmStarts++ (%d) : htmStops (%d)\n", |
| htmStarts, htmStops); |
| |
| const int htm_depth = htmStarts - htmStops; |
| const auto& htm_cpt = cpu->tcBase(lsqID)->getHtmCheckpointPtr(); |
| auto htm_uid = htm_cpt->getHtmUid(); |
| |
| // for debugging purposes |
| if (!load_inst->inHtmTransactionalState()) { |
| htm_uid = htm_cpt->newHtmUid(); |
| DPRINTF(HtmCpu, "generating new htmUid=%u\n", htm_uid); |
| if (htm_depth != 1) { |
| DPRINTF(HtmCpu, |
| "unusual HTM transactional depth (%d)" |
| " possibly caused by mispeculation - htmUid=%u\n", |
| htm_depth, htm_uid); |
| } |
| } |
| load_inst->setHtmTransactionalState(htm_uid, htm_depth); |
| } |
| |
| if (load_inst->isHtmStop()) { |
| htmStops++; |
| DPRINTF(HtmCpu, ">> htmStarts (%d) : htmStops++ (%d)\n", |
| htmStarts, htmStops); |
| |
| if (htmStops==1 && htmStarts==0) { |
| DPRINTF(HtmCpu, |
| "htmStops==1 && htmStarts==0. " |
| "This generally shouldn't happen " |
| "(unless due to misspeculation)\n"); |
| } |
| } |
| } |
| |
| template <class Impl> |
| void |
| LSQUnit<Impl>::insertStore(const DynInstPtr& store_inst) |
| { |
| // Make sure it is not full before inserting an instruction. |
| assert(!storeQueue.full()); |
| assert(stores < storeQueue.capacity()); |
| |
| DPRINTF(LSQUnit, "Inserting store PC %s, idx:%i [sn:%lli]\n", |
| store_inst->pcState(), storeQueue.tail(), store_inst->seqNum); |
| storeQueue.advance_tail(); |
| |
| store_inst->sqIdx = storeQueue.tail(); |
| store_inst->lqIdx = loadQueue.tail() + 1; |
| assert(store_inst->lqIdx > 0); |
| store_inst->lqIt = loadQueue.end(); |
| |
| storeQueue.back().set(store_inst); |
| |
| ++stores; |
| } |
| |
| template <class Impl> |
| typename Impl::DynInstPtr |
| LSQUnit<Impl>::getMemDepViolator() |
| { |
| DynInstPtr temp = memDepViolator; |
| |
| memDepViolator = NULL; |
| |
| return temp; |
| } |
| |
| template <class Impl> |
| unsigned |
| LSQUnit<Impl>::numFreeLoadEntries() |
| { |
| //LQ has an extra dummy entry to differentiate |
| //empty/full conditions. Subtract 1 from the free entries. |
| DPRINTF(LSQUnit, "LQ size: %d, #loads occupied: %d\n", |
| 1 + loadQueue.capacity(), loads); |
| return loadQueue.capacity() - loads; |
| } |
| |
| template <class Impl> |
| unsigned |
| LSQUnit<Impl>::numFreeStoreEntries() |
| { |
| //SQ has an extra dummy entry to differentiate |
| //empty/full conditions. Subtract 1 from the free entries. |
| DPRINTF(LSQUnit, "SQ size: %d, #stores occupied: %d\n", |
| 1 + storeQueue.capacity(), stores); |
| return storeQueue.capacity() - stores; |
| |
| } |
| |
| template <class Impl> |
| void |
| LSQUnit<Impl>::checkSnoop(PacketPtr pkt) |
| { |
| // Should only ever get invalidations in here |
| assert(pkt->isInvalidate()); |
| |
| DPRINTF(LSQUnit, "Got snoop for address %#x\n", pkt->getAddr()); |
| |
| for (int x = 0; x < cpu->numContexts(); x++) { |
| ThreadContext *tc = cpu->getContext(x); |
| bool no_squash = cpu->thread[x]->noSquashFromTC; |
| cpu->thread[x]->noSquashFromTC = true; |
| TheISA::handleLockedSnoop(tc, pkt, cacheBlockMask); |
| cpu->thread[x]->noSquashFromTC = no_squash; |
| } |
| |
| if (loadQueue.empty()) |
| return; |
| |
| auto iter = loadQueue.begin(); |
| |
| Addr invalidate_addr = pkt->getAddr() & cacheBlockMask; |
| |
| DynInstPtr ld_inst = iter->instruction(); |
| assert(ld_inst); |
| LSQRequest *req = iter->request(); |
| |
| // Check that this snoop didn't just invalidate our lock flag |
| if (ld_inst->effAddrValid() && |
| req->isCacheBlockHit(invalidate_addr, cacheBlockMask) |
