| /* |
| * Copyright (c) 2015-2018 ARM Limited |
| * All rights reserved |
| * |
| * The license below extends only to copyright in the software and shall |
| * not be construed as granting a license to any other intellectual |
| * property including but not limited to intellectual property relating |
| * to a hardware implementation of the functionality of the software |
| * licensed hereunder. You may use the software subject to the license |
| * terms below provided that you ensure that this notice is replicated |
| * unmodified and in its entirety in all distributions of the software, |
| * modified or unmodified, in source code or in binary form. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are |
| * met: redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer; |
| * redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution; |
| * neither the name of the copyright holders nor the names of its |
| * contributors may be used to endorse or promote products derived from |
| * this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| /** \file arch/generic/vec_reg.hh |
| * Vector Registers layout specification. |
| * |
| * This register type is to be used to model the SIMD registers. |
| * It takes into account the possibility that different architectural names |
| * may overlap (like for ARMv8 AArch32 for example). |
| * |
| * The design is having a basic vector register container that holds the |
| * bytes, unaware of anything else. This is implemented by VecRegContainer. |
| * As the (maximum) length of the physical vector register is a compile-time |
| * constant, it is defined as a template parameter. |
| * |
| * This file also describes two views of the container that have semantic |
| * information about the bytes. The first of this views is VecRegT. |
| * A VecRegT is a view of a VecRegContainer (by reference). The VecRegT has |
| * a type (VecElem) to which bytes are casted, and the amount of such |
| * elements that the vector contains (NumElems). The size of a view, |
| * calculated as sizeof(VecElem) * NumElems must match the size of the |
| * underlying container. As VecRegT has some degree of type information it |
| * has vector semantics, and defines the index operator ([]) to get |
| * references to particular bytes understood as a VecElem. |
| * The second view of a container implemented in this file is VecLaneT, which |
| * is a view of a subset of the container. |
| * A VecLaneT is a view of a lane of a vector register, where a lane is |
| * identified by a type (VecElem) and an index (although the view is |
| * unaware of its index). Operations on the lane are directly applied to |
| * the corresponding bytes of the underlying VecRegContainer through a |
| * reference. |
| * |
| * The intended usage is requesting views to the VecRegContainer via the |
| * member 'as' for VecRegT and the member 'laneView' for VecLaneT. Kindly |
| * find an example of usage in the following. |
| * |
| * |
| * // We declare 512 bits vectors |
| * using Vec512 = VecRegContainer<64>; |
| * ... |
| * // We implement the physical vector register file |
| * Vec512 physicalVecRegFile[NUM_VREGS]; |
| * ... |
| * // Usage example, for a macro op: |
| * VecFloat8Add(ExecContext* xd) { |
| * // Request source vector register to the execution context (const as it |
| * // is read only). |
| * const Vec512& vsrc1raw = xc->readVecRegOperand(this, 0); |
| * // View it as a vector of floats (we could just specify the first |
| * // template parametre, the second has a default value that works, and the |
| * // last one is derived by the constness of vsrc1raw). |
| * VecRegT<float, 8, true>& vsrc1 = vsrc1raw->as<float, 8>(); |
| * |
| * // Second source and view |
| * const Vec512& vsrc2raw = xc->readVecRegOperand(this, 1); |
