blob: 215495ed2a06a2e0ea15aafc4d9922990c01a9bd [file] [log] [blame]
// Copyright 2007, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Google Mock - a framework for writing C++ mock classes.
//
// This file tests the built-in actions.
// Silence C4100 (unreferenced formal parameter) and C4503 (decorated name
// length exceeded) for MSVC.
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable : 4100)
#pragma warning(disable : 4503)
#if _MSC_VER == 1900
// and silence C4800 (C4800: 'int *const ': forcing value
// to bool 'true' or 'false') for MSVC 15
#pragma warning(disable : 4800)
#endif
#endif
#include "gmock/gmock-actions.h"
#include <algorithm>
#include <functional>
#include <iterator>
#include <memory>
#include <string>
#include <type_traits>
#include <vector>
#include "gmock/gmock.h"
#include "gmock/internal/gmock-port.h"
#include "gtest/gtest-spi.h"
#include "gtest/gtest.h"
namespace testing {
namespace {
using ::testing::internal::BuiltInDefaultValue;
TEST(TypeTraits, Negation) {
// Direct use with std types.
static_assert(std::is_base_of<std::false_type,
internal::negation<std::true_type>>::value,
"");
static_assert(std::is_base_of<std::true_type,
internal::negation<std::false_type>>::value,
"");
// With other types that fit the requirement of a value member that is
// convertible to bool.
static_assert(std::is_base_of<
std::true_type,
internal::negation<std::integral_constant<int, 0>>>::value,
"");
static_assert(std::is_base_of<
std::false_type,
internal::negation<std::integral_constant<int, 1>>>::value,
"");
static_assert(std::is_base_of<
std::false_type,
internal::negation<std::integral_constant<int, -1>>>::value,
"");
}
// Weird false/true types that aren't actually bool constants (but should still
// be legal according to [meta.logical] because `bool(T::value)` is valid), are
// distinct from std::false_type and std::true_type, and are distinct from other
// instantiations of the same template.
//
// These let us check finicky details mandated by the standard like
// "std::conjunction should evaluate to a type that inherits from the first
// false-y input".
template <int>
struct MyFalse : std::integral_constant<int, 0> {};
template <int>
struct MyTrue : std::integral_constant<int, -1> {};
TEST(TypeTraits, Conjunction) {
// Base case: always true.
static_assert(std::is_base_of<std::true_type, internal::conjunction<>>::value,
"");
// One predicate: inherits from that predicate, regardless of value.
static_assert(
std::is_base_of<MyFalse<0>, internal::conjunction<MyFalse<0>>>::value,
"");
static_assert(
std::is_base_of<MyTrue<0>, internal::conjunction<MyTrue<0>>>::value, "");
// Multiple predicates, with at least one false: inherits from that one.
static_assert(
std::is_base_of<MyFalse<1>, internal::conjunction<MyTrue<0>, MyFalse<1>,
MyTrue<2>>>::value,
"");
static_assert(
std::is_base_of<MyFalse<1>, internal::conjunction<MyTrue<0>, MyFalse<1>,
MyFalse<2>>>::value,
"");
// Short circuiting: in the case above, additional predicates need not even
// define a value member.
struct Empty {};
static_assert(
std::is_base_of<MyFalse<1>, internal::conjunction<MyTrue<0>, MyFalse<1>,
Empty>>::value,
"");
// All predicates true: inherits from the last.
static_assert(
std::is_base_of<MyTrue<2>, internal::conjunction<MyTrue<0>, MyTrue<1>,
MyTrue<2>>>::value,
"");
}
TEST(TypeTraits, Disjunction) {
// Base case: always false.
static_assert(
std::is_base_of<std::false_type, internal::disjunction<>>::value, "");
// One predicate: inherits from that predicate, regardless of value.
static_assert(
std::is_base_of<MyFalse<0>, internal::disjunction<MyFalse<0>>>::value,
"");
static_assert(
std::is_base_of<MyTrue<0>, internal::disjunction<MyTrue<0>>>::value, "");
// Multiple predicates, with at least one true: inherits from that one.
static_assert(
std::is_base_of<MyTrue<1>, internal::disjunction<MyFalse<0>, MyTrue<1>,
MyFalse<2>>>::value,
"");
static_assert(
std::is_base_of<MyTrue<1>, internal::disjunction<MyFalse<0>, MyTrue<1>,
MyTrue<2>>>::value,
"");
// Short circuiting: in the case above, additional predicates need not even
// define a value member.
struct Empty {};
static_assert(
std::is_base_of<MyTrue<1>, internal::disjunction<MyFalse<0>, MyTrue<1>,
Empty>>::value,
"");
// All predicates false: inherits from the last.
static_assert(
std::is_base_of<MyFalse<2>, internal::disjunction<MyFalse<0>, MyFalse<1>,
MyFalse<2>>>::value,
"");
}
TEST(TypeTraits, IsInvocableRV) {
struct C {
int operator()() const { return 0; }
void operator()(int) & {}
std::string operator()(int) && { return ""; };
};
// The first overload is callable for const and non-const rvalues and lvalues.
// It can be used to obtain an int, cv void, or anything int is convertible
// to.
static_assert(internal::is_callable_r<int, C>::value, "");
static_assert(internal::is_callable_r<int, C&>::value, "");
static_assert(internal::is_callable_r<int, const C>::value, "");
static_assert(internal::is_callable_r<int, const C&>::value, "");
static_assert(internal::is_callable_r<void, C>::value, "");
static_assert(internal::is_callable_r<const volatile void, C>::value, "");
static_assert(internal::is_callable_r<char, C>::value, "");
// It's possible to provide an int. If it's given to an lvalue, the result is
// void. Otherwise it is std::string (which is also treated as allowed for a
// void result type).
static_assert(internal::is_callable_r<void, C&, int>::value, "");
static_assert(!internal::is_callable_r<int, C&, int>::value, "");
static_assert(!internal::is_callable_r<std::string, C&, int>::value, "");
static_assert(!internal::is_callable_r<void, const C&, int>::value, "");
static_assert(internal::is_callable_r<std::string, C, int>::value, "");
static_assert(internal::is_callable_r<void, C, int>::value, "");
static_assert(!internal::is_callable_r<int, C, int>::value, "");
// It's not possible to provide other arguments.
static_assert(!internal::is_callable_r<void, C, std::string>::value, "");
static_assert(!internal::is_callable_r<void, C, int, int>::value, "");
// In C++17 and above, where it's guaranteed that functions can return
// non-moveable objects, everything should work fine for non-moveable rsult
// types too.
#if defined(__cplusplus) && __cplusplus >= 201703L
{
struct NonMoveable {
NonMoveable() = default;
NonMoveable(NonMoveable&&) = delete;
};
static_assert(!std::is_move_constructible_v<NonMoveable>);
struct Callable {
NonMoveable operator()() { return NonMoveable(); }
};
static_assert(internal::is_callable_r<NonMoveable, Callable>::value);
static_assert(internal::is_callable_r<void, Callable>::value);
static_assert(
internal::is_callable_r<const volatile void, Callable>::value);
static_assert(!internal::is_callable_r<int, Callable>::value);
static_assert(!internal::is_callable_r<NonMoveable, Callable, int>::value);
}
#endif // C++17 and above
// Nothing should choke when we try to call other arguments besides directly
// callable objects, but they should not show up as callable.
static_assert(!internal::is_callable_r<void, int>::value, "");
static_assert(!internal::is_callable_r<void, void (C::*)()>::value, "");
static_assert(!internal::is_callable_r<void, void (C::*)(), C*>::value, "");
}
// Tests that BuiltInDefaultValue<T*>::Get() returns NULL.
TEST(BuiltInDefaultValueTest, IsNullForPointerTypes) {
EXPECT_TRUE(BuiltInDefaultValue<int*>::Get() == nullptr);
EXPECT_TRUE(BuiltInDefaultValue<const char*>::Get() == nullptr);
EXPECT_TRUE(BuiltInDefaultValue<void*>::Get() == nullptr);
}
// Tests that BuiltInDefaultValue<T*>::Exists() return true.
TEST(BuiltInDefaultValueTest, ExistsForPointerTypes) {
EXPECT_TRUE(BuiltInDefaultValue<int*>::Exists());
EXPECT_TRUE(BuiltInDefaultValue<const char*>::Exists());
EXPECT_TRUE(BuiltInDefaultValue<void*>::Exists());
}
// Tests that BuiltInDefaultValue<T>::Get() returns 0 when T is a
// built-in numeric type.
TEST(BuiltInDefaultValueTest, IsZeroForNumericTypes) {
EXPECT_EQ(0U, BuiltInDefaultValue<unsigned char>::Get());
EXPECT_EQ(0, BuiltInDefaultValue<signed char>::Get());
EXPECT_EQ(0, BuiltInDefaultValue<char>::Get());
#if GMOCK_WCHAR_T_IS_NATIVE_
#if !defined(__WCHAR_UNSIGNED__)
EXPECT_EQ(0, BuiltInDefaultValue<wchar_t>::Get());
#else
EXPECT_EQ(0U, BuiltInDefaultValue<wchar_t>::Get());
#endif
#endif
EXPECT_EQ(0U, BuiltInDefaultValue<unsigned short>::Get()); // NOLINT
EXPECT_EQ(0, BuiltInDefaultValue<signed short>::Get()); // NOLINT
EXPECT_EQ(0, BuiltInDefaultValue<short>::Get()); // NOLINT
EXPECT_EQ(0U, BuiltInDefaultValue<unsigned int>::Get());
EXPECT_EQ(0, BuiltInDefaultValue<signed int>::Get());
EXPECT_EQ(0, BuiltInDefaultValue<int>::Get());
EXPECT_EQ(0U, BuiltInDefaultValue<unsigned long>::Get()); // NOLINT
EXPECT_EQ(0, BuiltInDefaultValue<signed long>::Get()); // NOLINT
EXPECT_EQ(0, BuiltInDefaultValue<long>::Get()); // NOLINT
EXPECT_EQ(0U, BuiltInDefaultValue<unsigned long long>::Get()); // NOLINT
EXPECT_EQ(0, BuiltInDefaultValue<signed long long>::Get()); // NOLINT
EXPECT_EQ(0, BuiltInDefaultValue<long long>::Get()); // NOLINT
EXPECT_EQ(0, BuiltInDefaultValue<float>::Get());
EXPECT_EQ(0, BuiltInDefaultValue<double>::Get());
}
// Tests that BuiltInDefaultValue<T>::Exists() returns true when T is a
// built-in numeric type.