| && ld_inst->memReqFlags & Request::LLSC) |
| TheISA::handleLockedSnoopHit(ld_inst.get()); |
| |
| bool force_squash = false; |
| |
| while (++iter != loadQueue.end()) { |
| ld_inst = iter->instruction(); |
| assert(ld_inst); |
| req = iter->request(); |
| if (!ld_inst->effAddrValid() || ld_inst->strictlyOrdered()) |
| continue; |
| |
| DPRINTF(LSQUnit, "-- inst [sn:%lli] to pktAddr:%#x\n", |
| ld_inst->seqNum, invalidate_addr); |
| |
| if (force_squash || |
| req->isCacheBlockHit(invalidate_addr, cacheBlockMask)) { |
| if (needsTSO) { |
| // If we have a TSO system, as all loads must be ordered with |
| // all other loads, this load as well as *all* subsequent loads |
| // need to be squashed to prevent possible load reordering. |
| force_squash = true; |
| } |
| if (ld_inst->possibleLoadViolation() || force_squash) { |
| DPRINTF(LSQUnit, "Conflicting load at addr %#x [sn:%lli]\n", |
| pkt->getAddr(), ld_inst->seqNum); |
| |
| // Mark the load for re-execution |
| ld_inst->fault = std::make_shared<ReExec>(); |
| req->setStateToFault(); |
| } else { |
| DPRINTF(LSQUnit, "HitExternal Snoop for addr %#x [sn:%lli]\n", |
| pkt->getAddr(), ld_inst->seqNum); |
| |
| // Make sure that we don't lose a snoop hitting a LOCKED |
| // address since the LOCK* flags don't get updated until |
| // commit. |
| if (ld_inst->memReqFlags & Request::LLSC) |
| TheISA::handleLockedSnoopHit(ld_inst.get()); |
| |
| // If a older load checks this and it's true |
| // then we might have missed the snoop |
| // in which case we need to invalidate to be sure |
| ld_inst->hitExternalSnoop(true); |
| } |
| } |
| } |
| return; |
| } |
| |
| template <class Impl> |
| Fault |
| LSQUnit<Impl>::checkViolations(typename LoadQueue::iterator& loadIt, |
| const DynInstPtr& inst) |
| { |
| Addr inst_eff_addr1 = inst->effAddr >> depCheckShift; |
| Addr inst_eff_addr2 = (inst->effAddr + inst->effSize - 1) >> depCheckShift; |
| |
| /** @todo in theory you only need to check an instruction that has executed |
| * however, there isn't a good way in the pipeline at the moment to check |
| * all instructions that will execute before the store writes back. Thus, |
| * like the implementation that came before it, we're overly conservative. |
| */ |
| while (loadIt != loadQueue.end()) { |
| DynInstPtr ld_inst = loadIt->instruction(); |
| if (!ld_inst->effAddrValid() || ld_inst->strictlyOrdered()) { |
| ++loadIt; |
| continue; |
| } |
| |
| Addr ld_eff_addr1 = ld_inst->effAddr >> depCheckShift; |
| Addr ld_eff_addr2 = |
| (ld_inst->effAddr + ld_inst->effSize - 1) >> depCheckShift; |
| |
| if (inst_eff_addr2 >= ld_eff_addr1 && inst_eff_addr1 <= ld_eff_addr2) { |
| if (inst->isLoad()) { |
| // If this load is to the same block as an external snoop |
| // invalidate that we've observed then the load needs to be |
| // squashed as it could have newer data |
| if (ld_inst->hitExternalSnoop()) { |
| if (!memDepViolator || |
| ld_inst->seqNum < memDepViolator->seqNum) { |
| DPRINTF(LSQUnit, "Detected fault with inst [sn:%lli] " |
| "and [sn:%lli] at address %#x\n", |
| inst->seqNum, ld_inst->seqNum, ld_eff_addr1); |
| memDepViolator = ld_inst; |
| |
| ++stats.memOrderViolation; |
| |
| return std::make_shared<GenericISA::M5PanicFault>( |
| "Detected fault with inst [sn:%lli] and " |
| "[sn:%lli] at address %#x\n", |
| inst->seqNum, ld_inst->seqNum, ld_eff_addr1); |
| } |
| } |
| |
| // Otherwise, mark the load has a possible load violation |
| // and if we see a snoop before it's commited, we need to squash |