| * VecRegT<float, 8, true>& vsrc2 = vsrc2raw->as<float, 8>(); |
| * |
| * // Destination and view |
| * Vec512 vdstraw; |
| * VecRegT<float, 8, false>& vdst = vdstraw->as<float, 8>(); |
| * |
| * for (auto i = 0; i < 8; i++) { |
| * // This asignment sets the bits in the underlying Vec512: vdstraw |
| * vdst[i] = vsrc1[i] + vsrc2[i]; |
| * } |
| * xc->setWriteRegOperand(this, 0, vdstraw); |
| * } |
| * |
| * // Usage example, for a micro op that operates over lane number _lidx: |
| * VecFloatLaneAdd(ExecContext* xd) { |
| * // Request source vector register to the execution context (const as it |
| * // is read only). |
| * const Vec512& vsrc1raw = xc->readVecRegOperand(this, 0); |
| * // View it as a lane of a vector of floats (we could just specify the |
| * // first template parametre, the second is derived by the constness of |
| * // vsrc1raw). |
| * VecLaneT<float, true>& src1 = vsrc1raw->laneView<float>(this->_lidx); |
| * |
| * // Second source and view |
| * const Vec512& vsrc2raw = xc->readVecRegOperand(this, 1); |
| * VecLaneT<float, true>& src2 = vsrc2raw->laneView<float>(this->_lidx); |
| * |
| * // (Writable) destination and view |
| * // As this is a partial write, we need the exec context to support that |
| * // through, e.g., 'readVecRegOperandToWrite' returning a writable |
| * // reference to the register |
| * Vec512 vdstraw = xc->readVecRegOperandToWrite(this, 3); |
| * VecLaneT<float, false>& dst = vdstraw->laneView<float>(this->_lidx); |
| * |
| * dst = src1 + src2; |
| * // There is no need to copy the value back into the exec context, as |
| * // the assignment to dst modifies the appropriate bytes in vdstraw which |
| * // is in turn, a reference to the register in the cpu model. |
| * // For operations that do conditional writeback, we can decouple the |
| * // write by doing: |
| * // auto tmp = src1 + src2; |
| * // if (test) { |
| * // dst = tmp; // do writeback |
| * // } else { |
| * // // do not do writeback |
| * // } |
| * } |
| * |
| */ |
| |
| #ifndef __ARCH_GENERIC_VEC_REG_HH__ |
| #define __ARCH_GENERIC_VEC_REG_HH__ |
| |
| #include <array> |
| #include <cassert> |
| #include <iostream> |
| #include <string> |
| #include <type_traits> |
| #include <vector> |
| |
| #include "base/cprintf.hh" |
| #include "base/logging.hh" |
| |
| constexpr unsigned MaxVecRegLenInBytes = 4096; |
| |
| template <size_t Sz> |
| class VecRegContainer; |
| |
| /** Vector Register Abstraction |
| * This generic class is a view in a particularization of MVC, to vector |
| * registers. There is a VecRegContainer that implements the model, and |
| * contains the data. To that model we can interpose different instantiations |
| * of VecRegT to view the container as a vector of NumElems elems of type |
| * VecElem. |
| * @tparam VecElem Type of each element of the vector. |
| * @tparam NumElems Amount of components of the vector. |
| * @tparam Const Indicate if the underlying container can be modified through |
| * the view. |
| */ |
| template <typename VecElem, size_t NumElems, bool Const> |
| class VecRegT |
| { |
| /** Size of the register in bytes. */ |
| static constexpr inline size_t |
| size() |
| { |
| return sizeof(VecElem) * NumElems; |
| } |
| public: |
| /** Container type alias. */ |
| using Container = typename std::conditional<Const, |
| const VecRegContainer<size()>, |
| VecRegContainer<size()>>::type; |
| private: |
| /** My type alias. */ |
| using MyClass = VecRegT<VecElem, NumElems, Const>; |
| /** Reference to container. */ |
| Container& container; |
| |
| public: |
| /** Constructor. */ |
| VecRegT(Container& cnt) : container(cnt) {}; |
| |
| /** Zero the container. */ |
| template<bool Condition = !Const> |
| typename std::enable_if<Condition, void>::type |