TEST(BuiltInDefaultValueTest, ExistsForNumericTypes) {
EXPECT_TRUE(BuiltInDefaultValue<unsigned char>::Exists());
EXPECT_TRUE(BuiltInDefaultValue<signed char>::Exists());
EXPECT_TRUE(BuiltInDefaultValue<char>::Exists());
#if GMOCK_WCHAR_T_IS_NATIVE_
EXPECT_TRUE(BuiltInDefaultValue<wchar_t>::Exists());
#endif
EXPECT_TRUE(BuiltInDefaultValue<unsigned short>::Exists()); // NOLINT
EXPECT_TRUE(BuiltInDefaultValue<signed short>::Exists()); // NOLINT
EXPECT_TRUE(BuiltInDefaultValue<short>::Exists()); // NOLINT
EXPECT_TRUE(BuiltInDefaultValue<unsigned int>::Exists());
EXPECT_TRUE(BuiltInDefaultValue<signed int>::Exists());
EXPECT_TRUE(BuiltInDefaultValue<int>::Exists());
EXPECT_TRUE(BuiltInDefaultValue<unsigned long>::Exists()); // NOLINT
EXPECT_TRUE(BuiltInDefaultValue<signed long>::Exists()); // NOLINT
EXPECT_TRUE(BuiltInDefaultValue<long>::Exists()); // NOLINT
EXPECT_TRUE(BuiltInDefaultValue<unsigned long long>::Exists()); // NOLINT
EXPECT_TRUE(BuiltInDefaultValue<signed long long>::Exists()); // NOLINT
EXPECT_TRUE(BuiltInDefaultValue<long long>::Exists()); // NOLINT
EXPECT_TRUE(BuiltInDefaultValue<float>::Exists());
EXPECT_TRUE(BuiltInDefaultValue<double>::Exists());
}
// Tests that BuiltInDefaultValue<bool>::Get() returns false.
TEST(BuiltInDefaultValueTest, IsFalseForBool) {
EXPECT_FALSE(BuiltInDefaultValue<bool>::Get());
}
// Tests that BuiltInDefaultValue<bool>::Exists() returns true.
TEST(BuiltInDefaultValueTest, BoolExists) {
EXPECT_TRUE(BuiltInDefaultValue<bool>::Exists());
}
// Tests that BuiltInDefaultValue<T>::Get() returns "" when T is a
// string type.
TEST(BuiltInDefaultValueTest, IsEmptyStringForString) {
EXPECT_EQ("", BuiltInDefaultValue<::std::string>::Get());
}
// Tests that BuiltInDefaultValue<T>::Exists() returns true when T is a
// string type.
TEST(BuiltInDefaultValueTest, ExistsForString) {
EXPECT_TRUE(BuiltInDefaultValue<::std::string>::Exists());
}
// Tests that BuiltInDefaultValue<const T>::Get() returns the same
// value as BuiltInDefaultValue<T>::Get() does.
TEST(BuiltInDefaultValueTest, WorksForConstTypes) {
EXPECT_EQ("", BuiltInDefaultValue<const std::string>::Get());
EXPECT_EQ(0, BuiltInDefaultValue<const int>::Get());
EXPECT_TRUE(BuiltInDefaultValue<char* const>::Get() == nullptr);
EXPECT_FALSE(BuiltInDefaultValue<const bool>::Get());
}
// A type that's default constructible.
class MyDefaultConstructible {
public:
MyDefaultConstructible() : value_(42) {}
int value() const { return value_; }
private:
int value_;
};
// A type that's not default constructible.
class MyNonDefaultConstructible {
public:
// Does not have a default ctor.
explicit MyNonDefaultConstructible(int a_value) : value_(a_value) {}
int value() const { return value_; }
private:
int value_;
};
TEST(BuiltInDefaultValueTest, ExistsForDefaultConstructibleType) {
EXPECT_TRUE(BuiltInDefaultValue<MyDefaultConstructible>::Exists());
}
TEST(BuiltInDefaultValueTest, IsDefaultConstructedForDefaultConstructibleType) {
EXPECT_EQ(42, BuiltInDefaultValue<MyDefaultConstructible>::Get().value());
}
TEST(BuiltInDefaultValueTest, DoesNotExistForNonDefaultConstructibleType) {
EXPECT_FALSE(BuiltInDefaultValue<MyNonDefaultConstructible>::Exists());
}
// Tests that BuiltInDefaultValue<T&>::Get() aborts the program.
TEST(BuiltInDefaultValueDeathTest, IsUndefinedForReferences) {
EXPECT_DEATH_IF_SUPPORTED({ BuiltInDefaultValue<int&>::Get(); }, "");
EXPECT_DEATH_IF_SUPPORTED({ BuiltInDefaultValue<const char&>::Get(); }, "");
}
TEST(BuiltInDefaultValueDeathTest, IsUndefinedForNonDefaultConstructibleType) {
EXPECT_DEATH_IF_SUPPORTED(
{ BuiltInDefaultValue<MyNonDefaultConstructible>::Get(); }, "");
}
// Tests that DefaultValue<T>::IsSet() is false initially.
TEST(DefaultValueTest, IsInitiallyUnset) {
EXPECT_FALSE(DefaultValue<int>::IsSet());
EXPECT_FALSE(DefaultValue<MyDefaultConstructible>::IsSet());
EXPECT_FALSE(DefaultValue<const MyNonDefaultConstructible>::IsSet());
}
// Tests that DefaultValue<T> can be set and then unset.
TEST(DefaultValueTest, CanBeSetAndUnset) {
EXPECT_TRUE(DefaultValue<int>::Exists());
EXPECT_FALSE(DefaultValue<const MyNonDefaultConstructible>::Exists());
DefaultValue<int>::Set(1);
DefaultValue<const MyNonDefaultConstructible>::Set(
MyNonDefaultConstructible(42));
EXPECT_EQ(1, DefaultValue<int>::Get());
EXPECT_EQ(42, DefaultValue<const MyNonDefaultConstructible>::Get().value());
EXPECT_TRUE(DefaultValue<int>::Exists());
EXPECT_TRUE(DefaultValue<const MyNonDefaultConstructible>::Exists());
DefaultValue<int>::Clear();
DefaultValue<const MyNonDefaultConstructible>::Clear();
EXPECT_FALSE(DefaultValue<int>::IsSet());
EXPECT_FALSE(DefaultValue<const MyNonDefaultConstructible>::IsSet());
EXPECT_TRUE(DefaultValue<int>::Exists());
EXPECT_FALSE(DefaultValue<const MyNonDefaultConstructible>::Exists());
}
// Tests that DefaultValue<T>::Get() returns the
// BuiltInDefaultValue<T>::Get() when DefaultValue<T>::IsSet() is
// false.
TEST(DefaultValueDeathTest, GetReturnsBuiltInDefaultValueWhenUnset) {
EXPECT_FALSE(DefaultValue<int>::IsSet());
EXPECT_TRUE(DefaultValue<int>::Exists());
EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible>::IsSet());
EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible>::Exists());
EXPECT_EQ(0, DefaultValue<int>::Get());
EXPECT_DEATH_IF_SUPPORTED({ DefaultValue<MyNonDefaultConstructible>::Get(); },
"");
}
TEST(DefaultValueTest, GetWorksForMoveOnlyIfSet) {
EXPECT_TRUE(DefaultValue<std::unique_ptr<int>>::Exists());
EXPECT_TRUE(DefaultValue<std::unique_ptr<int>>::Get() == nullptr);
DefaultValue<std::unique_ptr<int>>::SetFactory(
[] { return std::unique_ptr<int>(new int(42)); });
EXPECT_TRUE(DefaultValue<std::unique_ptr<int>>::Exists());
std::unique_ptr<int> i = DefaultValue<std::unique_ptr<int>>::Get();
EXPECT_EQ(42, *i);
}
// Tests that DefaultValue<void>::Get() returns void.
TEST(DefaultValueTest, GetWorksForVoid) { return DefaultValue<void>::Get(); }
// Tests using DefaultValue with a reference type.
// Tests that DefaultValue<T&>::IsSet() is false initially.
TEST(DefaultValueOfReferenceTest, IsInitiallyUnset) {
EXPECT_FALSE(DefaultValue<int&>::IsSet());
EXPECT_FALSE(DefaultValue<MyDefaultConstructible&>::IsSet());
EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::IsSet());
}
// Tests that DefaultValue<T&>::Exists is false initiallly.
TEST(DefaultValueOfReferenceTest, IsInitiallyNotExisting) {
EXPECT_FALSE(DefaultValue<int&>::Exists());
EXPECT_FALSE(DefaultValue<MyDefaultConstructible&>::Exists());
EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::Exists());
}
// Tests that DefaultValue<T&> can be set and then unset.
TEST(DefaultValueOfReferenceTest, CanBeSetAndUnset) {
int n = 1;
DefaultValue<const int&>::Set(n);
MyNonDefaultConstructible x(42);
DefaultValue<MyNonDefaultConstructible&>::Set(x);
EXPECT_TRUE(DefaultValue<const int&>::Exists());
EXPECT_TRUE(DefaultValue<MyNonDefaultConstructible&>::Exists());
EXPECT_EQ(&n, &(DefaultValue<const int&>::Get()));
EXPECT_EQ(&x, &(DefaultValue<MyNonDefaultConstructible&>::Get()));
DefaultValue<const int&>::Clear();
DefaultValue<MyNonDefaultConstructible&>::Clear();
EXPECT_FALSE(DefaultValue<const int&>::Exists());
EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::Exists());
EXPECT_FALSE(DefaultValue<const int&>::IsSet());
EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::IsSet());
}
// Tests that DefaultValue<T&>::Get() returns the
// BuiltInDefaultValue<T&>::Get() when DefaultValue<T&>::IsSet() is
// false.