| ld_inst->possibleLoadViolation(true); |
| DPRINTF(LSQUnit, "Found possible load violation at addr: %#x" |
| " between instructions [sn:%lli] and [sn:%lli]\n", |
| inst_eff_addr1, inst->seqNum, ld_inst->seqNum); |
| } else { |
| // A load/store incorrectly passed this store. |
| // Check if we already have a violator, or if it's newer |
| // squash and refetch. |
| if (memDepViolator && ld_inst->seqNum > memDepViolator->seqNum) |
| break; |
| |
| DPRINTF(LSQUnit, "Detected fault with inst [sn:%lli] and " |
| "[sn:%lli] at address %#x\n", |
| inst->seqNum, ld_inst->seqNum, ld_eff_addr1); |
| memDepViolator = ld_inst; |
| |
| ++stats.memOrderViolation; |
| |
| return std::make_shared<GenericISA::M5PanicFault>( |
| "Detected fault with " |
| "inst [sn:%lli] and [sn:%lli] at address %#x\n", |
| inst->seqNum, ld_inst->seqNum, ld_eff_addr1); |
| } |
| } |
| |
| ++loadIt; |
| } |
| return NoFault; |
| } |
| |
| |
| |
| |
| template <class Impl> |
| Fault |
| LSQUnit<Impl>::executeLoad(const DynInstPtr &inst) |
| { |
| // Execute a specific load. |
| Fault load_fault = NoFault; |
| |
| DPRINTF(LSQUnit, "Executing load PC %s, [sn:%lli]\n", |
| inst->pcState(), inst->seqNum); |
| |
| assert(!inst->isSquashed()); |
| |
| load_fault = inst->initiateAcc(); |
| |
| if (load_fault == NoFault && !inst->readMemAccPredicate()) { |
| assert(inst->readPredicate()); |
| inst->setExecuted(); |
| inst->completeAcc(nullptr); |
| iewStage->instToCommit(inst); |
| iewStage->activityThisCycle(); |
| return NoFault; |
| } |
| |
| if (inst->isTranslationDelayed() && load_fault == NoFault) |
| return load_fault; |
| |
| if (load_fault != NoFault && inst->translationCompleted() && |
| inst->savedReq->isPartialFault() && !inst->savedReq->isComplete()) { |
| assert(inst->savedReq->isSplit()); |
| // If we have a partial fault where the mem access is not complete yet |
| // then the cache must have been blocked. This load will be re-executed |
| // when the cache gets unblocked. We will handle the fault when the |
| // mem access is complete. |
| return NoFault; |
| } |
| |
| // If the instruction faulted or predicated false, then we need to send it |
| // along to commit without the instruction completing. |
| if (load_fault != NoFault || !inst->readPredicate()) { |
| // Send this instruction to commit, also make sure iew stage |
| // realizes there is activity. Mark it as executed unless it |
| // is a strictly ordered load that needs to hit the head of |
| // commit. |
| if (!inst->readPredicate()) |
| inst->forwardOldRegs(); |
| DPRINTF(LSQUnit, "Load [sn:%lli] not executed from %s\n", |
| inst->seqNum, |
| (load_fault != NoFault ? "fault" : "predication")); |
| if (!(inst->hasRequest() && inst->strictlyOrdered()) || |
| inst->isAtCommit()) { |
| inst->setExecuted(); |
| } |
| iewStage->instToCommit(inst); |
| iewStage->activityThisCycle(); |
| } else { |
| if (inst->effAddrValid()) { |
| auto it = inst->lqIt; |
| ++it; |
| |
| if (checkLoads) |
| return checkViolations(it, inst); |
| } |
| } |
| |
| return load_fault; |
| } |
| |
| template <class Impl> |
| Fault |
| LSQUnit<Impl>::executeStore(const DynInstPtr &store_inst) |
| { |
| // Make sure that a store exists. |
| assert(stores != 0); |
| |
| int store_idx = store_inst->sqIdx; |
| |
| DPRINTF(LSQUnit, "Executing store PC %s [sn:%lli]\n", |
| store_inst->pcState(), store_inst->seqNum); |
| |
| assert(!store_inst->isSquashed()); |
| |
| // Check the recently completed loads to see if any match this store's |
