blob: ccd65b55f8464b6a4dbaed2c6acab04f94e77930 [file] [log] [blame]
/*
* Copyright (c) 2011-2015 Advanced Micro Devices, Inc.
* All rights reserved.
*
* For use for simulation and test purposes only
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
machine(MachineType:SQC, "GPU SQC (L1 I Cache)")
: Sequencer* sequencer;
CacheMemory * L1cache;
int TCC_select_num_bits;
Cycles issue_latency := 80; // time to send data down to TCC
Cycles l2_hit_latency := 18;
MessageBuffer * requestFromSQC, network="To", virtual_network="1", vnet_type="request";
MessageBuffer * responseFromSQC, network="To", virtual_network="3", vnet_type="response";
MessageBuffer * unblockFromCore, network="To", virtual_network="5", vnet_type="unblock";
MessageBuffer * probeToSQC, network="From", virtual_network="1", vnet_type="request";
MessageBuffer * responseToSQC, network="From", virtual_network="3", vnet_type="response";
MessageBuffer * mandatoryQueue;
{
state_declaration(State, desc="SQC Cache States", default="SQC_State_I") {
I, AccessPermission:Invalid, desc="Invalid";
S, AccessPermission:Read_Only, desc="Shared";
I_S, AccessPermission:Busy, desc="Invalid, issued RdBlkS, have not seen response yet";
S_I, AccessPermission:Read_Only, desc="L1 replacement, waiting for clean WB ack";
I_C, AccessPermission:Invalid, desc="Invalid, waiting for WBAck from TCCdir for canceled WB";
}
enumeration(Event, desc="SQC Events") {
// Core initiated
Fetch, desc="Fetch";
//TCC initiated
TCC_AckS, desc="TCC Ack to Core Request";
TCC_AckWB, desc="TCC Ack for WB";
TCC_NackWB, desc="TCC Nack for WB";
// Mem sys initiated
Repl, desc="Replacing block from cache";
// Probe Events
PrbInvData, desc="probe, return M data";
PrbInv, desc="probe, no need for data";
PrbShrData, desc="probe downgrade, return data";
}
enumeration(RequestType, desc="To communicate stats from transitions to recordStats") {
DataArrayRead, desc="Read the data array";
DataArrayWrite, desc="Write the data array";
TagArrayRead, desc="Read the data array";
TagArrayWrite, desc="Write the data array";
}
structure(Entry, desc="...", interface="AbstractCacheEntry") {
State CacheState, desc="cache state";
bool Dirty, desc="Is the data dirty (diff than memory)?";
DataBlock DataBlk, desc="data for the block";
bool FromL2, default="false", desc="block just moved from L2";
}
structure(TBE, desc="...") {
State TBEState, desc="Transient state";
DataBlock DataBlk, desc="data for the block, required for concurrent writebacks";
bool Dirty, desc="Is the data dirty (different than memory)?";
int NumPendingMsgs, desc="Number of acks/data messages that this processor is waiting for";
bool Shared, desc="Victim hit by shared probe";
}
structure(TBETable, external="yes") {
TBE lookup(Addr);
void allocate(Addr);
void deallocate(Addr);
bool isPresent(Addr);
}
TBETable TBEs, template="<SQC_TBE>", constructor="m_number_of_TBEs";
int TCC_select_low_bit, default="RubySystem::getBlockSizeBits()";
Tick clockEdge();
Tick cyclesToTicks(Cycles c);
void set_cache_entry(AbstractCacheEntry b);
void unset_cache_entry();
void set_tbe(TBE b);
void unset_tbe();
void wakeUpAllBuffers();
void wakeUpBuffers(Addr a);
Cycles curCycle();
// Internal functions
Entry getCacheEntry(Addr address), return_by_pointer="yes" {
Entry cache_entry := static_cast(Entry, "pointer", L1cache.lookup(address));
return cache_entry;
}
DataBlock getDataBlock(Addr addr), return_by_ref="yes" {
TBE tbe := TBEs.lookup(addr);
if(is_valid(tbe)) {
return tbe.DataBlk;