TEST(DefaultValueOfReferenceDeathTest, GetReturnsBuiltInDefaultValueWhenUnset) {
EXPECT_FALSE(DefaultValue<int&>::IsSet());
EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::IsSet());
EXPECT_DEATH_IF_SUPPORTED({ DefaultValue<int&>::Get(); }, "");
EXPECT_DEATH_IF_SUPPORTED({ DefaultValue<MyNonDefaultConstructible>::Get(); },
"");
}
// Tests that ActionInterface can be implemented by defining the
// Perform method.
typedef int MyGlobalFunction(bool, int);
class MyActionImpl : public ActionInterface<MyGlobalFunction> {
public:
int Perform(const std::tuple<bool, int>& args) override {
return std::get<0>(args) ? std::get<1>(args) : 0;
}
};
TEST(ActionInterfaceTest, CanBeImplementedByDefiningPerform) {
MyActionImpl my_action_impl;
(void)my_action_impl;
}
TEST(ActionInterfaceTest, MakeAction) {
Action<MyGlobalFunction> action = MakeAction(new MyActionImpl);
// When exercising the Perform() method of Action<F>, we must pass
// it a tuple whose size and type are compatible with F's argument
// types. For example, if F is int(), then Perform() takes a
// 0-tuple; if F is void(bool, int), then Perform() takes a
// std::tuple<bool, int>, and so on.
EXPECT_EQ(5, action.Perform(std::make_tuple(true, 5)));
}
// Tests that Action<F> can be constructed from a pointer to
// ActionInterface<F>.
TEST(ActionTest, CanBeConstructedFromActionInterface) {
Action<MyGlobalFunction> action(new MyActionImpl);
}
// Tests that Action<F> delegates actual work to ActionInterface<F>.
TEST(ActionTest, DelegatesWorkToActionInterface) {
const Action<MyGlobalFunction> action(new MyActionImpl);
EXPECT_EQ(5, action.Perform(std::make_tuple(true, 5)));
EXPECT_EQ(0, action.Perform(std::make_tuple(false, 1)));
}
// Tests that Action<F> can be copied.
TEST(ActionTest, IsCopyable) {
Action<MyGlobalFunction> a1(new MyActionImpl);
Action<MyGlobalFunction> a2(a1); // Tests the copy constructor.
// a1 should continue to work after being copied from.
EXPECT_EQ(5, a1.Perform(std::make_tuple(true, 5)));
EXPECT_EQ(0, a1.Perform(std::make_tuple(false, 1)));
// a2 should work like the action it was copied from.
EXPECT_EQ(5, a2.Perform(std::make_tuple(true, 5)));
EXPECT_EQ(0, a2.Perform(std::make_tuple(false, 1)));
a2 = a1; // Tests the assignment operator.
// a1 should continue to work after being copied from.
EXPECT_EQ(5, a1.Perform(std::make_tuple(true, 5)));
EXPECT_EQ(0, a1.Perform(std::make_tuple(false, 1)));
// a2 should work like the action it was copied from.
EXPECT_EQ(5, a2.Perform(std::make_tuple(true, 5)));
EXPECT_EQ(0, a2.Perform(std::make_tuple(false, 1)));
}
// Tests that an Action<From> object can be converted to a
// compatible Action<To> object.
class IsNotZero : public ActionInterface<bool(int)> { // NOLINT
public:
bool Perform(const std::tuple<int>& arg) override {
return std::get<0>(arg) != 0;
}
};
TEST(ActionTest, CanBeConvertedToOtherActionType) {
const Action<bool(int)> a1(new IsNotZero); // NOLINT
const Action<int(char)> a2 = Action<int(char)>(a1); // NOLINT
EXPECT_EQ(1, a2.Perform(std::make_tuple('a')));
EXPECT_EQ(0, a2.Perform(std::make_tuple('\0')));
}
// The following two classes are for testing MakePolymorphicAction().
// Implements a polymorphic action that returns the second of the
// arguments it receives.
class ReturnSecondArgumentAction {
public:
// We want to verify that MakePolymorphicAction() can work with a
// polymorphic action whose Perform() method template is either
// const or not. This lets us verify the non-const case.
template <typename Result, typename ArgumentTuple>
Result Perform(const ArgumentTuple& args) {
return std::get<1>(args);
}
};
// Implements a polymorphic action that can be used in a nullary
// function to return 0.
class ReturnZeroFromNullaryFunctionAction {
public:
// For testing that MakePolymorphicAction() works when the
// implementation class' Perform() method template takes only one
// template parameter.
//
// We want to verify that MakePolymorphicAction() can work with a
// polymorphic action whose Perform() method template is either
// const or not. This lets us verify the const case.
template <typename Result>
Result Perform(const std::tuple<>&) const {
return 0;
}
};
// These functions verify that MakePolymorphicAction() returns a
// PolymorphicAction<T> where T is the argument's type.
PolymorphicAction<ReturnSecondArgumentAction> ReturnSecondArgument() {
return MakePolymorphicAction(ReturnSecondArgumentAction());
}
PolymorphicAction<ReturnZeroFromNullaryFunctionAction>
ReturnZeroFromNullaryFunction() {
return MakePolymorphicAction(ReturnZeroFromNullaryFunctionAction());
}
// Tests that MakePolymorphicAction() turns a polymorphic action
// implementation class into a polymorphic action.
TEST(MakePolymorphicActionTest, ConstructsActionFromImpl) {
Action<int(bool, int, double)> a1 = ReturnSecondArgument(); // NOLINT
EXPECT_EQ(5, a1.Perform(std::make_tuple(false, 5, 2.0)));
}
// Tests that MakePolymorphicAction() works when the implementation
// class' Perform() method template has only one template parameter.
TEST(MakePolymorphicActionTest, WorksWhenPerformHasOneTemplateParameter) {
Action<int()> a1 = ReturnZeroFromNullaryFunction();
EXPECT_EQ(0, a1.Perform(std::make_tuple()));
Action<void*()> a2 = ReturnZeroFromNullaryFunction();
EXPECT_TRUE(a2.Perform(std::make_tuple()) == nullptr);
}
// Tests that Return() works as an action for void-returning
// functions.
TEST(ReturnTest, WorksForVoid) {
const Action<void(int)> ret = Return(); // NOLINT
return ret.Perform(std::make_tuple(1));
}
// Tests that Return(v) returns v.
TEST(ReturnTest, ReturnsGivenValue) {
Action<int()> ret = Return(1); // NOLINT
EXPECT_EQ(1, ret.Perform(std::make_tuple()));
ret = Return(-5);
EXPECT_EQ(-5, ret.Perform(std::make_tuple()));
}
// Tests that Return("string literal") works.
TEST(ReturnTest, AcceptsStringLiteral) {
Action<const char*()> a1 = Return("Hello");
EXPECT_STREQ("Hello", a1.Perform(std::make_tuple()));
Action<std::string()> a2 = Return("world");
EXPECT_EQ("world", a2.Perform(std::make_tuple()));
}
// Return(x) should work fine when the mock function's return type is a
// reference-like wrapper for decltype(x), as when x is a std::string and the
// mock function returns std::string_view.
TEST(ReturnTest, SupportsReferenceLikeReturnType) {
// A reference wrapper for std::vector<int>, implicitly convertible from it.
struct Result {
const std::vector<int>* v;
Result(const std::vector<int>& v) : v(&v) {} // NOLINT
};
// Set up an action for a mock function that returns the reference wrapper
// type, initializing it with an actual vector.
//
// The returned wrapper should be initialized with a copy of that vector
// that's embedded within the action itself (which should stay alive as long
// as the mock object is alive), rather than e.g. a reference to the temporary
// we feed to Return. This should work fine both for WillOnce and
// WillRepeatedly.
MockFunction<Result()> mock;
EXPECT_CALL(mock, Call)
.WillOnce(Return(std::vector<int>{17, 19, 23}))
.WillRepeatedly(Return(std::vector<int>{29, 31, 37}));
EXPECT_THAT(mock.AsStdFunction()(),
Field(&Result::v, Pointee(ElementsAre(17, 19, 23))));
EXPECT_THAT(mock.AsStdFunction()(),
Field(&Result::v, Pointee(ElementsAre(29, 31, 37))));
}
TEST(ReturnTest, PrefersConversionOperator) {
// Define types In and Out such that:
//
// * In is implicitly convertible to Out.
// * Out also has an explicit constructor from In.
//
struct In;
struct Out {
int x;
explicit Out(const int x) : x(x) {}
explicit Out(const In&) : x(0) {}
};
struct In {
operator Out() const { return Out{19}; } // NOLINT
};
// Assumption check: the C++ language rules are such that a function that
// returns Out which uses In a return statement will use the implicit
// conversion path rather than the explicit constructor.
EXPECT_THAT([]() -> Out { return In(); }(), Field(&Out::x, 19));
// Return should work the same way: if the mock function's return type is Out
// and we feed Return an In value, then the Out should be created through the
// implicit conversion path rather than the explicit constructor.
MockFunction<Out()> mock;
EXPECT_CALL(mock, Call).WillOnce(Return(In()));
EXPECT_THAT(mock.AsStdFunction()(), Field(&Out::x, 19));
}
// It should be possible to use Return(R) with a mock function result type U
// that is convertible from const R& but *not* R (such as
// std::reference_wrapper). This should work for both WillOnce and
// WillRepeatedly.
TEST(ReturnTest, ConversionRequiresConstLvalueReference) {
using R = int;
using U = std::reference_wrapper<const int>;
static_assert(std::is_convertible<const R&, U>::value, "");
static_assert(!std::is_convertible<R, U>::value, "");
MockFunction<U()> mock;
EXPECT_CALL(mock, Call).WillOnce(Return(17)).WillRepeatedly(Return(19));
EXPECT_EQ(17, mock.AsStdFunction()());
EXPECT_EQ(19, mock.AsStdFunction()());
}
// Return(x) should not be usable with a mock function result type that's
// implicitly convertible from decltype(x) but requires a non-const lvalue
// reference to the input. It doesn't make sense for the conversion operator to
// modify the input.
TEST(ReturnTest, ConversionRequiresMutableLvalueReference) {
// Set up a type that is implicitly convertible from std::string&, but not
// std::string&& or `const std::string&`.
//
// Avoid asserting about conversion from std::string on MSVC, which seems to
// implement std::is_convertible incorrectly in this case.
struct S {
S(std::string&) {} // NOLINT
};
static_assert(std::is_convertible<std::string&, S>::value, "");
#ifndef _MSC_VER
static_assert(!std::is_convertible<std::string&&, S>::value, "");
#endif
static_assert(!std::is_convertible<const std::string&, S>::value, "");
// It shouldn't be possible to use the result of Return(std::string) in a
// context where an S is needed.