| // address. If so, then we have a memory ordering violation. |
| typename LoadQueue::iterator loadIt = store_inst->lqIt; |
| |
| Fault store_fault = store_inst->initiateAcc(); |
| |
| if (store_inst->isTranslationDelayed() && |
| store_fault == NoFault) |
| return store_fault; |
| |
| if (!store_inst->readPredicate()) { |
| DPRINTF(LSQUnit, "Store [sn:%lli] not executed from predication\n", |
| store_inst->seqNum); |
| store_inst->forwardOldRegs(); |
| return store_fault; |
| } |
| |
| if (storeQueue[store_idx].size() == 0) { |
| DPRINTF(LSQUnit,"Fault on Store PC %s, [sn:%lli], Size = 0\n", |
| store_inst->pcState(), store_inst->seqNum); |
| |
| return store_fault; |
| } |
| |
| assert(store_fault == NoFault); |
| |
| if (store_inst->isStoreConditional() || store_inst->isAtomic()) { |
| // Store conditionals and Atomics need to set themselves as able to |
| // writeback if we haven't had a fault by here. |
| storeQueue[store_idx].canWB() = true; |
| |
| ++storesToWB; |
| } |
| |
| return checkViolations(loadIt, store_inst); |
| |
| } |
| |
| template <class Impl> |
| void |
| LSQUnit<Impl>::commitLoad() |
| { |
| assert(loadQueue.front().valid()); |
| |
| DPRINTF(LSQUnit, "Committing head load instruction, PC %s\n", |
| loadQueue.front().instruction()->pcState()); |
| |
| loadQueue.front().clear(); |
| loadQueue.pop_front(); |
| |
| --loads; |
| } |
| |
| template <class Impl> |
| void |
| LSQUnit<Impl>::commitLoads(InstSeqNum &youngest_inst) |
| { |
| assert(loads == 0 || loadQueue.front().valid()); |
| |
| while (loads != 0 && loadQueue.front().instruction()->seqNum |
| <= youngest_inst) { |
| commitLoad(); |
| } |
| } |
| |
| template <class Impl> |
| void |
| LSQUnit<Impl>::commitStores(InstSeqNum &youngest_inst) |
| { |
| assert(stores == 0 || storeQueue.front().valid()); |
| |
| /* Forward iterate the store queue (age order). */ |
| for (auto& x : storeQueue) { |
| assert(x.valid()); |
| // Mark any stores that are now committed and have not yet |
| // been marked as able to write back. |
| if (!x.canWB()) { |
| if (x.instruction()->seqNum > youngest_inst) { |
| break; |
| } |
| DPRINTF(LSQUnit, "Marking store as able to write back, PC " |
| "%s [sn:%lli]\n", |
| x.instruction()->pcState(), |
| x.instruction()->seqNum); |
| |
| x.canWB() = true; |
| |
| ++storesToWB; |
| } |
| } |
| } |
| |
| template <class Impl> |
| void |
| LSQUnit<Impl>::writebackBlockedStore() |
| { |
| assert(isStoreBlocked); |
| storeWBIt->request()->sendPacketToCache(); |
| if (storeWBIt->request()->isSent()){ |
| storePostSend(); |
| } |
| } |
| |
| template <class Impl> |
| void |
| LSQUnit<Impl>::writebackStores() |
| { |
| if (isStoreBlocked) { |
| DPRINTF(LSQUnit, "Writing back blocked store\n"); |
| writebackBlockedStore(); |
| } |
| |
| while (storesToWB > 0 && |
| storeWBIt.dereferenceable() && |
| storeWBIt->valid() && |
| storeWBIt->canWB() && |
| ((!needsTSO) || (!storeInFlight)) && |
| lsq->cachePortAvailable(false)) { |
| |
| if (isStoreBlocked) { |
| DPRINTF(LSQUnit, "Unable to write back any more stores, cache" |
| " is blocked!\n"); |
| break; |
| } |
| |
| // Store didn't write any data so no need to write it back to |
| // memory. |
| if (storeWBIt->size() == 0) { |
| /* It is important that the preincrement happens at (or before) |
| * the call, as the the code of completeStore checks |
| * storeWBIt. */ |
| completeStore(storeWBIt++); |
| continue; |
| } |
| |
| if (storeWBIt->instruction()->isDataPrefetch()) { |