} else {
return getCacheEntry(addr).DataBlk;
}
}
State getState(TBE tbe, Entry cache_entry, Addr addr) {
if(is_valid(tbe)) {
return tbe.TBEState;
} else if (is_valid(cache_entry)) {
return cache_entry.CacheState;
}
return State:I;
}
void setState(TBE tbe, Entry cache_entry, Addr addr, State state) {
if (is_valid(tbe)) {
tbe.TBEState := state;
}
if (is_valid(cache_entry)) {
cache_entry.CacheState := state;
}
}
AccessPermission getAccessPermission(Addr addr) {
TBE tbe := TBEs.lookup(addr);
if(is_valid(tbe)) {
return SQC_State_to_permission(tbe.TBEState);
}
Entry cache_entry := getCacheEntry(addr);
if(is_valid(cache_entry)) {
return SQC_State_to_permission(cache_entry.CacheState);
}
return AccessPermission:NotPresent;
}
void setAccessPermission(Entry cache_entry, Addr addr, State state) {
if (is_valid(cache_entry)) {
cache_entry.changePermission(SQC_State_to_permission(state));
}
}
void functionalRead(Addr addr, Packet *pkt) {
TBE tbe := TBEs.lookup(addr);
if(is_valid(tbe)) {
testAndRead(addr, tbe.DataBlk, pkt);
} else {
functionalMemoryRead(pkt);
}
}
int functionalWrite(Addr addr, Packet *pkt) {
int num_functional_writes := 0;
TBE tbe := TBEs.lookup(addr);
if(is_valid(tbe)) {
num_functional_writes := num_functional_writes +
testAndWrite(addr, tbe.DataBlk, pkt);
}
num_functional_writes := num_functional_writes + functionalMemoryWrite(pkt);
return num_functional_writes;
}
void recordRequestType(RequestType request_type, Addr addr) {
if (request_type == RequestType:DataArrayRead) {
L1cache.recordRequestType(CacheRequestType:DataArrayRead, addr);
} else if (request_type == RequestType:DataArrayWrite) {
L1cache.recordRequestType(CacheRequestType:DataArrayWrite, addr);
} else if (request_type == RequestType:TagArrayRead) {
L1cache.recordRequestType(CacheRequestType:TagArrayRead, addr);
} else if (request_type == RequestType:TagArrayWrite) {
L1cache.recordRequestType(CacheRequestType:TagArrayWrite, addr);
}
}
bool checkResourceAvailable(RequestType request_type, Addr addr) {
if (request_type == RequestType:DataArrayRead) {
return L1cache.checkResourceAvailable(CacheResourceType:DataArray, addr);
} else if (request_type == RequestType:DataArrayWrite) {
return L1cache.checkResourceAvailable(CacheResourceType:DataArray, addr);
} else if (request_type == RequestType:TagArrayRead) {
return L1cache.checkResourceAvailable(CacheResourceType:TagArray, addr);
} else if (request_type == RequestType:TagArrayWrite) {
return L1cache.checkResourceAvailable(CacheResourceType:TagArray, addr);
} else {
error("Invalid RequestType type in checkResourceAvailable");
return true;
}
}
// Out Ports
out_port(requestNetwork_out, CPURequestMsg, requestFromSQC);
out_port(responseNetwork_out, ResponseMsg, responseFromSQC);
out_port(unblockNetwork_out, UnblockMsg, unblockFromCore);
// In Ports
in_port(probeNetwork_in, TDProbeRequestMsg, probeToSQC) {
if (probeNetwork_in.isReady(clockEdge())) {
peek(probeNetwork_in, TDProbeRequestMsg, block_on="addr") {
Entry cache_entry := getCacheEntry(in_msg.addr);
TBE tbe := TBEs.lookup(in_msg.addr);
if (in_msg.Type == ProbeRequestType:PrbInv) {
if (in_msg.ReturnData) {
trigger(Event:PrbInvData, in_msg.addr, cache_entry, tbe);
} else {
trigger(Event:PrbInv, in_msg.addr, cache_entry, tbe);
}
} else if (in_msg.Type == ProbeRequestType:PrbDowngrade) {
assert(in_msg.ReturnData);
trigger(Event:PrbShrData, in_msg.addr, cache_entry, tbe);
}
}
}
}
in_port(responseToSQC_in, ResponseMsg, responseToSQC) {
