blob: d48e700cf86afd503519408330a244ae24fb287d [file] [log] [blame]
/*
* Copyright (c) 2016-2019 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2013 Advanced Micro Devices, Inc.
* All rights reserved
*.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __CPU__REG_CLASS_HH__
#define __CPU__REG_CLASS_HH__
#include <cassert>
#include <cstddef>
#include "arch/generic/types.hh"
#include "arch/registers.hh"
#include "config/the_isa.hh"
/** Enumerate the classes of registers. */
enum RegClass {
IntRegClass, ///< Integer register
FloatRegClass, ///< Floating-point register
/** Vector Register. */
VecRegClass,
/** Vector Register Native Elem lane. */
VecElemClass,
VecPredRegClass,
CCRegClass, ///< Condition-code register
MiscRegClass ///< Control (misc) register
};
/** Number of register classes.
* This value is not part of the enum, because putting it there makes the
* compiler complain about unhandled cases in some switch statements.
*/
const int NumRegClasses = MiscRegClass + 1;
/** Register ID: describe an architectural register with its class and index.
* This structure is used instead of just the register index to disambiguate
* between different classes of registers. For example, a integer register with
* index 3 is represented by Regid(IntRegClass, 3).
*/
class RegId
{
protected:
static const char* regClassStrings[];
RegClass regClass;
RegIndex regIdx;
ElemIndex elemIdx;
static constexpr size_t Scale = TheISA::NumVecElemPerVecReg;
int numPinnedWrites;
friend struct std::hash<RegId>;
public:
RegId() : RegId(IntRegClass, 0) {}
RegId(RegClass reg_class, RegIndex reg_idx)
: RegId(reg_class, reg_idx, ILLEGAL_ELEM_INDEX) {}
explicit RegId(RegClass reg_class, RegIndex reg_idx, ElemIndex elem_idx)
: regClass(reg_class), regIdx(reg_idx), elemIdx(elem_idx),
numPinnedWrites(0)
{
if (elemIdx == ILLEGAL_ELEM_INDEX) {
panic_if(regClass == VecElemClass,
"Creating vector physical index w/o element index");
} else {
panic_if(regClass != VecElemClass,
"Creating non-vector physical index w/ element index");
}
}
bool
operator==(const RegId& that) const
{
return regClass == that.classValue() && regIdx == that.index() &&
elemIdx == that.elemIndex();
}
bool operator!=(const RegId& that) const { return !(*this==that); }
/** Order operator.
* The order is required to implement maps with key type RegId
*/
bool
operator<(const RegId& that) const
{
return regClass < that.classValue() ||
(regClass == that.classValue() && (
regIdx < that.index() ||
(regIdx == that.index() && elemIdx < that.elemIndex())));
}
/**
* Return true if this register can be renamed
*/
bool
isRenameable() const
{
return regClass != MiscRegClass;
}
/**
* Check if this is the zero register.
* Returns true if this register is a zero register (needs to have a
* constant zero value throughout the execution).
*/
inline bool
isZeroReg() const
{
return regClass == IntRegClass && regIdx == TheISA::ZeroReg;
}
/** @return true if it is an integer physical register. */
bool isIntReg() const { return regClass == IntRegClass; }
/** @return true if it is a floating-point physical register. */
bool isFloatReg() const { return regClass == FloatRegClass; }
/** @Return true if it is a condition-code physical register. */
bool isVecReg() const { return regClass == VecRegClass; }
/** @Return true if it is a condition-code physical register. */
bool isVecElem() const { return regClass == VecElemClass; }
/** @Return true if it is a predicate physical register. */
bool isVecPredReg() const { return regClass == VecPredRegClass; }
/** @Return true if it is a condition-code physical register. */
bool isCCReg() const { return regClass == CCRegClass; }
/** @Return true if it is a condition-code physical register. */
bool isMiscReg() const { return regClass == MiscRegClass; }
/** Index accessors */
/** @{ */
const RegIndex& index() const { return regIdx; }
RegIndex& index() { return regIdx; }
/** Index flattening.
* Required to be able to use a vector for the register mapping.
*/
inline RegIndex
flatIndex() const
{
switch (regClass) {
case IntRegClass:
case FloatRegClass:
case VecRegClass:
case VecPredRegClass:
case CCRegClass:
case MiscRegClass:
return regIdx;
case VecElemClass:
return Scale * regIdx + elemIdx;
}
panic("Trying to flatten a register without class!");
return -1;
}
/** @} */
/** Elem accessor */
const RegIndex& elemIndex() const { return elemIdx; }
/** Class accessor */
const RegClass& classValue() const { return regClass; }
/** Return a const char* with the register class name. */
const char* className() const { return regClassStrings[regClass]; }
int getNumPinnedWrites() const { return numPinnedWrites; }
void setNumPinnedWrites(int num_writes) { numPinnedWrites = num_writes; }
friend std::ostream&
operator<<(std::ostream& os, const RegId& rid)
{
return os << rid.className() << "{" << rid.index() << "}";
}
};
/** Physical register index type.