| storeWBIt++; |
| continue; |
| } |
| |
| assert(storeWBIt->hasRequest()); |
| assert(!storeWBIt->committed()); |
| |
| DynInstPtr inst = storeWBIt->instruction(); |
| LSQRequest* req = storeWBIt->request(); |
| |
| // Process store conditionals or store release after all previous |
| // stores are completed |
| if ((req->mainRequest()->isLLSC() || |
| req->mainRequest()->isRelease()) && |
| (storeWBIt.idx() != storeQueue.head())) { |
| DPRINTF(LSQUnit, "Store idx:%i PC:%s to Addr:%#x " |
| "[sn:%lli] is %s%s and not head of the queue\n", |
| storeWBIt.idx(), inst->pcState(), |
| req->request()->getPaddr(), inst->seqNum, |
| req->mainRequest()->isLLSC() ? "SC" : "", |
| req->mainRequest()->isRelease() ? "/Release" : ""); |
| break; |
| } |
| |
| storeWBIt->committed() = true; |
| |
| assert(!inst->memData); |
| inst->memData = new uint8_t[req->_size]; |
| |
| if (storeWBIt->isAllZeros()) |
| memset(inst->memData, 0, req->_size); |
| else |
| memcpy(inst->memData, storeWBIt->data(), req->_size); |
| |
| |
| if (req->senderState() == nullptr) { |
| SQSenderState *state = new SQSenderState(storeWBIt); |
| state->isLoad = false; |
| state->needWB = false; |
| state->inst = inst; |
| |
| req->senderState(state); |
| if (inst->isStoreConditional() || inst->isAtomic()) { |
| /* Only store conditionals and atomics need a writeback. */ |
| state->needWB = true; |
| } |
| } |
| req->buildPackets(); |
| |
| DPRINTF(LSQUnit, "D-Cache: Writing back store idx:%i PC:%s " |
| "to Addr:%#x, data:%#x [sn:%lli]\n", |
| storeWBIt.idx(), inst->pcState(), |
| req->request()->getPaddr(), (int)*(inst->memData), |
| inst->seqNum); |
| |
| // @todo: Remove this SC hack once the memory system handles it. |
| if (inst->isStoreConditional()) { |
| // Disable recording the result temporarily. Writing to |
| // misc regs normally updates the result, but this is not |
| // the desired behavior when handling store conditionals. |
| inst->recordResult(false); |
| bool success = TheISA::handleLockedWrite(inst.get(), |
| req->request(), cacheBlockMask); |
| inst->recordResult(true); |
| req->packetSent(); |
| |
| if (!success) { |
| req->complete(); |
| // Instantly complete this store. |
| DPRINTF(LSQUnit, "Store conditional [sn:%lli] failed. " |
| "Instantly completing it.\n", |
| inst->seqNum); |
| PacketPtr new_pkt = new Packet(*req->packet()); |
| WritebackEvent *wb = new WritebackEvent(inst, |
| new_pkt, this); |
| cpu->schedule(wb, curTick() + 1); |
| completeStore(storeWBIt); |
| if (!storeQueue.empty()) |
| storeWBIt++; |
| else |
| storeWBIt = storeQueue.end(); |
| continue; |
| } |
| } |
| |
| if (req->request()->isLocalAccess()) { |
| assert(!inst->isStoreConditional()); |
| assert(!inst->inHtmTransactionalState()); |
| ThreadContext *thread = cpu->tcBase(lsqID); |
| PacketPtr main_pkt = new Packet(req->mainRequest(), |
| MemCmd::WriteReq); |
| main_pkt->dataStatic(inst->memData); |
| req->request()->localAccessor(thread, main_pkt); |
| delete main_pkt; |
| completeStore(storeWBIt); |
| storeWBIt++; |
| continue; |
| } |
| /* Send to cache */ |
| req->sendPacketToCache(); |
| |
| /* If successful, do the post send */ |
| if (req->isSent()) { |
| storePostSend(); |
| } else { |
| DPRINTF(LSQUnit, "D-Cache became blocked when writing [sn:%lli], " |
| "will retry later\n", |
| inst->seqNum); |
| } |
| } |
| assert(stores >= 0 && storesToWB >= 0); |
| } |
| |
| template <class Impl> |
| void |
| LSQUnit<Impl>::squash(const InstSeqNum &squashed_num) |
| { |