if (responseToSQC_in.isReady(clockEdge())) {
peek(responseToSQC_in, ResponseMsg, block_on="addr") {
Entry cache_entry := getCacheEntry(in_msg.addr);
TBE tbe := TBEs.lookup(in_msg.addr);
if (in_msg.Type == CoherenceResponseType:TDSysResp) {
if (in_msg.State == CoherenceState:Shared) {
trigger(Event:TCC_AckS, in_msg.addr, cache_entry, tbe);
} else {
error("SQC should not receive TDSysResp other than CoherenceState:Shared");
}
} else if (in_msg.Type == CoherenceResponseType:TDSysWBAck) {
trigger(Event:TCC_AckWB, in_msg.addr, cache_entry, tbe);
} else if (in_msg.Type == CoherenceResponseType:TDSysWBNack) {
trigger(Event:TCC_NackWB, in_msg.addr, cache_entry, tbe);
} else {
error("Unexpected Response Message to Core");
}
}
}
}
in_port(mandatoryQueue_in, RubyRequest, mandatoryQueue, desc="...") {
if (mandatoryQueue_in.isReady(clockEdge())) {
peek(mandatoryQueue_in, RubyRequest, block_on="LineAddress") {
Entry cache_entry := getCacheEntry(in_msg.LineAddress);
TBE tbe := TBEs.lookup(in_msg.LineAddress);
assert(in_msg.Type == RubyRequestType:IFETCH);
if (is_valid(cache_entry) || L1cache.cacheAvail(in_msg.LineAddress)) {
trigger(Event:Fetch, in_msg.LineAddress, cache_entry, tbe);
} else {
Addr victim := L1cache.cacheProbe(in_msg.LineAddress);
trigger(Event:Repl, victim, getCacheEntry(victim), TBEs.lookup(victim));
}
}
}
}
// Actions
action(ic_invCache, "ic", desc="invalidate cache") {
if(is_valid(cache_entry)) {
L1cache.deallocate(address);
}
unset_cache_entry();
}
action(nS_issueRdBlkS, "nS", desc="Issue RdBlkS") {
enqueue(requestNetwork_out, CPURequestMsg, issue_latency) {
out_msg.addr := address;
out_msg.Type := CoherenceRequestType:RdBlkS;
out_msg.Requestor := machineID;
out_msg.Destination.add(mapAddressToRange(address,MachineType:TCCdir,
TCC_select_low_bit, TCC_select_num_bits));
out_msg.MessageSize := MessageSizeType:Request_Control;
out_msg.InitialRequestTime := curCycle();
}
}
action(vc_victim, "vc", desc="Victimize E/S Data") {
enqueue(requestNetwork_out, CPURequestMsg, issue_latency) {
out_msg.addr := address;
out_msg.Requestor := machineID;
out_msg.Destination.add(mapAddressToRange(address,MachineType:TCCdir,
TCC_select_low_bit, TCC_select_num_bits));
out_msg.MessageSize := MessageSizeType:Request_Control;
out_msg.Type := CoherenceRequestType:VicClean;
out_msg.InitialRequestTime := curCycle();
if (cache_entry.CacheState == State:S) {
out_msg.Shared := true;
} else {
out_msg.Shared := false;
}
out_msg.InitialRequestTime := curCycle();
}
}
action(a_allocate, "a", desc="allocate block") {
if (is_invalid(cache_entry)) {
set_cache_entry(L1cache.allocate(address, new Entry));
}
}
action(t_allocateTBE, "t", desc="allocate TBE Entry") {
check_allocate(TBEs);
assert(is_valid(cache_entry));
TBEs.allocate(address);
set_tbe(TBEs.lookup(address));
tbe.DataBlk := cache_entry.DataBlk; // Data only used for WBs
tbe.Dirty := cache_entry.Dirty;
tbe.Shared := false;
}
action(d_deallocateTBE, "d", desc="Deallocate TBE") {
TBEs.deallocate(address);
unset_tbe();
}
action(p_popMandatoryQueue, "pm", desc="Pop Mandatory Queue") {
mandatoryQueue_in.dequeue(clockEdge());
}
action(pr_popResponseQueue, "pr", desc="Pop Response Queue") {
responseToSQC_in.dequeue(clockEdge());
}
action(pp_popProbeQueue, "pp", desc="pop probe queue") {
probeNetwork_in.dequeue(clockEdge());
}
action(l_loadDone, "l", desc="local load done") {
assert(is_valid(cache_entry));
sequencer.readCallback(address, cache_entry.DataBlk,
false, MachineType:L1Cache);