//
// Here too we disable the assertion for MSVC, since its incorrect
// implementation of is_convertible causes our SFINAE to be wrong.
using RA = decltype(Return(std::string()));
static_assert(!std::is_convertible<RA, Action<S()>>::value, "");
#ifndef _MSC_VER
static_assert(!std::is_convertible<RA, OnceAction<S()>>::value, "");
#endif
}
TEST(ReturnTest, MoveOnlyResultType) {
// Return should support move-only result types when used with WillOnce.
{
MockFunction<std::unique_ptr<int>()> mock;
EXPECT_CALL(mock, Call)
// NOLINTNEXTLINE
.WillOnce(Return(std::unique_ptr<int>(new int(17))));
EXPECT_THAT(mock.AsStdFunction()(), Pointee(17));
}
// The result of Return should not be convertible to Action (so it can't be
// used with WillRepeatedly).
static_assert(!std::is_convertible<decltype(Return(std::unique_ptr<int>())),
Action<std::unique_ptr<int>()>>::value,
"");
}
// Tests that Return(v) is covaraint.
struct Base {
bool operator==(const Base&) { return true; }
};
struct Derived : public Base {
bool operator==(const Derived&) { return true; }
};
TEST(ReturnTest, IsCovariant) {
Base base;
Derived derived;
Action<Base*()> ret = Return(&base);
EXPECT_EQ(&base, ret.Perform(std::make_tuple()));
ret = Return(&derived);
EXPECT_EQ(&derived, ret.Perform(std::make_tuple()));
}
// Tests that the type of the value passed into Return is converted into T
// when the action is cast to Action<T(...)> rather than when the action is
// performed. See comments on testing::internal::ReturnAction in
// gmock-actions.h for more information.
class FromType {
public:
explicit FromType(bool* is_converted) : converted_(is_converted) {}
bool* converted() const { return converted_; }
private:
bool* const converted_;
};
class ToType {
public:
// Must allow implicit conversion due to use in ImplicitCast_<T>.
ToType(const FromType& x) { *x.converted() = true; } // NOLINT
};
TEST(ReturnTest, ConvertsArgumentWhenConverted) {
bool converted = false;
FromType x(&converted);
Action<ToType()> action(Return(x));
EXPECT_TRUE(converted) << "Return must convert its argument in its own "
<< "conversion operator.";
converted = false;
action.Perform(std::tuple<>());
EXPECT_FALSE(converted) << "Action must NOT convert its argument "
<< "when performed.";
}
// Tests that ReturnNull() returns NULL in a pointer-returning function.
TEST(ReturnNullTest, WorksInPointerReturningFunction) {
const Action<int*()> a1 = ReturnNull();
EXPECT_TRUE(a1.Perform(std::make_tuple()) == nullptr);
const Action<const char*(bool)> a2 = ReturnNull(); // NOLINT
EXPECT_TRUE(a2.Perform(std::make_tuple(true)) == nullptr);
}
// Tests that ReturnNull() returns NULL for shared_ptr and unique_ptr returning
// functions.
TEST(ReturnNullTest, WorksInSmartPointerReturningFunction) {
const Action<std::unique_ptr<const int>()> a1 = ReturnNull();
EXPECT_TRUE(a1.Perform(std::make_tuple()) == nullptr);
const Action<std::shared_ptr<int>(std::string)> a2 = ReturnNull();
EXPECT_TRUE(a2.Perform(std::make_tuple("foo")) == nullptr);
}
// Tests that ReturnRef(v) works for reference types.
TEST(ReturnRefTest, WorksForReference) {
const int n = 0;
const Action<const int&(bool)> ret = ReturnRef(n); // NOLINT
EXPECT_EQ(&n, &ret.Perform(std::make_tuple(true)));
}
// Tests that ReturnRef(v) is covariant.
TEST(ReturnRefTest, IsCovariant) {
Base base;
Derived derived;
Action<Base&()> a = ReturnRef(base);
EXPECT_EQ(&base, &a.Perform(std::make_tuple()));
a = ReturnRef(derived);
EXPECT_EQ(&derived, &a.Perform(std::make_tuple()));
}
template <typename T, typename = decltype(ReturnRef(std::declval<T&&>()))>
bool CanCallReturnRef(T&&) {
return true;
}
bool CanCallReturnRef(Unused) { return false; }
// Tests that ReturnRef(v) is working with non-temporaries (T&)
TEST(ReturnRefTest, WorksForNonTemporary) {
int scalar_value = 123;
EXPECT_TRUE(CanCallReturnRef(scalar_value));
std::string non_scalar_value("ABC");
EXPECT_TRUE(CanCallReturnRef(non_scalar_value));
const int const_scalar_value{321};
EXPECT_TRUE(CanCallReturnRef(const_scalar_value));
const std::string const_non_scalar_value("CBA");
EXPECT_TRUE(CanCallReturnRef(const_non_scalar_value));
}
// Tests that ReturnRef(v) is not working with temporaries (T&&)
TEST(ReturnRefTest, DoesNotWorkForTemporary) {
auto scalar_value = []() -> int { return 123; };
EXPECT_FALSE(CanCallReturnRef(scalar_value()));
auto non_scalar_value = []() -> std::string { return "ABC"; };
EXPECT_FALSE(CanCallReturnRef(non_scalar_value()));
// cannot use here callable returning "const scalar type",
// because such const for scalar return type is ignored
EXPECT_FALSE(CanCallReturnRef(static_cast<const int>(321)));
auto const_non_scalar_value = []() -> const std::string { return "CBA"; };
EXPECT_FALSE(CanCallReturnRef(const_non_scalar_value()));
}
// Tests that ReturnRefOfCopy(v) works for reference types.
TEST(ReturnRefOfCopyTest, WorksForReference) {
int n = 42;
const Action<const int&()> ret = ReturnRefOfCopy(n);
EXPECT_NE(&n, &ret.Perform(std::make_tuple()));
EXPECT_EQ(42, ret.Perform(std::make_tuple()));
n = 43;
EXPECT_NE(&n, &ret.Perform(std::make_tuple()));
EXPECT_EQ(42, ret.Perform(std::make_tuple()));
}
// Tests that ReturnRefOfCopy(v) is covariant.
TEST(ReturnRefOfCopyTest, IsCovariant) {
Base base;
Derived derived;
Action<Base&()> a = ReturnRefOfCopy(base);
EXPECT_NE(&base, &a.Perform(std::make_tuple()));
a = ReturnRefOfCopy(derived);
EXPECT_NE(&derived, &a.Perform(std::make_tuple()));
}
// Tests that ReturnRoundRobin(v) works with initializer lists
TEST(ReturnRoundRobinTest, WorksForInitList) {
Action<int()> ret = ReturnRoundRobin({1, 2, 3});
EXPECT_EQ(1, ret.Perform(std::make_tuple()));
EXPECT_EQ(2, ret.Perform(std::make_tuple()));
EXPECT_EQ(3, ret.Perform(std::make_tuple()));
EXPECT_EQ(1, ret.Perform(std::make_tuple()));
EXPECT_EQ(2, ret.Perform(std::make_tuple()));
EXPECT_EQ(3, ret.Perform(std::make_tuple()));
}
// Tests that ReturnRoundRobin(v) works with vectors
TEST(ReturnRoundRobinTest, WorksForVector) {
std::vector<double> v = {4.4, 5.5, 6.6};
Action<double()> ret = ReturnRoundRobin(v);
EXPECT_EQ(4.4, ret.Perform(std::make_tuple()));
EXPECT_EQ(5.5, ret.Perform(std::make_tuple()));
EXPECT_EQ(6.6, ret.Perform(std::make_tuple()));
EXPECT_EQ(4.4, ret.Perform(std::make_tuple()));
EXPECT_EQ(5.5, ret.Perform(std::make_tuple()));
EXPECT_EQ(6.6, ret.Perform(std::make_tuple()));
}
// Tests that DoDefault() does the default action for the mock method.
class MockClass {
public:
MockClass() {}
MOCK_METHOD1(IntFunc, int(bool flag)); // NOLINT
MOCK_METHOD0(Foo, MyNonDefaultConstructible());
MOCK_METHOD0(MakeUnique, std::unique_ptr<int>());
MOCK_METHOD0(MakeUniqueBase, std::unique_ptr<Base>());
MOCK_METHOD0(MakeVectorUnique, std::vector<std::unique_ptr<int>>());
MOCK_METHOD1(TakeUnique, int(std::unique_ptr<int>));
MOCK_METHOD2(TakeUnique,
int(const std::unique_ptr<int>&, std::unique_ptr<int>));
private:
MockClass(const MockClass&) = delete;
MockClass& operator=(const MockClass&) = delete;
};
// Tests that DoDefault() returns the built-in default value for the
// return type by default.
TEST(DoDefaultTest, ReturnsBuiltInDefaultValueByDefault) {
MockClass mock;
EXPECT_CALL(mock, IntFunc(_)).WillOnce(DoDefault());
EXPECT_EQ(0, mock.IntFunc(true));
}
// Tests that DoDefault() throws (when exceptions are enabled) or aborts
// the process when there is no built-in default value for the return type.
TEST(DoDefaultDeathTest, DiesForUnknowType) {
MockClass mock;
EXPECT_CALL(mock, Foo()).WillRepeatedly(DoDefault());
#if GTEST_HAS_EXCEPTIONS
EXPECT_ANY_THROW(mock.Foo());
#else
EXPECT_DEATH_IF_SUPPORTED({ mock.Foo(); }, "");
#endif
}
// Tests that using DoDefault() inside a composite action leads to a
// run-time error.
void VoidFunc(bool /* flag */) {}
TEST(DoDefaultDeathTest, DiesIfUsedInCompositeAction) {
MockClass mock;
EXPECT_CALL(mock, IntFunc(_))
.WillRepeatedly(DoAll(Invoke(VoidFunc), DoDefault()));
// Ideally we should verify the error message as well. Sadly,
// EXPECT_DEATH() can only capture stderr, while Google Mock's
// errors are printed on stdout. Therefore we have to settle for
// not verifying the message.