| DPRINTF(LSQUnit, "Squashing until [sn:%lli]!" |
| "(Loads:%i Stores:%i)\n", squashed_num, loads, stores); |
| |
| while (loads != 0 && |
| loadQueue.back().instruction()->seqNum > squashed_num) { |
| DPRINTF(LSQUnit,"Load Instruction PC %s squashed, " |
| "[sn:%lli]\n", |
| loadQueue.back().instruction()->pcState(), |
| loadQueue.back().instruction()->seqNum); |
| |
| if (isStalled() && loadQueue.tail() == stallingLoadIdx) { |
| stalled = false; |
| stallingStoreIsn = 0; |
| stallingLoadIdx = 0; |
| } |
| |
| // hardware transactional memory |
| // Squashing instructions can alter the transaction nesting depth |
| // and must be corrected before fetching resumes. |
| if (loadQueue.back().instruction()->isHtmStart()) |
| { |
| htmStarts = (--htmStarts < 0) ? 0 : htmStarts; |
| DPRINTF(HtmCpu, ">> htmStarts-- (%d) : htmStops (%d)\n", |
| htmStarts, htmStops); |
| } |
| if (loadQueue.back().instruction()->isHtmStop()) |
| { |
| htmStops = (--htmStops < 0) ? 0 : htmStops; |
| DPRINTF(HtmCpu, ">> htmStarts (%d) : htmStops-- (%d)\n", |
| htmStarts, htmStops); |
| } |
| // Clear the smart pointer to make sure it is decremented. |
| loadQueue.back().instruction()->setSquashed(); |
| loadQueue.back().clear(); |
| |
| --loads; |
| |
| loadQueue.pop_back(); |
| ++stats.squashedLoads; |
| } |
| |
| // hardware transactional memory |
| // scan load queue (from oldest to youngest) for most recent valid htmUid |
| auto scan_it = loadQueue.begin(); |
| uint64_t in_flight_uid = 0; |
| while (scan_it != loadQueue.end()) { |
| if (scan_it->instruction()->isHtmStart() && |
| !scan_it->instruction()->isSquashed()) { |
| in_flight_uid = scan_it->instruction()->getHtmTransactionUid(); |
| DPRINTF(HtmCpu, "loadQueue[%d]: found valid HtmStart htmUid=%u\n", |
| scan_it._idx, in_flight_uid); |
| } |
| scan_it++; |
| } |
| // If there's a HtmStart in the pipeline then use its htmUid, |
| // otherwise use the most recently committed uid |
| const auto& htm_cpt = cpu->tcBase(lsqID)->getHtmCheckpointPtr(); |
| if (htm_cpt) { |
| const uint64_t old_local_htm_uid = htm_cpt->getHtmUid(); |
| uint64_t new_local_htm_uid; |
| if (in_flight_uid > 0) |
| new_local_htm_uid = in_flight_uid; |
| else |
| new_local_htm_uid = lastRetiredHtmUid; |
| |
| if (old_local_htm_uid != new_local_htm_uid) { |
| DPRINTF(HtmCpu, "flush: lastRetiredHtmUid=%u\n", |
| lastRetiredHtmUid); |
| DPRINTF(HtmCpu, "flush: resetting localHtmUid=%u\n", |
| new_local_htm_uid); |
| |
| htm_cpt->setHtmUid(new_local_htm_uid); |
| } |
| } |
| |
| if (memDepViolator && squashed_num < memDepViolator->seqNum) { |
| memDepViolator = NULL; |
| } |
| |
| while (stores != 0 && |
| storeQueue.back().instruction()->seqNum > squashed_num) { |
| // Instructions marked as can WB are already committed. |
| if (storeQueue.back().canWB()) { |
| break; |
| } |
| |
| DPRINTF(LSQUnit,"Store Instruction PC %s squashed, " |
| "idx:%i [sn:%lli]\n", |
| storeQueue.back().instruction()->pcState(), |
| storeQueue.tail(), storeQueue.back().instruction()->seqNum); |
| |
| // I don't think this can happen. It should have been cleared |
| // by the stalling load. |
| if (isStalled() && |
| storeQueue.back().instruction()->seqNum == stallingStoreIsn) { |
| panic("Is stalled should have been cleared by stalling load!\n"); |
| stalled = false; |
| stallingStoreIsn = 0; |
| } |
| |
| // Clear the smart pointer to make sure it is decremented. |
| storeQueue.back().instruction()->setSquashed(); |
| |
| // Must delete request now that it wasn't handed off to |
