| /* |
| * Copyright (c) 2016-2019 ARM Limited |
| * All rights reserved |
| * |
| * The license below extends only to copyright in the software and shall |
| * not be construed as granting a license to any other intellectual |
| * property including but not limited to intellectual property relating |
| * to a hardware implementation of the functionality of the software |
| * licensed hereunder. You may use the software subject to the license |
| * terms below provided that you ensure that this notice is replicated |
| * unmodified and in its entirety in all distributions of the software, |
| * modified or unmodified, in source code or in binary form. |
| * |
| * Copyright (c) 2013 Advanced Micro Devices, Inc. |
| * All rights reserved |
| *. |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are |
| * met: redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer; |
| * redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution; |
| * neither the name of the copyright holders nor the names of its |
| * contributors may be used to endorse or promote products derived from |
| * this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #ifndef __CPU__REG_CLASS_HH__ |
| #define __CPU__REG_CLASS_HH__ |
| |
| #include <cassert> |
| #include <cstddef> |
| |
| #include "arch/generic/types.hh" |
| #include "arch/registers.hh" |
| #include "config/the_isa.hh" |
| |
| /** Enumerate the classes of registers. */ |
| enum RegClass { |
| IntRegClass, ///< Integer register |
| FloatRegClass, ///< Floating-point register |
| /** Vector Register. */ |
| VecRegClass, |
| /** Vector Register Native Elem lane. */ |
| VecElemClass, |
| VecPredRegClass, |
| CCRegClass, ///< Condition-code register |
| MiscRegClass ///< Control (misc) register |
| }; |
| |
| /** Number of register classes. |
| * This value is not part of the enum, because putting it there makes the |
| * compiler complain about unhandled cases in some switch statements. |
| */ |
| const int NumRegClasses = MiscRegClass + 1; |
| |
| /** Register ID: describe an architectural register with its class and index. |
| * This structure is used instead of just the register index to disambiguate |
| * between different classes of registers. For example, a integer register with |
| * index 3 is represented by Regid(IntRegClass, 3). |
| */ |
| class RegId |
| { |
| protected: |
| static const char* regClassStrings[]; |
| RegClass regClass; |
| RegIndex regIdx; |
| ElemIndex elemIdx; |
| static constexpr size_t Scale = TheISA::NumVecElemPerVecReg; |
| int numPinnedWrites; |
| |
| friend struct std::hash<RegId>; |
| |
| public: |
| RegId() : RegId(IntRegClass, 0) {} |
| |
| RegId(RegClass reg_class, RegIndex reg_idx) |
| : RegId(reg_class, reg_idx, ILLEGAL_ELEM_INDEX) {} |
| |
| explicit RegId(RegClass reg_class, RegIndex reg_idx, ElemIndex elem_idx) |
| : regClass(reg_class), regIdx(reg_idx), elemIdx(elem_idx), |
| numPinnedWrites(0) |
| { |
| if (elemIdx == ILLEGAL_ELEM_INDEX) { |
| panic_if(regClass == VecElemClass, |
| "Creating vector physical index w/o element index"); |
| } else { |
| panic_if(regClass != VecElemClass, |
| "Creating non-vector physical index w/ element index"); |
| } |
| } |
| |
| bool |
| operator==(const RegId& that) const |
| { |
| return regClass == that.classValue() && regIdx == that.index() && |
| elemIdx == that.elemIndex(); |
| } |
| |
| bool operator!=(const RegId& that) const { return !(*this==that); } |
| |
| /** Order operator. |
| * The order is required to implement maps with key type RegId |
| */ |
| bool |
| operator<(const RegId& that) const |
| { |
| return regClass < that.classValue() || |
| (regClass == that.classValue() && ( |
| regIdx < that.index() || |
| (regIdx == that.index() && elemIdx < that.elemIndex()))); |
| } |
| |
| /** |
| * Return true if this register can be renamed |
| */ |
| bool |
| isRenameable() const |
| { |
| return regClass != MiscRegClass; |
| } |
| |
| /** |