APPEND_TRANSITION_COMMENT(cache_entry.DataBlk);
}
action(xl_loadDone, "xl", desc="remote load done") {
peek(responseToSQC_in, ResponseMsg) {
assert(is_valid(cache_entry));
sequencer.readCallback(address,
cache_entry.DataBlk,
false,
machineIDToMachineType(in_msg.Sender),
in_msg.InitialRequestTime,
in_msg.ForwardRequestTime,
in_msg.ProbeRequestStartTime);
APPEND_TRANSITION_COMMENT(cache_entry.DataBlk);
}
}
action(w_writeCache, "w", desc="write data to cache") {
peek(responseToSQC_in, ResponseMsg) {
assert(is_valid(cache_entry));
cache_entry.DataBlk := in_msg.DataBlk;
cache_entry.Dirty := in_msg.Dirty;
}
}
action(ss_sendStaleNotification, "ss", desc="stale data; nothing to writeback") {
peek(responseToSQC_in, ResponseMsg) {
enqueue(responseNetwork_out, ResponseMsg, issue_latency) {
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:StaleNotif;
out_msg.Sender := machineID;
out_msg.Destination.add(mapAddressToRange(address,MachineType:TCC,
TCC_select_low_bit, TCC_select_num_bits));
out_msg.MessageSize := MessageSizeType:Response_Control;
DPRINTF(RubySlicc, "%s\n", out_msg);
}
}
}
action(wb_data, "wb", desc="write back data") {
peek(responseToSQC_in, ResponseMsg) {
enqueue(responseNetwork_out, ResponseMsg, issue_latency) {
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:CPUData;
out_msg.Sender := machineID;
out_msg.Destination.add(mapAddressToRange(address,MachineType:TCC,
TCC_select_low_bit, TCC_select_num_bits));
out_msg.DataBlk := tbe.DataBlk;
out_msg.Dirty := tbe.Dirty;
if (tbe.Shared) {
out_msg.NbReqShared := true;
} else {
out_msg.NbReqShared := false;
}
out_msg.State := CoherenceState:Shared; // faux info
out_msg.MessageSize := MessageSizeType:Writeback_Data;
DPRINTF(RubySlicc, "%s\n", out_msg);
}
}
}
action(pi_sendProbeResponseInv, "pi", desc="send probe ack inv, no data") {
enqueue(responseNetwork_out, ResponseMsg, issue_latency) {
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:CPUPrbResp; // L3 and CPUs respond in same way to probes
out_msg.Sender := machineID;
// will this always be ok? probably not for multisocket
out_msg.Destination.add(mapAddressToRange(address,MachineType:TCCdir,
TCC_select_low_bit, TCC_select_num_bits));
out_msg.Dirty := false;
out_msg.Hit := false;
out_msg.Ntsl := true;
out_msg.State := CoherenceState:NA;
out_msg.MessageSize := MessageSizeType:Response_Control;
}
}
action(pim_sendProbeResponseInvMs, "pim", desc="send probe ack inv, no data") {
enqueue(responseNetwork_out, ResponseMsg, issue_latency) {
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:CPUPrbResp; // L3 and CPUs respond in same way to probes
out_msg.Sender := machineID;
// will this always be ok? probably not for multisocket
out_msg.Destination.add(mapAddressToRange(address,MachineType:TCCdir,
TCC_select_low_bit, TCC_select_num_bits));
out_msg.Dirty := false;
out_msg.Ntsl := true;
out_msg.Hit := false;
out_msg.State := CoherenceState:NA;
out_msg.MessageSize := MessageSizeType:Response_Control;
}
}
action(prm_sendProbeResponseMiss, "prm", desc="send probe ack PrbShrData, no data") {
enqueue(responseNetwork_out, ResponseMsg, issue_latency) {
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:CPUPrbResp; // L3 and CPUs respond in same way to probes
out_msg.Sender := machineID;
// will this always be ok? probably not for multisocket
out_msg.Destination.add(mapAddressToRange(address,MachineType:TCCdir,
TCC_select_low_bit, TCC_select_num_bits));
out_msg.Dirty := false; // only true if sending back data i think
out_msg.Hit := false;