EXPECT_DEATH_IF_SUPPORTED({ mock.IntFunc(true); }, "");
}
// Tests that DoDefault() returns the default value set by
// DefaultValue<T>::Set() when it's not overridden by an ON_CALL().
TEST(DoDefaultTest, ReturnsUserSpecifiedPerTypeDefaultValueWhenThereIsOne) {
DefaultValue<int>::Set(1);
MockClass mock;
EXPECT_CALL(mock, IntFunc(_)).WillOnce(DoDefault());
EXPECT_EQ(1, mock.IntFunc(false));
DefaultValue<int>::Clear();
}
// Tests that DoDefault() does the action specified by ON_CALL().
TEST(DoDefaultTest, DoesWhatOnCallSpecifies) {
MockClass mock;
ON_CALL(mock, IntFunc(_)).WillByDefault(Return(2));
EXPECT_CALL(mock, IntFunc(_)).WillOnce(DoDefault());
EXPECT_EQ(2, mock.IntFunc(false));
}
// Tests that using DoDefault() in ON_CALL() leads to a run-time failure.
TEST(DoDefaultTest, CannotBeUsedInOnCall) {
MockClass mock;
EXPECT_NONFATAL_FAILURE(
{ // NOLINT
ON_CALL(mock, IntFunc(_)).WillByDefault(DoDefault());
},
"DoDefault() cannot be used in ON_CALL()");
}
// Tests that SetArgPointee<N>(v) sets the variable pointed to by
// the N-th (0-based) argument to v.
TEST(SetArgPointeeTest, SetsTheNthPointee) {
typedef void MyFunction(bool, int*, char*);
Action<MyFunction> a = SetArgPointee<1>(2);
int n = 0;
char ch = '\0';
a.Perform(std::make_tuple(true, &n, &ch));
EXPECT_EQ(2, n);
EXPECT_EQ('\0', ch);
a = SetArgPointee<2>('a');
n = 0;
ch = '\0';
a.Perform(std::make_tuple(true, &n, &ch));
EXPECT_EQ(0, n);
EXPECT_EQ('a', ch);
}
// Tests that SetArgPointee<N>() accepts a string literal.
TEST(SetArgPointeeTest, AcceptsStringLiteral) {
typedef void MyFunction(std::string*, const char**);
Action<MyFunction> a = SetArgPointee<0>("hi");
std::string str;
const char* ptr = nullptr;
a.Perform(std::make_tuple(&str, &ptr));
EXPECT_EQ("hi", str);
EXPECT_TRUE(ptr == nullptr);
a = SetArgPointee<1>("world");
str = "";
a.Perform(std::make_tuple(&str, &ptr));
EXPECT_EQ("", str);
EXPECT_STREQ("world", ptr);
}
TEST(SetArgPointeeTest, AcceptsWideStringLiteral) {
typedef void MyFunction(const wchar_t**);
Action<MyFunction> a = SetArgPointee<0>(L"world");
const wchar_t* ptr = nullptr;
a.Perform(std::make_tuple(&ptr));
EXPECT_STREQ(L"world", ptr);
#if GTEST_HAS_STD_WSTRING
typedef void MyStringFunction(std::wstring*);
Action<MyStringFunction> a2 = SetArgPointee<0>(L"world");
std::wstring str = L"";
a2.Perform(std::make_tuple(&str));
EXPECT_EQ(L"world", str);
#endif
}
// Tests that SetArgPointee<N>() accepts a char pointer.
TEST(SetArgPointeeTest, AcceptsCharPointer) {
typedef void MyFunction(bool, std::string*, const char**);
const char* const hi = "hi";
Action<MyFunction> a = SetArgPointee<1>(hi);
std::string str;
const char* ptr = nullptr;
a.Perform(std::make_tuple(true, &str, &ptr));
EXPECT_EQ("hi", str);
EXPECT_TRUE(ptr == nullptr);
char world_array[] = "world";
char* const world = world_array;
a = SetArgPointee<2>(world);
str = "";
a.Perform(std::make_tuple(true, &str, &ptr));
EXPECT_EQ("", str);
EXPECT_EQ(world, ptr);
}
TEST(SetArgPointeeTest, AcceptsWideCharPointer) {
typedef void MyFunction(bool, const wchar_t**);
const wchar_t* const hi = L"hi";
Action<MyFunction> a = SetArgPointee<1>(hi);
const wchar_t* ptr = nullptr;
a.Perform(std::make_tuple(true, &ptr));
EXPECT_EQ(hi, ptr);
#if GTEST_HAS_STD_WSTRING
typedef void MyStringFunction(bool, std::wstring*);
wchar_t world_array[] = L"world";
wchar_t* const world = world_array;
Action<MyStringFunction> a2 = SetArgPointee<1>(world);
std::wstring str;
a2.Perform(std::make_tuple(true, &str));
EXPECT_EQ(world_array, str);
#endif
}
// Tests that SetArgumentPointee<N>(v) sets the variable pointed to by
// the N-th (0-based) argument to v.
TEST(SetArgumentPointeeTest, SetsTheNthPointee) {
typedef void MyFunction(bool, int*, char*);
Action<MyFunction> a = SetArgumentPointee<1>(2);
int n = 0;
char ch = '\0';
a.Perform(std::make_tuple(true, &n, &ch));
EXPECT_EQ(2, n);
EXPECT_EQ('\0', ch);
a = SetArgumentPointee<2>('a');
n = 0;
ch = '\0';
a.Perform(std::make_tuple(true, &n, &ch));
EXPECT_EQ(0, n);
EXPECT_EQ('a', ch);
}
// Sample functions and functors for testing Invoke() and etc.
int Nullary() { return 1; }
class NullaryFunctor {
public:
int operator()() { return 2; }
};
bool g_done = false;
void VoidNullary() { g_done = true; }
class VoidNullaryFunctor {
public:
void operator()() { g_done = true; }
};
short Short(short n) { return n; } // NOLINT
char Char(char ch) { return ch; }
const char* CharPtr(const char* s) { return s; }
bool Unary(int x) { return x < 0; }
const char* Binary(const char* input, short n) { return input + n; } // NOLINT
void VoidBinary(int, char) { g_done = true; }
int Ternary(int x, char y, short z) { return x + y + z; } // NOLINT
int SumOf4(int a, int b, int c, int d) { return a + b + c + d; }
class Foo {
public:
Foo() : value_(123) {}
int Nullary() const { return value_; }
private:
int value_;
};
// Tests InvokeWithoutArgs(function).
TEST(InvokeWithoutArgsTest, Function) {
// As an action that takes one argument.
Action<int(int)> a = InvokeWithoutArgs(Nullary); // NOLINT
EXPECT_EQ(1, a.Perform(std::make_tuple(2)));
// As an action that takes two arguments.
Action<int(int, double)> a2 = InvokeWithoutArgs(Nullary); // NOLINT
EXPECT_EQ(1, a2.Perform(std::make_tuple(2, 3.5)));
// As an action that returns void.
Action<void(int)> a3 = InvokeWithoutArgs(VoidNullary); // NOLINT
g_done = false;
a3.Perform(std::make_tuple(1));
EXPECT_TRUE(g_done);
}
// Tests InvokeWithoutArgs(functor).
TEST(InvokeWithoutArgsTest, Functor) {
// As an action that takes no argument.
Action<int()> a = InvokeWithoutArgs(NullaryFunctor()); // NOLINT
EXPECT_EQ(2, a.Perform(std::make_tuple()));
// As an action that takes three arguments.
Action<int(int, double, char)> a2 = // NOLINT
InvokeWithoutArgs(NullaryFunctor());
EXPECT_EQ(2, a2.Perform(std::make_tuple(3, 3.5, 'a')));
// As an action that returns void.
Action<void()> a3 = InvokeWithoutArgs(VoidNullaryFunctor());
g_done = false;
a3.Perform(std::make_tuple());
EXPECT_TRUE(g_done);
}
// Tests InvokeWithoutArgs(obj_ptr, method).
TEST(InvokeWithoutArgsTest, Method) {
Foo foo;
Action<int(bool, char)> a = // NOLINT
InvokeWithoutArgs(&foo, &Foo::Nullary);
EXPECT_EQ(123, a.Perform(std::make_tuple(true, 'a')));
}
// Tests using IgnoreResult() on a polymorphic action.
TEST(IgnoreResultTest, PolymorphicAction) {
Action<void(int)> a = IgnoreResult(Return(5)); // NOLINT
a.Perform(std::make_tuple(1));
}
// Tests using IgnoreResult() on a monomorphic action.
int ReturnOne() {
g_done = true;
return 1;
}
TEST(IgnoreResultTest, MonomorphicAction) {
g_done = false;
Action<void()> a = IgnoreResult(Invoke(ReturnOne));
a.Perform(std::make_tuple());
EXPECT_TRUE(g_done);
}
// Tests using IgnoreResult() on an action that returns a class type.
MyNonDefaultConstructible ReturnMyNonDefaultConstructible(double /* x */) {
g_done = true;
return MyNonDefaultConstructible(42);
}
TEST(IgnoreResultTest, ActionReturningClass) {
g_done = false;
Action<void(int)> a =
IgnoreResult(Invoke(ReturnMyNonDefaultConstructible)); // NOLINT
a.Perform(std::make_tuple(2));
EXPECT_TRUE(g_done);
}
TEST(AssignTest, Int) {
int x = 0;
Action<void(int)> a = Assign(&x, 5);
a.Perform(std::make_tuple(0));
EXPECT_EQ(5, x);
}
TEST(AssignTest, String) {
::std::string x;
Action<void(void)> a = Assign(&x, "Hello, world");
a.Perform(std::make_tuple());
EXPECT_EQ("Hello, world", x);
}
TEST(AssignTest, CompatibleTypes) {
double x = 0;
Action<void(int)> a = Assign(&x, 5);
a.Perform(std::make_tuple(0));
EXPECT_DOUBLE_EQ(5, x);
}
// DoAll should support &&-qualified actions when used with WillOnce.