| * Check if this is the zero register. |
| * Returns true if this register is a zero register (needs to have a |
| * constant zero value throughout the execution). |
| */ |
| |
| inline bool |
| isZeroReg() const |
| { |
| return regClass == IntRegClass && regIdx == TheISA::ZeroReg; |
| } |
| |
| /** @return true if it is an integer physical register. */ |
| bool isIntReg() const { return regClass == IntRegClass; } |
| |
| /** @return true if it is a floating-point physical register. */ |
| bool isFloatReg() const { return regClass == FloatRegClass; } |
| |
| /** @Return true if it is a condition-code physical register. */ |
| bool isVecReg() const { return regClass == VecRegClass; } |
| |
| /** @Return true if it is a condition-code physical register. */ |
| bool isVecElem() const { return regClass == VecElemClass; } |
| |
| /** @Return true if it is a predicate physical register. */ |
| bool isVecPredReg() const { return regClass == VecPredRegClass; } |
| |
| /** @Return true if it is a condition-code physical register. */ |
| bool isCCReg() const { return regClass == CCRegClass; } |
| |
| /** @Return true if it is a condition-code physical register. */ |
| bool isMiscReg() const { return regClass == MiscRegClass; } |
| |
| /** Index accessors */ |
| /** @{ */ |
| const RegIndex& index() const { return regIdx; } |
| RegIndex& index() { return regIdx; } |
| |
| /** Index flattening. |
| * Required to be able to use a vector for the register mapping. |
| */ |
| inline RegIndex |
| flatIndex() const |
| { |
| switch (regClass) { |
| case IntRegClass: |
| case FloatRegClass: |
| case VecRegClass: |
| case VecPredRegClass: |
| case CCRegClass: |
| case MiscRegClass: |
| return regIdx; |
| case VecElemClass: |
| return Scale * regIdx + elemIdx; |
| } |
| panic("Trying to flatten a register without class!"); |
| return -1; |
| } |
| /** @} */ |
| |
| /** Elem accessor */ |
| const RegIndex& elemIndex() const { return elemIdx; } |
| /** Class accessor */ |
| const RegClass& classValue() const { return regClass; } |
| /** Return a const char* with the register class name. */ |
| const char* className() const { return regClassStrings[regClass]; } |
| |
| int getNumPinnedWrites() const { return numPinnedWrites; } |
| void setNumPinnedWrites(int num_writes) { numPinnedWrites = num_writes; } |
| |
| friend std::ostream& |
| operator<<(std::ostream& os, const RegId& rid) |
| { |
| return os << rid.className() << "{" << rid.index() << "}"; |
| } |
| }; |
| |
| /** Physical register index type. |
| * Although the Impl might be a better for this, but there are a few classes |
| * that need this typedef yet are not templated on the Impl. |
| */ |
| using PhysRegIndex = short int; |
| |
| /** Physical register ID. |
| * Like a register ID but physical. The inheritance is private because the |
| * only relationship between this types is functional, and it is done to |
| * prevent code replication. */ |
| class PhysRegId : private RegId |
| { |
| private: |
| PhysRegIndex flatIdx; |
| int numPinnedWritesToComplete; |
| bool pinned; |
| |
| public: |
| explicit PhysRegId() : RegId(IntRegClass, -1), flatIdx(-1), |
| numPinnedWritesToComplete(0) |
| {} |
| |
| /** Scalar PhysRegId constructor. */ |
| explicit PhysRegId(RegClass _regClass, PhysRegIndex _regIdx, |
| PhysRegIndex _flatIdx) |
| : RegId(_regClass, _regIdx), flatIdx(_flatIdx), |
| numPinnedWritesToComplete(0), pinned(false) |
| {} |
| |
| /** Vector PhysRegId constructor (w/ elemIndex). */ |
| explicit PhysRegId(RegClass _regClass, PhysRegIndex _regIdx, |
| ElemIndex elem_idx, PhysRegIndex flat_idx) |
| : RegId(_regClass, _regIdx, elem_idx), flatIdx(flat_idx), |
| numPinnedWritesToComplete(0), pinned(false) |
| {} |
| |
| /** Visible RegId methods */ |
| /** @{ */ |
| using RegId::index; |
| using RegId::classValue; |
| using RegId::isZeroReg; |
| using RegId::className; |
| using RegId::elemIndex; |
| /** @} */ |
| /** |