| // memory. This is quite ugly. @todo: Figure out the proper |
| // place to really handle request deletes. |
| storeQueue.back().clear(); |
| --stores; |
| |
| storeQueue.pop_back(); |
| ++stats.squashedStores; |
| } |
| } |
| |
| template <class Impl> |
| void |
| LSQUnit<Impl>::storePostSend() |
| { |
| if (isStalled() && |
| storeWBIt->instruction()->seqNum == stallingStoreIsn) { |
| DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] " |
| "load idx:%i\n", |
| stallingStoreIsn, stallingLoadIdx); |
| stalled = false; |
| stallingStoreIsn = 0; |
| iewStage->replayMemInst(loadQueue[stallingLoadIdx].instruction()); |
| } |
| |
| if (!storeWBIt->instruction()->isStoreConditional()) { |
| // The store is basically completed at this time. This |
| // only works so long as the checker doesn't try to |
| // verify the value in memory for stores. |
| storeWBIt->instruction()->setCompleted(); |
| |
| if (cpu->checker) { |
| cpu->checker->verify(storeWBIt->instruction()); |
| } |
| } |
| |
| if (needsTSO) { |
| storeInFlight = true; |
| } |
| |
| storeWBIt++; |
| } |
| |
| template <class Impl> |
| void |
| LSQUnit<Impl>::writeback(const DynInstPtr &inst, PacketPtr pkt) |
| { |
| iewStage->wakeCPU(); |
| |
| // Squashed instructions do not need to complete their access. |
| if (inst->isSquashed()) { |
| assert (!inst->isStore() || inst->isStoreConditional()); |
| ++stats.ignoredResponses; |
| return; |
| } |
| |
| if (!inst->isExecuted()) { |
| inst->setExecuted(); |
| |
| if (inst->fault == NoFault) { |
| // Complete access to copy data to proper place. |
| inst->completeAcc(pkt); |
| } else { |
| // If the instruction has an outstanding fault, we cannot complete |
| // the access as this discards the current fault. |
| |
| // If we have an outstanding fault, the fault should only be of |
| // type ReExec or - in case of a SplitRequest - a partial |
| // translation fault |
| |
| // Unless it's a hardware transactional memory fault |
| auto htm_fault = std::dynamic_pointer_cast< |
| GenericHtmFailureFault>(inst->fault); |
| |
| if (!htm_fault) { |
| assert(dynamic_cast<ReExec*>(inst->fault.get()) != nullptr || |
| inst->savedReq->isPartialFault()); |
| |
| } else if (!pkt->htmTransactionFailedInCache()) { |
| // Situation in which the instruction has a hardware transactional |
| // memory fault but not the packet itself. This can occur with |
| // ldp_uop microops since access is spread over multiple packets. |
| DPRINTF(HtmCpu, |
| "%s writeback with HTM failure fault, " |
| "however, completing packet is not aware of " |
| "transaction failure. cause=%s htmUid=%u\n", |
| inst->staticInst->getName(), |
| htmFailureToStr(htm_fault->getHtmFailureFaultCause()), |
| htm_fault->getHtmUid()); |
| } |
| |
| DPRINTF(LSQUnit, "Not completing instruction [sn:%lli] access " |
| "due to pending fault.\n", inst->seqNum); |
| } |
| } |
| |
| // Need to insert instruction into queue to commit |
| iewStage->instToCommit(inst); |
| |
| iewStage->activityThisCycle(); |
| |
| // see if this load changed the PC |
| iewStage->checkMisprediction(inst); |
| } |
| |
| template <class Impl> |
| void |
| LSQUnit<Impl>::completeStore(typename StoreQueue::iterator store_idx) |
| { |
| assert(store_idx->valid()); |
| store_idx->completed() = true; |
| --storesToWB; |
| // A bit conservative because a store completion may not free up entries, |
| // but hopefully avoids two store completions in one cycle from making |
| // the CPU tick twice. |
| cpu->wakeCPU(); |