| zero() { container.zero(); } |
| |
| template<bool Condition = !Const> |
| typename std::enable_if<Condition, MyClass&>::type |
| operator=(const MyClass& that) |
| { |
| container = that.container; |
| return *this; |
| } |
| |
| /** Index operator. */ |
| const VecElem& operator[](size_t idx) const |
| { |
| return container.template raw_ptr<VecElem>()[idx]; |
| } |
| |
| /** Index operator. */ |
| template<bool Condition = !Const> |
| typename std::enable_if<Condition, VecElem&>::type |
| operator[](size_t idx) |
| { |
| return container.template raw_ptr<VecElem>()[idx]; |
| } |
| |
| /** Equality operator. |
| * Required to compare thread contexts. |
| */ |
| template<typename VE2, size_t NE2, bool C2> |
| bool |
| operator==(const VecRegT<VE2, NE2, C2>& that) const |
| { |
| return container == that.container; |
| } |
| /** Inequality operator. |
| * Required to compare thread contexts. |
| */ |
| template<typename VE2, size_t NE2, bool C2> |
| bool |
| operator!=(const VecRegT<VE2, NE2, C2>& that) const |
| { |
| return !operator==(that); |
| } |
| |
| /** Output stream operator. */ |
| friend std::ostream& |
| operator<<(std::ostream& os, const MyClass& vr) |
| { |
| /* 0-sized is not allowed */ |
| os << "[" << std::hex << (uint32_t)vr[0]; |
| for (uint32_t e = 1; e < vr.size(); e++) |
| os << " " << std::hex << (uint32_t)vr[e]; |
| os << ']'; |
| return os; |
| } |
| |
| const std::string print() const { return csprintf("%s", *this); } |
| /** |
| * Cast to VecRegContainer& |
| * It is useful to get the reference to the container for ISA tricks, |
| * because casting to reference prevents unnecessary copies. |
| */ |
| operator Container&() { return container; } |
| }; |
| |
| /* Forward declaration. */ |
| template <typename VecElem, bool Const> |
| class VecLaneT; |
| |
| /** |
| * Vector Register Abstraction |
| * This generic class is the model in a particularization of MVC, to vector |
| * registers. The model has functionality to create views of itself, or a |
| * portion through the method 'as |
| * @tparam Sz Size of the container in bytes. |
| */ |
| template <size_t SIZE> |
| class VecRegContainer |
| { |
| static_assert(SIZE > 0, |
| "Cannot create Vector Register Container of zero size"); |
| static_assert(SIZE <= MaxVecRegLenInBytes, |
| "Vector Register size limit exceeded"); |
| public: |
| static constexpr inline size_t size() { return SIZE; }; |
| using Container = std::array<uint8_t, SIZE>; |
| private: |
| // 16-byte aligned to support 128bit element view |
| alignas(16) Container container; |
| using MyClass = VecRegContainer<SIZE>; |
| |
| public: |
| VecRegContainer() {} |
| VecRegContainer(const VecRegContainer &) = default; |
| /* This is required for de-serialisation. */ |
| VecRegContainer(const std::vector<uint8_t>& that) |
| { |
| assert(that.size() >= SIZE); |
| std::memcpy(container.data(), &that[0], SIZE); |
| } |
| |
| /** Zero the container. */ |
| void zero() { memset(container.data(), 0, SIZE); } |
| |
| /** Assignment operators. */ |
| /** @{ */ |
| /** From VecRegContainer */ |
| MyClass& operator=(const MyClass& that) |
| { |
| if (&that == this) |
| return *this; |
| memcpy(container.data(), that.container.data(), SIZE); |
| return *this; |
| } |
| |
| /** From appropriately sized uint8_t[]. */ |
| MyClass& operator=(const Container& that) |
| { |
| std::memcpy(container.data(), that.data(), SIZE); |
| return *this; |
| } |
| |
| /** From vector<uint8_t>. |
| * This is required for de-serialisation. |
| * */ |
| MyClass& operator=(const std::vector<uint8_t>& that) |
| { |
| assert(that.size() >= SIZE); |
| std::memcpy(container.data(), that.data(), SIZE); |
| return *this; |
| } |
| /** @} */ |
| |
| /** Copy the contents into the input buffer. */ |
| /** @{ */ |