TEST(DoAll, SupportsRefQualifiedActions) {
struct InitialAction {
void operator()(const int arg) && { EXPECT_EQ(17, arg); }
};
struct FinalAction {
int operator()() && { return 19; }
};
MockFunction<int(int)> mock;
EXPECT_CALL(mock, Call).WillOnce(DoAll(InitialAction{}, FinalAction{}));
EXPECT_EQ(19, mock.AsStdFunction()(17));
}
// DoAll should never provide rvalue references to the initial actions. If the
// mock action itself accepts an rvalue reference or a non-scalar object by
// value then the final action should receive an rvalue reference, but initial
// actions should receive only lvalue references.
TEST(DoAll, ProvidesLvalueReferencesToInitialActions) {
struct Obj {};
// Mock action accepts by value: the initial action should be fed a const
// lvalue reference, and the final action an rvalue reference.
{
struct InitialAction {
void operator()(Obj&) const { FAIL() << "Unexpected call"; }
void operator()(const Obj&) const {}
void operator()(Obj&&) const { FAIL() << "Unexpected call"; }
void operator()(const Obj&&) const { FAIL() << "Unexpected call"; }
};
MockFunction<void(Obj)> mock;
EXPECT_CALL(mock, Call)
.WillOnce(DoAll(InitialAction{}, InitialAction{}, [](Obj&&) {}))
.WillRepeatedly(DoAll(InitialAction{}, InitialAction{}, [](Obj&&) {}));
mock.AsStdFunction()(Obj{});
mock.AsStdFunction()(Obj{});
}
// Mock action accepts by const lvalue reference: both actions should receive
// a const lvalue reference.
{
struct InitialAction {
void operator()(Obj&) const { FAIL() << "Unexpected call"; }
void operator()(const Obj&) const {}
void operator()(Obj&&) const { FAIL() << "Unexpected call"; }
void operator()(const Obj&&) const { FAIL() << "Unexpected call"; }
};
MockFunction<void(const Obj&)> mock;
EXPECT_CALL(mock, Call)
.WillOnce(DoAll(InitialAction{}, InitialAction{}, [](const Obj&) {}))
.WillRepeatedly(
DoAll(InitialAction{}, InitialAction{}, [](const Obj&) {}));
mock.AsStdFunction()(Obj{});
mock.AsStdFunction()(Obj{});
}
// Mock action accepts by non-const lvalue reference: both actions should get
// a non-const lvalue reference if they want them.
{
struct InitialAction {
void operator()(Obj&) const {}
void operator()(Obj&&) const { FAIL() << "Unexpected call"; }
};
MockFunction<void(Obj&)> mock;
EXPECT_CALL(mock, Call)
.WillOnce(DoAll(InitialAction{}, InitialAction{}, [](Obj&) {}))
.WillRepeatedly(DoAll(InitialAction{}, InitialAction{}, [](Obj&) {}));
Obj obj;
mock.AsStdFunction()(obj);
mock.AsStdFunction()(obj);
}
// Mock action accepts by rvalue reference: the initial actions should receive
// a non-const lvalue reference if it wants it, and the final action an rvalue
// reference.
{
struct InitialAction {
void operator()(Obj&) const {}
void operator()(Obj&&) const { FAIL() << "Unexpected call"; }
};
MockFunction<void(Obj &&)> mock;
EXPECT_CALL(mock, Call)
.WillOnce(DoAll(InitialAction{}, InitialAction{}, [](Obj&&) {}))
.WillRepeatedly(DoAll(InitialAction{}, InitialAction{}, [](Obj&&) {}));
mock.AsStdFunction()(Obj{});
mock.AsStdFunction()(Obj{});
}
// &&-qualified initial actions should also be allowed with WillOnce.
{
struct InitialAction {
void operator()(Obj&) && {}
};
MockFunction<void(Obj&)> mock;
EXPECT_CALL(mock, Call)
.WillOnce(DoAll(InitialAction{}, InitialAction{}, [](Obj&) {}));
Obj obj;
mock.AsStdFunction()(obj);
}
{
struct InitialAction {
void operator()(Obj&) && {}
};
MockFunction<void(Obj &&)> mock;
EXPECT_CALL(mock, Call)
.WillOnce(DoAll(InitialAction{}, InitialAction{}, [](Obj&&) {}));
mock.AsStdFunction()(Obj{});
}
}
// DoAll should support being used with type-erased Action objects, both through
// WillOnce and WillRepeatedly.
TEST(DoAll, SupportsTypeErasedActions) {
// With only type-erased actions.
const Action<void()> initial_action = [] {};
const Action<int()> final_action = [] { return 17; };
MockFunction<int()> mock;
EXPECT_CALL(mock, Call)
.WillOnce(DoAll(initial_action, initial_action, final_action))
.WillRepeatedly(DoAll(initial_action, initial_action, final_action));
EXPECT_EQ(17, mock.AsStdFunction()());
// With &&-qualified and move-only final action.
{
struct FinalAction {
FinalAction() = default;
FinalAction(FinalAction&&) = default;
int operator()() && { return 17; }
};
EXPECT_CALL(mock, Call)
.WillOnce(DoAll(initial_action, initial_action, FinalAction{}));
EXPECT_EQ(17, mock.AsStdFunction()());
}
}
// Tests using WithArgs and with an action that takes 1 argument.
TEST(WithArgsTest, OneArg) {
Action<bool(double x, int n)> a = WithArgs<1>(Invoke(Unary)); // NOLINT
EXPECT_TRUE(a.Perform(std::make_tuple(1.5, -1)));
EXPECT_FALSE(a.Perform(std::make_tuple(1.5, 1)));
}
// Tests using WithArgs with an action that takes 2 arguments.
TEST(WithArgsTest, TwoArgs) {
Action<const char*(const char* s, double x, short n)> a = // NOLINT
WithArgs<0, 2>(Invoke(Binary));
const char s[] = "Hello";
EXPECT_EQ(s + 2, a.Perform(std::make_tuple(CharPtr(s), 0.5, Short(2))));
}
struct ConcatAll {
std::string operator()() const { return {}; }
template <typename... I>
std::string operator()(const char* a, I... i) const {
return a + ConcatAll()(i...);
}
};
// Tests using WithArgs with an action that takes 10 arguments.
TEST(WithArgsTest, TenArgs) {
Action<std::string(const char*, const char*, const char*, const char*)> a =
WithArgs<0, 1, 2, 3, 2, 1, 0, 1, 2, 3>(Invoke(ConcatAll{}));
EXPECT_EQ("0123210123",
a.Perform(std::make_tuple(CharPtr("0"), CharPtr("1"), CharPtr("2"),
CharPtr("3"))));
}
// Tests using WithArgs with an action that is not Invoke().
class SubtractAction : public ActionInterface<int(int, int)> {
public:
int Perform(const std::tuple<int, int>& args) override {
return std::get<0>(args) - std::get<1>(args);
}
};
TEST(WithArgsTest, NonInvokeAction) {
Action<int(const std::string&, int, int)> a =
WithArgs<2, 1>(MakeAction(new SubtractAction));
std::tuple<std::string, int, int> dummy =
std::make_tuple(std::string("hi"), 2, 10);
EXPECT_EQ(8, a.Perform(dummy));
}
// Tests using WithArgs to pass all original arguments in the original order.
TEST(WithArgsTest, Identity) {
Action<int(int x, char y, short z)> a = // NOLINT
WithArgs<0, 1, 2>(Invoke(Ternary));
EXPECT_EQ(123, a.Perform(std::make_tuple(100, Char(20), Short(3))));
}
// Tests using WithArgs with repeated arguments.
TEST(WithArgsTest, RepeatedArguments) {
Action<int(bool, int m, int n)> a = // NOLINT
WithArgs<1, 1, 1, 1>(Invoke(SumOf4));
EXPECT_EQ(4, a.Perform(std::make_tuple(false, 1, 10)));
}
// Tests using WithArgs with reversed argument order.
TEST(WithArgsTest, ReversedArgumentOrder) {
Action<const char*(short n, const char* input)> a = // NOLINT
WithArgs<1, 0>(Invoke(Binary));
const char s[] = "Hello";
EXPECT_EQ(s + 2, a.Perform(std::make_tuple(Short(2), CharPtr(s))));
}
// Tests using WithArgs with compatible, but not identical, argument types.
TEST(WithArgsTest, ArgsOfCompatibleTypes) {
Action<long(short x, char y, double z, char c)> a = // NOLINT
WithArgs<0, 1, 3>(Invoke(Ternary));
EXPECT_EQ(123,
a.Perform(std::make_tuple(Short(100), Char(20), 5.6, Char(3))));
}
// Tests using WithArgs with an action that returns void.
TEST(WithArgsTest, VoidAction) {
Action<void(double x, char c, int n)> a = WithArgs<2, 1>(Invoke(VoidBinary));
g_done = false;
a.Perform(std::make_tuple(1.5, 'a', 3));
EXPECT_TRUE(g_done);
}
TEST(WithArgsTest, ReturnReference) {
Action<int&(int&, void*)> aa = WithArgs<0>([](int& a) -> int& { return a; });
int i = 0;
const int& res = aa.Perform(std::forward_as_tuple(i, nullptr));
EXPECT_EQ(&i, &res);
}
TEST(WithArgsTest, InnerActionWithConversion) {
Action<Derived*()> inner = [] { return nullptr; };
MockFunction<Base*(double)> mock;
EXPECT_CALL(mock, Call)
.WillOnce(WithoutArgs(inner))
.WillRepeatedly(WithoutArgs(inner));
EXPECT_EQ(nullptr, mock.AsStdFunction()(1.1));
EXPECT_EQ(nullptr, mock.AsStdFunction()(1.1));
}
// It should be possible to use an &&-qualified inner action as long as the
// whole shebang is used as an rvalue with WillOnce.