* Although the Impl might be a better for this, but there are a few classes
* that need this typedef yet are not templated on the Impl.
*/
using PhysRegIndex = short int;
/** Physical register ID.
* Like a register ID but physical. The inheritance is private because the
* only relationship between this types is functional, and it is done to
* prevent code replication. */
class PhysRegId : private RegId
{
private:
PhysRegIndex flatIdx;
int numPinnedWritesToComplete;
bool pinned;
public:
explicit PhysRegId() : RegId(IntRegClass, -1), flatIdx(-1),
numPinnedWritesToComplete(0)
{}
/** Scalar PhysRegId constructor. */
explicit PhysRegId(RegClass _regClass, PhysRegIndex _regIdx,
PhysRegIndex _flatIdx)
: RegId(_regClass, _regIdx), flatIdx(_flatIdx),
numPinnedWritesToComplete(0), pinned(false)
{}
/** Vector PhysRegId constructor (w/ elemIndex). */
explicit PhysRegId(RegClass _regClass, PhysRegIndex _regIdx,
ElemIndex elem_idx, PhysRegIndex flat_idx)
: RegId(_regClass, _regIdx, elem_idx), flatIdx(flat_idx),
numPinnedWritesToComplete(0), pinned(false)
{}
/** Visible RegId methods */
/** @{ */
using RegId::index;
using RegId::classValue;
using RegId::isZeroReg;
using RegId::className;
using RegId::elemIndex;
/** @} */
/**
* Explicit forward methods, to prevent comparisons of PhysRegId with
* RegIds.
*/
/** @{ */
bool
operator<(const PhysRegId& that) const
{
return RegId::operator<(that);
}
bool
operator==(const PhysRegId& that) const
{
return RegId::operator==(that);
}
bool
operator!=(const PhysRegId& that) const
{
return RegId::operator!=(that);
}
/** @} */
/** @return true if it is an integer physical register. */
bool isIntPhysReg() const { return isIntReg(); }
/** @return true if it is a floating-point physical register. */
bool isFloatPhysReg() const { return isFloatReg(); }
/** @Return true if it is a condition-code physical register. */
bool isCCPhysReg() const { return isCCReg(); }
/** @Return true if it is a vector physical register. */
bool isVectorPhysReg() const { return isVecReg(); }
/** @Return true if it is a vector element physical register. */
bool isVectorPhysElem() const { return isVecElem(); }
/** @return true if it is a vector predicate physical register. */
bool isVecPredPhysReg() const { return isVecPredReg(); }
/** @Return true if it is a condition-code physical register. */
bool isMiscPhysReg() const { return isMiscReg(); }
/**
* Returns true if this register is always associated to the same
* architectural register.
*/
bool isFixedMapping() const { return !isRenameable(); }
/** Flat index accessor */
const PhysRegIndex& flatIndex() const { return flatIdx; }
static PhysRegId
elemId(PhysRegId* vid, ElemIndex elem)
{
assert(vid->isVectorPhysReg());
return PhysRegId(VecElemClass, vid->index(), elem);
}
int getNumPinnedWrites() const { return numPinnedWrites; }
void
setNumPinnedWrites(int numWrites)
{
// An instruction with a pinned destination reg can get
// squashed. The numPinnedWrites counter may be zero when
// the squash happens but we need to know if the dest reg
// was pinned originally in order to reset counters properly
// for a possible re-rename using the same physical reg (which
// may be required in case of a mem access order violation).
pinned = (numWrites != 0);
numPinnedWrites = numWrites;
}
void decrNumPinnedWrites() { --numPinnedWrites; }
void incrNumPinnedWrites() { ++numPinnedWrites; }
bool isPinned() const { return pinned; }
int
getNumPinnedWritesToComplete() const
{
return numPinnedWritesToComplete;
}
void
setNumPinnedWritesToComplete(int numWrites)
{
numPinnedWritesToComplete = numWrites;
}
void decrNumPinnedWritesToComplete() { --numPinnedWritesToComplete; }
void incrNumPinnedWritesToComplete() { ++numPinnedWritesToComplete; }
};
using PhysRegIdPtr = PhysRegId*;
namespace std
{
template<>
struct hash<RegId>
{
size_t
operator()(const RegId& reg_id) const
{
// Extract unique integral values for the effective fields of a RegId.
const size_t flat_index = static_cast<size_t>(reg_id.flatIndex());
const size_t class_num = static_cast<size_t>(reg_id.regClass);
const size_t shifted_class_num = class_num << (sizeof(RegIndex) << 3);
// Concatenate the class_num to the end of the flat_index, in order to
// maximize information retained.
const size_t concatenated_hash = flat_index | shifted_class_num;
// If RegIndex is larger than size_t, then class_num will not be
// considered by this hash function, so we may wish to perform a
// different operation to include that information in the hash.
static_assert(sizeof(RegIndex) < sizeof(size_t),
"sizeof(RegIndex) should be less than sizeof(size_t)");
return concatenated_hash;
}
};
}
#endif // __CPU__REG_CLASS_HH__