| /** To appropriately sized uint8_t[] */ |
| void copyTo(Container& dst) const |
| { |
| std::memcpy(dst.data(), container.data(), SIZE); |
| } |
| |
| /** To vector<uint8_t> |
| * This is required for serialisation. |
| * */ |
| void copyTo(std::vector<uint8_t>& dst) const |
| { |
| dst.resize(SIZE); |
| std::memcpy(dst.data(), container.data(), SIZE); |
| } |
| /** @} */ |
| |
| /** Equality operator. |
| * Required to compare thread contexts. |
| */ |
| template<size_t S2> |
| inline bool |
| operator==(const VecRegContainer<S2>& that) const |
| { |
| return SIZE == S2 && |
| !memcmp(container.data(), that.container.data(), SIZE); |
| } |
| /** Inequality operator. |
| * Required to compare thread contexts. |
| */ |
| template<size_t S2> |
| bool |
| operator!=(const VecRegContainer<S2>& that) const |
| { |
| return !operator==(that); |
| } |
| |
| const std::string print() const { return csprintf("%s", *this); } |
| /** Get pointer to bytes. */ |
| template <typename Ret> |
| const Ret* raw_ptr() const { return (const Ret*)container.data(); } |
| |
| template <typename Ret> |
| Ret* raw_ptr() { return (Ret*)container.data(); } |
| |
| /** |
| * View interposers. |
| * Create a view of this container as a vector of VecElems with an |
| * optional amount of elements. If the amount of elements is provided, |
| * the size of the container is checked, to test bounds. If it is not |
| * provided, the length is inferred from the container size and the |
| * element size. |
| * @tparam VecElem Type of each element of the vector for the view. |
| * @tparam NumElem Amount of elements in the view. |
| */ |
| /** @{ */ |
| template <typename VecElem, size_t NumElems=(SIZE / sizeof(VecElem))> |
| VecRegT<VecElem, NumElems, true> as() const |
| { |
| static_assert(SIZE % sizeof(VecElem) == 0, |
| "VecElem does not evenly divide the register size"); |
| static_assert(sizeof(VecElem) * NumElems <= SIZE, |
| "Viewing VecReg as something bigger than it is"); |
| return VecRegT<VecElem, NumElems, true>(*this); |
| } |
| |
| template <typename VecElem, size_t NumElems=(SIZE / sizeof(VecElem))> |
| VecRegT<VecElem, NumElems, false> as() |
| { |
| static_assert(SIZE % sizeof(VecElem) == 0, |
| "VecElem does not evenly divide the register size"); |
| static_assert(sizeof(VecElem) * NumElems <= SIZE, |
| "Viewing VecReg as something bigger than it is"); |
| return VecRegT<VecElem, NumElems, false>(*this); |
| } |
| |
| template <typename VecElem, int LaneIdx> |
| VecLaneT<VecElem, false> laneView(); |
| template <typename VecElem, int LaneIdx> |
| VecLaneT<VecElem, true> laneView() const; |
| template <typename VecElem> |
| VecLaneT<VecElem, false> laneView(int laneIdx); |
| template <typename VecElem> |
| VecLaneT<VecElem, true> laneView(int laneIdx) const; |
| /** @} */ |
| /** |
| * Output operator. |
| * Used for serialization. |
| */ |
| friend std::ostream& operator<<(std::ostream& os, const MyClass& v) |
| { |
| for (auto& b: v.container) { |
| os << csprintf("%02x", b); |
| } |
| return os; |
| } |
| }; |
| |
| /** We define an auxiliary abstraction for LaneData. The ISA should care |
| * about the semantics of a, e.g., 32bit element, treating it as a signed or |
| * unsigned int, or a float depending on the semantics of a particular |
| * instruction. On the other hand, the cpu model should only care about it |
| * being a 32-bit value. */ |
| enum class LaneSize |
| { |
| Empty = 0, |
| Byte, |
| TwoByte, |
| FourByte, |
| EightByte, |
| }; |
| |
| /** LaneSize is an abstraction of a LS byte value for the execution and thread |
| * contexts to handle values just depending on its width. That way, the ISA |
| * can request, for example, the second 4 byte lane of register 5 to the model. |