TEST(WithArgsTest, RefQualifiedInnerAction) {
struct SomeAction {
int operator()(const int arg) && {
EXPECT_EQ(17, arg);
return 19;
}
};
MockFunction<int(int, int)> mock;
EXPECT_CALL(mock, Call).WillOnce(WithArg<1>(SomeAction{}));
EXPECT_EQ(19, mock.AsStdFunction()(0, 17));
}
#if !GTEST_OS_WINDOWS_MOBILE
class SetErrnoAndReturnTest : public testing::Test {
protected:
void SetUp() override { errno = 0; }
void TearDown() override { errno = 0; }
};
TEST_F(SetErrnoAndReturnTest, Int) {
Action<int(void)> a = SetErrnoAndReturn(ENOTTY, -5);
EXPECT_EQ(-5, a.Perform(std::make_tuple()));
EXPECT_EQ(ENOTTY, errno);
}
TEST_F(SetErrnoAndReturnTest, Ptr) {
int x;
Action<int*(void)> a = SetErrnoAndReturn(ENOTTY, &x);
EXPECT_EQ(&x, a.Perform(std::make_tuple()));
EXPECT_EQ(ENOTTY, errno);
}
TEST_F(SetErrnoAndReturnTest, CompatibleTypes) {
Action<double()> a = SetErrnoAndReturn(EINVAL, 5);
EXPECT_DOUBLE_EQ(5.0, a.Perform(std::make_tuple()));
EXPECT_EQ(EINVAL, errno);
}
#endif // !GTEST_OS_WINDOWS_MOBILE
// Tests ByRef().
// Tests that the result of ByRef() is copyable.
TEST(ByRefTest, IsCopyable) {
const std::string s1 = "Hi";
const std::string s2 = "Hello";
auto ref_wrapper = ByRef(s1);
const std::string& r1 = ref_wrapper;
EXPECT_EQ(&s1, &r1);
// Assigns a new value to ref_wrapper.
ref_wrapper = ByRef(s2);
const std::string& r2 = ref_wrapper;
EXPECT_EQ(&s2, &r2);
auto ref_wrapper1 = ByRef(s1);
// Copies ref_wrapper1 to ref_wrapper.
ref_wrapper = ref_wrapper1;
const std::string& r3 = ref_wrapper;
EXPECT_EQ(&s1, &r3);
}
// Tests using ByRef() on a const value.
TEST(ByRefTest, ConstValue) {
const int n = 0;
// int& ref = ByRef(n); // This shouldn't compile - we have a
// negative compilation test to catch it.
const int& const_ref = ByRef(n);
EXPECT_EQ(&n, &const_ref);
}
// Tests using ByRef() on a non-const value.
TEST(ByRefTest, NonConstValue) {
int n = 0;
// ByRef(n) can be used as either an int&,
int& ref = ByRef(n);
EXPECT_EQ(&n, &ref);
// or a const int&.
const int& const_ref = ByRef(n);
EXPECT_EQ(&n, &const_ref);
}
// Tests explicitly specifying the type when using ByRef().
TEST(ByRefTest, ExplicitType) {
int n = 0;
const int& r1 = ByRef<const int>(n);
EXPECT_EQ(&n, &r1);
// ByRef<char>(n); // This shouldn't compile - we have a negative
// compilation test to catch it.
Derived d;
Derived& r2 = ByRef<Derived>(d);
EXPECT_EQ(&d, &r2);
const Derived& r3 = ByRef<const Derived>(d);
EXPECT_EQ(&d, &r3);
Base& r4 = ByRef<Base>(d);
EXPECT_EQ(&d, &r4);
const Base& r5 = ByRef<const Base>(d);
EXPECT_EQ(&d, &r5);
// The following shouldn't compile - we have a negative compilation
// test for it.
//
// Base b;
// ByRef<Derived>(b);
}
// Tests that Google Mock prints expression ByRef(x) as a reference to x.
TEST(ByRefTest, PrintsCorrectly) {
int n = 42;
::std::stringstream expected, actual;
testing::internal::UniversalPrinter<const int&>::Print(n, &expected);
testing::internal::UniversalPrint(ByRef(n), &actual);
EXPECT_EQ(expected.str(), actual.str());
}
struct UnaryConstructorClass {
explicit UnaryConstructorClass(int v) : value(v) {}
int value;
};
// Tests using ReturnNew() with a unary constructor.
TEST(ReturnNewTest, Unary) {
Action<UnaryConstructorClass*()> a = ReturnNew<UnaryConstructorClass>(4000);
UnaryConstructorClass* c = a.Perform(std::make_tuple());
EXPECT_EQ(4000, c->value);
delete c;
}
TEST(ReturnNewTest, UnaryWorksWhenMockMethodHasArgs) {
Action<UnaryConstructorClass*(bool, int)> a =
ReturnNew<UnaryConstructorClass>(4000);
UnaryConstructorClass* c = a.Perform(std::make_tuple(false, 5));
EXPECT_EQ(4000, c->value);
delete c;
}
TEST(ReturnNewTest, UnaryWorksWhenMockMethodReturnsPointerToConst) {
Action<const UnaryConstructorClass*()> a =
ReturnNew<UnaryConstructorClass>(4000);
const UnaryConstructorClass* c = a.Perform(std::make_tuple());
EXPECT_EQ(4000, c->value);
delete c;
}
class TenArgConstructorClass {
public:
TenArgConstructorClass(int a1, int a2, int a3, int a4, int a5, int a6, int a7,
int a8, int a9, int a10)
: value_(a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9 + a10) {}
int value_;
};
// Tests using ReturnNew() with a 10-argument constructor.
TEST(ReturnNewTest, ConstructorThatTakes10Arguments) {
Action<TenArgConstructorClass*()> a = ReturnNew<TenArgConstructorClass>(
1000000000, 200000000, 30000000, 4000000, 500000, 60000, 7000, 800, 90,
0);
TenArgConstructorClass* c = a.Perform(std::make_tuple());
EXPECT_EQ(1234567890, c->value_);
delete c;
}
std::unique_ptr<int> UniquePtrSource() {
return std::unique_ptr<int>(new int(19));
}
std::vector<std::unique_ptr<int>> VectorUniquePtrSource() {
std::vector<std::unique_ptr<int>> out;
out.emplace_back(new int(7));
return out;
}
TEST(MockMethodTest, CanReturnMoveOnlyValue_Return) {
MockClass mock;
std::unique_ptr<int> i(new int(19));
EXPECT_CALL(mock, MakeUnique()).WillOnce(Return(ByMove(std::move(i))));
EXPECT_CALL(mock, MakeVectorUnique())
.WillOnce(Return(ByMove(VectorUniquePtrSource())));
Derived* d = new Derived;
EXPECT_CALL(mock, MakeUniqueBase())
.WillOnce(Return(ByMove(std::unique_ptr<Derived>(d))));
std::unique_ptr<int> result1 = mock.MakeUnique();
EXPECT_EQ(19, *result1);
std::vector<std::unique_ptr<int>> vresult = mock.MakeVectorUnique();
EXPECT_EQ(1u, vresult.size());
EXPECT_NE(nullptr, vresult[0]);
EXPECT_EQ(7, *vresult[0]);
std::unique_ptr<Base> result2 = mock.MakeUniqueBase();
EXPECT_EQ(d, result2.get());
}
TEST(MockMethodTest, CanReturnMoveOnlyValue_DoAllReturn) {
testing::MockFunction<void()> mock_function;
MockClass mock;
std::unique_ptr<int> i(new int(19));
EXPECT_CALL(mock_function, Call());
EXPECT_CALL(mock, MakeUnique())
.WillOnce(DoAll(InvokeWithoutArgs(&mock_function,
&testing::MockFunction<void()>::Call),
Return(ByMove(std::move(i)))));
std::unique_ptr<int> result1 = mock.MakeUnique();
EXPECT_EQ(19, *result1);
}
TEST(MockMethodTest, CanReturnMoveOnlyValue_Invoke) {
MockClass mock;
// Check default value
DefaultValue<std::unique_ptr<int>>::SetFactory(
[] { return std::unique_ptr<int>(new int(42)); });
EXPECT_EQ(42, *mock.MakeUnique());
EXPECT_CALL(mock, MakeUnique()).WillRepeatedly(Invoke(UniquePtrSource));
EXPECT_CALL(mock, MakeVectorUnique())
.WillRepeatedly(Invoke(VectorUniquePtrSource));
std::unique_ptr<int> result1 = mock.MakeUnique();
EXPECT_EQ(19, *result1);
std::unique_ptr<int> result2 = mock.MakeUnique();
EXPECT_EQ(19, *result2);
EXPECT_NE(result1, result2);
std::vector<std::unique_ptr<int>> vresult = mock.MakeVectorUnique();
EXPECT_EQ(1u, vresult.size());
EXPECT_NE(nullptr, vresult[0]);
EXPECT_EQ(7, *vresult[0]);
}
TEST(MockMethodTest, CanTakeMoveOnlyValue) {
MockClass mock;
auto make = [](int i) { return std::unique_ptr<int>(new int(i)); };
EXPECT_CALL(mock, TakeUnique(_)).WillRepeatedly([](std::unique_ptr<int> i) {
return *i;
});
// DoAll() does not compile, since it would move from its arguments twice.
// EXPECT_CALL(mock, TakeUnique(_, _))
// .WillRepeatedly(DoAll(Invoke([](std::unique_ptr<int> j) {}),
// Return(1)));
EXPECT_CALL(mock, TakeUnique(testing::Pointee(7)))
.WillOnce(Return(-7))
.RetiresOnSaturation();
EXPECT_CALL(mock, TakeUnique(testing::IsNull()))
.WillOnce(Return(-1))
.RetiresOnSaturation();
EXPECT_EQ(5, mock.TakeUnique(make(5)));
EXPECT_EQ(-7, mock.TakeUnique(make(7)));
EXPECT_EQ(7, mock.TakeUnique(make(7)));
EXPECT_EQ(7, mock.TakeUnique(make(7)));
EXPECT_EQ(-1, mock.TakeUnique({}));
// Some arguments are moved, some passed by reference.
auto lvalue = make(6);
EXPECT_CALL(mock, TakeUnique(_, _))
.WillOnce([](const std::unique_ptr<int>& i, std::unique_ptr<int> j) {
return *i * *j;
});
EXPECT_EQ(42, mock.TakeUnique(lvalue, make(7)));
// The unique_ptr can be saved by the action.
std::unique_ptr<int> saved;
EXPECT_CALL(mock, TakeUnique(_)).WillOnce([&saved](std::unique_ptr<int> i) {
saved = std::move(i);
return 0;
});
EXPECT_EQ(0, mock.TakeUnique(make(42)));
EXPECT_EQ(42, *saved);
}
// It should be possible to use callables with an &&-qualified call operator
// with WillOnce, since they will be called only once. This allows actions to
// contain and manipulate move-only types.