| cpu->activityThisCycle(); |
| |
| /* We 'need' a copy here because we may clear the entry from the |
| * store queue. */ |
| DynInstPtr store_inst = store_idx->instruction(); |
| if (store_idx == storeQueue.begin()) { |
| do { |
| storeQueue.front().clear(); |
| storeQueue.pop_front(); |
| --stores; |
| } while (storeQueue.front().completed() && |
| !storeQueue.empty()); |
| |
| iewStage->updateLSQNextCycle = true; |
| } |
| |
| DPRINTF(LSQUnit, "Completing store [sn:%lli], idx:%i, store head " |
| "idx:%i\n", |
| store_inst->seqNum, store_idx.idx() - 1, storeQueue.head() - 1); |
| |
| #if TRACING_ON |
| if (DTRACE(O3PipeView)) { |
| store_inst->storeTick = |
| curTick() - store_inst->fetchTick; |
| } |
| #endif |
| |
| if (isStalled() && |
| store_inst->seqNum == stallingStoreIsn) { |
| DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] " |
| "load idx:%i\n", |
| stallingStoreIsn, stallingLoadIdx); |
| stalled = false; |
| stallingStoreIsn = 0; |
| iewStage->replayMemInst(loadQueue[stallingLoadIdx].instruction()); |
| } |
| |
| store_inst->setCompleted(); |
| |
| if (needsTSO) { |
| storeInFlight = false; |
| } |
| |
| // Tell the checker we've completed this instruction. Some stores |
| // may get reported twice to the checker, but the checker can |
| // handle that case. |
| // Store conditionals cannot be sent to the checker yet, they have |
| // to update the misc registers first which should take place |
| // when they commit |
| if (cpu->checker && !store_inst->isStoreConditional()) { |
| cpu->checker->verify(store_inst); |
| } |
| } |
| |
| template <class Impl> |
| bool |
| LSQUnit<Impl>::trySendPacket(bool isLoad, PacketPtr data_pkt) |
| { |
| bool ret = true; |
| bool cache_got_blocked = false; |
| |
| auto state = dynamic_cast<LSQSenderState*>(data_pkt->senderState); |
| |
| if (!lsq->cacheBlocked() && |
| lsq->cachePortAvailable(isLoad)) { |
| if (!dcachePort->sendTimingReq(data_pkt)) { |
| ret = false; |
| cache_got_blocked = true; |
| } |
| } else { |
| ret = false; |
| } |
| |
| if (ret) { |
| if (!isLoad) { |
| isStoreBlocked = false; |
| } |
| lsq->cachePortBusy(isLoad); |
| state->outstanding++; |
| state->request()->packetSent(); |
| } else { |
| if (cache_got_blocked) { |
| lsq->cacheBlocked(true); |
| ++stats.blockedByCache; |
| } |
| if (!isLoad) { |
| assert(state->request() == storeWBIt->request()); |
| isStoreBlocked = true; |
| } |
| state->request()->packetNotSent(); |
| } |
| return ret; |
| } |
| |
| template <class Impl> |
| void |
| LSQUnit<Impl>::recvRetry() |
| { |
| if (isStoreBlocked) { |
| DPRINTF(LSQUnit, "Receiving retry: blocked store\n"); |
| writebackBlockedStore(); |
| } |
| } |
| |
| template <class Impl> |
| void |
| LSQUnit<Impl>::dumpInsts() const |
| { |
| cprintf("Load store queue: Dumping instructions.\n"); |
| cprintf("Load queue size: %i\n", loads); |
| cprintf("Load queue: "); |
| |
| for (const auto& e: loadQueue) { |
| const DynInstPtr &inst(e.instruction()); |
| cprintf("%s.[sn:%llu] ", inst->pcState(), inst->seqNum); |
| } |
| cprintf("\n"); |
| |
| cprintf("Store queue size: %i\n", stores); |
| cprintf("Store queue: "); |
| |
| for (const auto& e: storeQueue) { |
| const DynInstPtr &inst(e.instruction()); |
| cprintf("%s.[sn:%llu] ", inst->pcState(), inst->seqNum); |
| } |
| |
| cprintf("\n"); |
| } |
| |
| template <class Impl> |
| unsigned int |
| LSQUnit<Impl>::cacheLineSize() |
| { |
| return cpu->cacheLineSize(); |
| } |
| |
| #endif//__CPU_O3_LSQ_UNIT_IMPL_HH__ |