| * The model serves that value, agnostic of the semantics of those bits. Then, |
| * it is up to the ISA to interpret those bits as a float, or as an uint. |
| * To maximize the utility, this class implements the assignment operator and |
| * the casting to equal-size types. |
| * As opposed to a RegLaneT, LaneData is not 'backed' by a VecRegContainer. |
| * The idea is: |
| * When data is passed and is susceptible to being copied, use LaneData, as |
| * copying the primitive type is build on is cheap. |
| * When data is passed as references (const or not), use RegLaneT, as all |
| * operations happen 'in place', avoiding any copies (no copies is always |
| * cheaper than cheap copies), especially when things are inlined, and |
| * references are not explicitly passed. |
| */ |
| template <LaneSize LS> |
| class LaneData |
| { |
| public: |
| /** Alias to the native type of the appropriate size. */ |
| using UnderlyingType = |
| typename std::conditional<LS == LaneSize::EightByte, uint64_t, |
| typename std::conditional<LS == LaneSize::FourByte, uint32_t, |
| typename std::conditional<LS == LaneSize::TwoByte, uint16_t, |
| typename std::conditional<LS == LaneSize::Byte, uint8_t, |
| void>::type |
| >::type |
| >::type |
| >::type; |
| private: |
| static constexpr auto ByteSz = sizeof(UnderlyingType); |
| UnderlyingType _val; |
| using MyClass = LaneData<LS>; |
| |
| public: |
| template <typename T> explicit |
| LaneData(typename std::enable_if<sizeof(T) == ByteSz, const T&>::type t) |
| : _val(t) {} |
| |
| template <typename T> |
| typename std::enable_if<sizeof(T) == ByteSz, MyClass&>::type |
| operator=(const T& that) |
| { |
| _val = that; |
| return *this; |
| } |
| template<typename T, |
| typename std::enable_if<sizeof(T) == ByteSz, int>::type I = 0> |
| operator T() const { |
| return *static_cast<const T*>(&_val); |
| } |
| }; |
| |
| /** Output operator overload for LaneData<Size>. */ |
| template <LaneSize LS> |
| inline std::ostream& |
| operator<<(std::ostream& os, const LaneData<LS>& d) |
| { |
| return os << static_cast<typename LaneData<LS>::UnderlyingType>(d); |
| } |
| |
| /** Vector Lane abstraction |
| * Another view of a container. This time only a partial part of it is exposed. |
| * @tparam VecElem Type of each element of the vector. |
| * @tparam Const Indicate if the underlying container can be modified through |
| * the view. |
| */ |
| /** @{ */ |
| /* General */ |
| template <typename VecElem, bool Const> |
| class VecLaneT |
| { |
| public: |
| /** VecRegContainer friendship to access private VecLaneT constructors. |
| * Only VecRegContainers can build VecLanes. |
| */ |
| /** @{ */ |
| friend VecLaneT<VecElem, !Const>; |
| |
| /*template <size_t Sz> |
| friend class VecRegContainer;*/ |
| friend class VecRegContainer<8>; |
| friend class VecRegContainer<16>; |
| friend class VecRegContainer<32>; |
| friend class VecRegContainer<64>; |
| friend class VecRegContainer<128>; |
| friend class VecRegContainer<256>; |
| friend class VecRegContainer<MaxVecRegLenInBytes>; |
| |
| /** My type alias. */ |
| using MyClass = VecLaneT<VecElem, Const>; |
| |
| private: |
| using Cont = typename std::conditional<Const, |
| const VecElem, |
| VecElem>::type; |
| static_assert(!std::is_const<VecElem>::value || Const, |
| "Asked for non-const lane of const type!"); |
| static_assert(std::is_integral<VecElem>::value, |
| "VecElem type is not integral!"); |
| /** Reference to data. */ |
| Cont& container; |
| |
| /** Constructor */ |
| VecLaneT(Cont& cont) : container(cont) { } |
| |
| public: |
| /** Assignment operators. |
| * Assignment operators are only enabled if the underlying container is |
| * non-constant. |
| */ |
| /** @{ */ |
| template <bool Assignable = !Const> |
| typename std::enable_if<Assignable, MyClass&>::type |