TEST(MockMethodTest, ActionHasRvalueRefQualifiedCallOperator) {
struct Return17 {
int operator()() && { return 17; }
};
// Action is directly compatible with mocked function type.
{
MockFunction<int()> mock;
EXPECT_CALL(mock, Call).WillOnce(Return17());
EXPECT_EQ(17, mock.AsStdFunction()());
}
// Action doesn't want mocked function arguments.
{
MockFunction<int(int)> mock;
EXPECT_CALL(mock, Call).WillOnce(Return17());
EXPECT_EQ(17, mock.AsStdFunction()(0));
}
}
// Edge case: if an action has both a const-qualified and an &&-qualified call
// operator, there should be no "ambiguous call" errors. The &&-qualified
// operator should be used by WillOnce (since it doesn't need to retain the
// action beyond one call), and the const-qualified one by WillRepeatedly.
TEST(MockMethodTest, ActionHasMultipleCallOperators) {
struct ReturnInt {
int operator()() && { return 17; }
int operator()() const& { return 19; }
};
// Directly compatible with mocked function type.
{
MockFunction<int()> mock;
EXPECT_CALL(mock, Call).WillOnce(ReturnInt()).WillRepeatedly(ReturnInt());
EXPECT_EQ(17, mock.AsStdFunction()());
EXPECT_EQ(19, mock.AsStdFunction()());
EXPECT_EQ(19, mock.AsStdFunction()());
}
// Ignores function arguments.
{
MockFunction<int(int)> mock;
EXPECT_CALL(mock, Call).WillOnce(ReturnInt()).WillRepeatedly(ReturnInt());
EXPECT_EQ(17, mock.AsStdFunction()(0));
EXPECT_EQ(19, mock.AsStdFunction()(0));
EXPECT_EQ(19, mock.AsStdFunction()(0));
}
}
// WillOnce should have no problem coping with a move-only action, whether it is
// &&-qualified or not.
TEST(MockMethodTest, MoveOnlyAction) {
// &&-qualified
{
struct Return17 {
Return17() = default;
Return17(Return17&&) = default;
Return17(const Return17&) = delete;
Return17 operator=(const Return17&) = delete;
int operator()() && { return 17; }
};
MockFunction<int()> mock;
EXPECT_CALL(mock, Call).WillOnce(Return17());
EXPECT_EQ(17, mock.AsStdFunction()());
}
// Not &&-qualified
{
struct Return17 {
Return17() = default;
Return17(Return17&&) = default;
Return17(const Return17&) = delete;
Return17 operator=(const Return17&) = delete;
int operator()() const { return 17; }
};
MockFunction<int()> mock;
EXPECT_CALL(mock, Call).WillOnce(Return17());
EXPECT_EQ(17, mock.AsStdFunction()());
}
}
// It should be possible to use an action that returns a value with a mock
// function that doesn't, both through WillOnce and WillRepeatedly.
TEST(MockMethodTest, ActionReturnsIgnoredValue) {
struct ReturnInt {
int operator()() const { return 0; }
};
MockFunction<void()> mock;
EXPECT_CALL(mock, Call).WillOnce(ReturnInt()).WillRepeatedly(ReturnInt());
mock.AsStdFunction()();
mock.AsStdFunction()();
}
// Despite the fanciness around move-only actions and so on, it should still be
// possible to hand an lvalue reference to a copyable action to WillOnce.
TEST(MockMethodTest, WillOnceCanAcceptLvalueReference) {
MockFunction<int()> mock;
const auto action = [] { return 17; };
EXPECT_CALL(mock, Call).WillOnce(action);
EXPECT_EQ(17, mock.AsStdFunction()());
}
// A callable that doesn't use SFINAE to restrict its call operator's overload
// set, but is still picky about which arguments it will accept.
struct StaticAssertSingleArgument {
template <typename... Args>
static constexpr bool CheckArgs() {
static_assert(sizeof...(Args) == 1, "");
return true;
}
template <typename... Args, bool = CheckArgs<Args...>()>
int operator()(Args...) const {
return 17;
}
};
// WillOnce and WillRepeatedly should both work fine with naïve implementations
// of actions that don't use SFINAE to limit the overload set for their call
// operator. If they are compatible with the actual mocked signature, we
// shouldn't probe them with no arguments and trip a static_assert.
TEST(MockMethodTest, ActionSwallowsAllArguments) {
MockFunction<int(int)> mock;
EXPECT_CALL(mock, Call)
.WillOnce(StaticAssertSingleArgument{})
.WillRepeatedly(StaticAssertSingleArgument{});
EXPECT_EQ(17, mock.AsStdFunction()(0));
EXPECT_EQ(17, mock.AsStdFunction()(0));
}
struct ActionWithTemplatedConversionOperators {
template <typename... Args>
operator OnceAction<int(Args...)>() && { // NOLINT
return [] { return 17; };
}
template <typename... Args>
operator Action<int(Args...)>() const { // NOLINT
return [] { return 19; };
}
};
// It should be fine to hand both WillOnce and WillRepeatedly a function that
// defines templated conversion operators to OnceAction and Action. WillOnce
// should prefer the OnceAction version.
TEST(MockMethodTest, ActionHasTemplatedConversionOperators) {
MockFunction<int()> mock;
EXPECT_CALL(mock, Call)
.WillOnce(ActionWithTemplatedConversionOperators{})
.WillRepeatedly(ActionWithTemplatedConversionOperators{});
EXPECT_EQ(17, mock.AsStdFunction()());
EXPECT_EQ(19, mock.AsStdFunction()());
}
// Tests for std::function based action.
int Add(int val, int& ref, int* ptr) { // NOLINT
int result = val + ref + *ptr;
ref = 42;
*ptr = 43;
return result;
}
int Deref(std::unique_ptr<int> ptr) { return *ptr; }
struct Double {
template <typename T>
T operator()(T t) {
return 2 * t;
}
};
std::unique_ptr<int> UniqueInt(int i) {
return std::unique_ptr<int>(new int(i));
}
TEST(FunctorActionTest, ActionFromFunction) {
Action<int(int, int&, int*)> a = &Add;
int x = 1, y = 2, z = 3;
EXPECT_EQ(6, a.Perform(std::forward_as_tuple(x, y, &z)));
EXPECT_EQ(42, y);
EXPECT_EQ(43, z);
Action<int(std::unique_ptr<int>)> a1 = &Deref;
EXPECT_EQ(7, a1.Perform(std::make_tuple(UniqueInt(7))));
}
TEST(FunctorActionTest, ActionFromLambda) {
Action<int(bool, int)> a1 = [](bool b, int i) { return b ? i : 0; };
EXPECT_EQ(5, a1.Perform(std::make_tuple(true, 5)));
EXPECT_EQ(0, a1.Perform(std::make_tuple(false, 5)));
std::unique_ptr<int> saved;
Action<void(std::unique_ptr<int>)> a2 = [&saved](std::unique_ptr<int> p) {
saved = std::move(p);
};
a2.Perform(std::make_tuple(UniqueInt(5)));
EXPECT_EQ(5, *saved);
}
TEST(FunctorActionTest, PolymorphicFunctor) {
Action<int(int)> ai = Double();
EXPECT_EQ(2, ai.Perform(std::make_tuple(1)));
Action<double(double)> ad = Double(); // Double? Double double!
EXPECT_EQ(3.0, ad.Perform(std::make_tuple(1.5)));
}
TEST(FunctorActionTest, TypeConversion) {
// Numeric promotions are allowed.
const Action<bool(int)> a1 = [](int i) { return i > 1; };
const Action<int(bool)> a2 = Action<int(bool)>(a1);
EXPECT_EQ(1, a1.Perform(std::make_tuple(42)));
EXPECT_EQ(0, a2.Perform(std::make_tuple(42)));
// Implicit constructors are allowed.
const Action<bool(std::string)> s1 = [](std::string s) { return !s.empty(); };
const Action<int(const char*)> s2 = Action<int(const char*)>(s1);
EXPECT_EQ(0, s2.Perform(std::make_tuple("")));
EXPECT_EQ(1, s2.Perform(std::make_tuple("hello")));
// Also between the lambda and the action itself.
const Action<bool(std::string)> x1 = [](Unused) { return 42; };
const Action<bool(std::string)> x2 = [] { return 42; };
EXPECT_TRUE(x1.Perform(std::make_tuple("hello")));
EXPECT_TRUE(x2.Perform(std::make_tuple("hello")));
// Ensure decay occurs where required.
std::function<int()> f = [] { return 7; };
Action<int(int)> d = f;
f = nullptr;
EXPECT_EQ(7, d.Perform(std::make_tuple(1)));
// Ensure creation of an empty action succeeds.
Action<void(int)>(nullptr);
}
TEST(FunctorActionTest, UnusedArguments) {
// Verify that users can ignore uninteresting arguments.
Action<int(int, double y, double z)> a = [](int i, Unused, Unused) {
return 2 * i;
};
std::tuple<int, double, double> dummy = std::make_tuple(3, 7.3, 9.44);
EXPECT_EQ(6, a.Perform(dummy));
}
// Test that basic built-in actions work with move-only arguments.
TEST(MoveOnlyArgumentsTest, ReturningActions) {
Action<int(std::unique_ptr<int>)> a = Return(1);
EXPECT_EQ(1, a.Perform(std::make_tuple(nullptr)));
a = testing::WithoutArgs([]() { return 7; });
EXPECT_EQ(7, a.Perform(std::make_tuple(nullptr)));
Action<void(std::unique_ptr<int>, int*)> a2 = testing::SetArgPointee<1>(3);
int x = 0;
a2.Perform(std::make_tuple(nullptr, &x));
EXPECT_EQ(x, 3);
}
ACTION(ReturnArity) { return std::tuple_size<args_type>::value; }
TEST(ActionMacro, LargeArity) {
EXPECT_EQ(
1, testing::Action<int(int)>(ReturnArity()).Perform(std::make_tuple(0)));
EXPECT_EQ(
10,
testing::Action<int(int, int, int, int, int, int, int, int, int, int)>(
ReturnArity())
.Perform(std::make_tuple(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)));
EXPECT_EQ(
20,
testing::Action<int(int, int, int, int, int, int, int, int, int, int, int,
int, int, int, int, int, int, int, int, int)>(
ReturnArity())
.Perform(std::make_tuple(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19)));
}
} // namespace
} // namespace testing