| * Explicit forward methods, to prevent comparisons of PhysRegId with |
| * RegIds. |
| */ |
| /** @{ */ |
| bool |
| operator<(const PhysRegId& that) const |
| { |
| return RegId::operator<(that); |
| } |
| |
| bool |
| operator==(const PhysRegId& that) const |
| { |
| return RegId::operator==(that); |
| } |
| |
| bool |
| operator!=(const PhysRegId& that) const |
| { |
| return RegId::operator!=(that); |
| } |
| /** @} */ |
| |
| /** @return true if it is an integer physical register. */ |
| bool isIntPhysReg() const { return isIntReg(); } |
| |
| /** @return true if it is a floating-point physical register. */ |
| bool isFloatPhysReg() const { return isFloatReg(); } |
| |
| /** @Return true if it is a condition-code physical register. */ |
| bool isCCPhysReg() const { return isCCReg(); } |
| |
| /** @Return true if it is a vector physical register. */ |
| bool isVectorPhysReg() const { return isVecReg(); } |
| |
| /** @Return true if it is a vector element physical register. */ |
| bool isVectorPhysElem() const { return isVecElem(); } |
| |
| /** @return true if it is a vector predicate physical register. */ |
| bool isVecPredPhysReg() const { return isVecPredReg(); } |
| |
| /** @Return true if it is a condition-code physical register. */ |
| bool isMiscPhysReg() const { return isMiscReg(); } |
| |
| /** |
| * Returns true if this register is always associated to the same |
| * architectural register. |
| */ |
| bool isFixedMapping() const { return !isRenameable(); } |
| |
| /** Flat index accessor */ |
| const PhysRegIndex& flatIndex() const { return flatIdx; } |
| |
| static PhysRegId |
| elemId(PhysRegId* vid, ElemIndex elem) |
| { |
| assert(vid->isVectorPhysReg()); |
| return PhysRegId(VecElemClass, vid->index(), elem); |
| } |
| |
| int getNumPinnedWrites() const { return numPinnedWrites; } |
| |
| void |
| setNumPinnedWrites(int numWrites) |
| { |
| // An instruction with a pinned destination reg can get |
| // squashed. The numPinnedWrites counter may be zero when |
| // the squash happens but we need to know if the dest reg |
| // was pinned originally in order to reset counters properly |
| // for a possible re-rename using the same physical reg (which |
| // may be required in case of a mem access order violation). |
| pinned = (numWrites != 0); |
| numPinnedWrites = numWrites; |
| } |
| |
| void decrNumPinnedWrites() { --numPinnedWrites; } |
| void incrNumPinnedWrites() { ++numPinnedWrites; } |
| |
| bool isPinned() const { return pinned; } |
| |
| int |
| getNumPinnedWritesToComplete() const |
| { |
| return numPinnedWritesToComplete; |
| } |
| |
| void |
| setNumPinnedWritesToComplete(int numWrites) |
| { |
| numPinnedWritesToComplete = numWrites; |
| } |
| |
| void decrNumPinnedWritesToComplete() { --numPinnedWritesToComplete; } |
| void incrNumPinnedWritesToComplete() { ++numPinnedWritesToComplete; } |
| }; |
| |
| using PhysRegIdPtr = PhysRegId*; |
| |
| namespace std |
| { |
| template<> |
| struct hash<RegId> |
| { |
| size_t |
| operator()(const RegId& reg_id) const |
| { |
| // Extract unique integral values for the effective fields of a RegId. |
| const size_t flat_index = static_cast<size_t>(reg_id.flatIndex()); |
| const size_t class_num = static_cast<size_t>(reg_id.regClass); |
| |
| const size_t shifted_class_num = class_num << (sizeof(RegIndex) << 3); |
| |
| // Concatenate the class_num to the end of the flat_index, in order to |
| // maximize information retained. |
| const size_t concatenated_hash = flat_index | shifted_class_num; |
| |
| // If RegIndex is larger than size_t, then class_num will not be |
| // considered by this hash function, so we may wish to perform a |
| // different operation to include that information in the hash. |
| static_assert(sizeof(RegIndex) < sizeof(size_t), |
| "sizeof(RegIndex) should be less than sizeof(size_t)"); |
| |
| return concatenated_hash; |
| } |
| }; |
| } |
| |
| #endif // __CPU__REG_CLASS_HH__ |