| operator=(const VecElem& that) { |
| container = that; |
| return *this; |
| } |
| /** |
| * Generic. |
| * Generic bitwise assignment. Narrowing and widening assignemnts are |
| * not allowed, pre-treatment of the rhs is required to conform. |
| */ |
| template <bool Assignable = !Const, typename T> |
| typename std::enable_if<Assignable, MyClass&>::type |
| operator=(const T& that) { |
| static_assert(sizeof(T) >= sizeof(VecElem), |
| "Attempt to perform widening bitwise copy."); |
| static_assert(sizeof(T) <= sizeof(VecElem), |
| "Attempt to perform narrowing bitwise copy."); |
| container = static_cast<VecElem>(that); |
| return *this; |
| } |
| /** @} */ |
| /** Cast to vecElem. */ |
| operator VecElem() const { return container; } |
| |
| /** Constification. */ |
| template <bool Cond = !Const, typename std::enable_if<Cond, int>::type = 0> |
| operator VecLaneT<typename std::enable_if<Cond, VecElem>::type, true>() |
| { |
| return VecLaneT<VecElem, true>(container); |
| } |
| }; |
| |
| namespace std { |
| template<typename T, bool Const> |
| struct add_const<VecLaneT<T, Const>> { typedef VecLaneT<T, true> type; }; |
| } |
| |
| /** View as the Nth lane of type VecElem. */ |
| template <size_t Sz> |
| template <typename VecElem, int LaneIdx> |
| VecLaneT<VecElem, false> |
| VecRegContainer<Sz>::laneView() |
| { |
| return VecLaneT<VecElem, false>(as<VecElem>()[LaneIdx]); |
| } |
| |
| /** View as the const Nth lane of type VecElem. */ |
| template <size_t Sz> |
| template <typename VecElem, int LaneIdx> |
| VecLaneT<VecElem, true> |
| VecRegContainer<Sz>::laneView() const |
| { |
| return VecLaneT<VecElem, true>(as<VecElem>()[LaneIdx]); |
| } |
| |
| /** View as the Nth lane of type VecElem. */ |
| template <size_t Sz> |
| template <typename VecElem> |
| VecLaneT<VecElem, false> |
| VecRegContainer<Sz>::laneView(int laneIdx) |
| { |
| return VecLaneT<VecElem, false>(as<VecElem>()[laneIdx]); |
| } |
| |
| /** View as the const Nth lane of type VecElem. */ |
| template <size_t Sz> |
| template <typename VecElem> |
| VecLaneT<VecElem, true> |
| VecRegContainer<Sz>::laneView(int laneIdx) const |
| { |
| return VecLaneT<VecElem, true>(as<VecElem>()[laneIdx]); |
| } |
| |
| using VecLane8 = VecLaneT<uint8_t, false>; |
| using VecLane16 = VecLaneT<uint16_t, false>; |
| using VecLane32 = VecLaneT<uint32_t, false>; |
| using VecLane64 = VecLaneT<uint64_t, false>; |
| |
| using ConstVecLane8 = VecLaneT<uint8_t, true>; |
| using ConstVecLane16 = VecLaneT<uint16_t, true>; |
| using ConstVecLane32 = VecLaneT<uint32_t, true>; |
| using ConstVecLane64 = VecLaneT<uint64_t, true>; |
| |
| /** |
| * Calls required for serialization/deserialization |
| */ |
| /** @{ */ |
| template <size_t Sz> |
| inline bool |
| to_number(const std::string& value, VecRegContainer<Sz>& v) |
| { |
| fatal_if(value.size() > 2 * VecRegContainer<Sz>::size(), |
| "Vector register value overflow at unserialize"); |
| |
| for (int i = 0; i < VecRegContainer<Sz>::size(); i++) { |
| uint8_t b = 0; |
| if (2 * i < value.size()) |
| b = stoul(value.substr(i * 2, 2), nullptr, 16); |
| v.template raw_ptr<uint8_t>()[i] = b; |
| } |
| return true; |
| } |
| /** @} */ |
| |
| /** |
| * Dummy type aliases and constants for architectures that do not implement |
| * vector registers. |
| */ |
| /** @{ */ |
| using DummyVecElem = uint32_t; |
| constexpr unsigned DummyNumVecElemPerVecReg = 2; |
| using DummyVecReg = VecRegT<DummyVecElem, DummyNumVecElemPerVecReg, false>; |
| using DummyConstVecReg = VecRegT<DummyVecElem, DummyNumVecElemPerVecReg, true>; |
| using DummyVecRegContainer = DummyVecReg::Container; |
| constexpr size_t DummyVecRegSizeBytes = DummyNumVecElemPerVecReg * |
| sizeof(DummyVecElem); |
| /** @} */ |
| |
| #endif /* __ARCH_GENERIC_VEC_REG_HH__ */ |