out_msg.Ntsl := false;
out_msg.State := CoherenceState:NA;
out_msg.MessageSize := MessageSizeType:Response_Control;
}
}
action(pd_sendProbeResponseData, "pd", desc="send probe ack, with data") {
enqueue(responseNetwork_out, ResponseMsg, issue_latency) {
assert(is_valid(cache_entry) || is_valid(tbe));
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:CPUPrbResp;
out_msg.Sender := machineID;
// will this always be ok? probably not for multisocket
out_msg.Destination.add(mapAddressToRange(address,MachineType:TCCdir,
TCC_select_low_bit, TCC_select_num_bits));
out_msg.DataBlk := getDataBlock(address);
if (is_valid(tbe)) {
out_msg.Dirty := tbe.Dirty;
} else {
out_msg.Dirty := cache_entry.Dirty;
}
out_msg.Hit := true;
out_msg.State := CoherenceState:NA;
out_msg.MessageSize := MessageSizeType:Response_Data;
}
}
action(pdm_sendProbeResponseDataMs, "pdm", desc="send probe ack, with data") {
enqueue(responseNetwork_out, ResponseMsg, issue_latency) {
assert(is_valid(cache_entry) || is_valid(tbe));
assert(is_valid(cache_entry));
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:CPUPrbResp;
out_msg.Sender := machineID;
// will this always be ok? probably not for multisocket
out_msg.Destination.add(mapAddressToRange(address,MachineType:TCCdir,
TCC_select_low_bit, TCC_select_num_bits));
out_msg.DataBlk := getDataBlock(address);
if (is_valid(tbe)) {
out_msg.Dirty := tbe.Dirty;
} else {
out_msg.Dirty := cache_entry.Dirty;
}
out_msg.Hit := true;
out_msg.State := CoherenceState:NA;
out_msg.MessageSize := MessageSizeType:Response_Data;
}
}
action(sf_setSharedFlip, "sf", desc="hit by shared probe, status may be different") {
assert(is_valid(tbe));
tbe.Shared := true;
}
action(uu_sendUnblock, "uu", desc="state changed, unblock") {
enqueue(unblockNetwork_out, UnblockMsg, issue_latency) {
out_msg.addr := address;
out_msg.Sender := machineID;
out_msg.Destination.add(mapAddressToRange(address,MachineType:TCCdir,
TCC_select_low_bit, TCC_select_num_bits));
out_msg.MessageSize := MessageSizeType:Unblock_Control;
DPRINTF(RubySlicc, "%s\n", out_msg);
}
}
action(yy_recycleProbeQueue, "yy", desc="recycle probe queue") {
probeNetwork_in.recycle(clockEdge(), cyclesToTicks(recycle_latency));
}
action(zz_recycleMandatoryQueue, "\z", desc="recycle mandatory queue") {
mandatoryQueue_in.recycle(clockEdge(), cyclesToTicks(recycle_latency));
}
// Transitions
// transitions from base
transition(I, Fetch, I_S) {TagArrayRead, TagArrayWrite} {
a_allocate;
nS_issueRdBlkS;
p_popMandatoryQueue;
}
// simple hit transitions
transition(S, Fetch) {TagArrayRead, DataArrayRead} {
l_loadDone;
p_popMandatoryQueue;
}
// recycles from transients
transition({I_S, S_I, I_C}, {Fetch, Repl}) {} {
zz_recycleMandatoryQueue;
}
transition(S, Repl, S_I) {TagArrayRead} {
t_allocateTBE;
vc_victim;
ic_invCache;
}
// TCC event
transition(I_S, TCC_AckS, S) {DataArrayRead, DataArrayWrite} {
w_writeCache;
xl_loadDone;
uu_sendUnblock;
pr_popResponseQueue;
}
transition(S_I, TCC_NackWB, I){TagArrayWrite} {
d_deallocateTBE;
pr_popResponseQueue;
}
transition(S_I, TCC_AckWB, I) {TagArrayWrite} {
wb_data;
d_deallocateTBE;
pr_popResponseQueue;
}
transition(I_C, TCC_AckWB, I){TagArrayWrite} {
ss_sendStaleNotification;
d_deallocateTBE;
pr_popResponseQueue;
}
transition(I_C, TCC_NackWB, I) {TagArrayWrite} {
d_deallocateTBE;
pr_popResponseQueue;
}
// Probe transitions
transition({S, I}, PrbInvData, I) {TagArrayRead, TagArrayWrite} {
pd_sendProbeResponseData;
ic_invCache;
pp_popProbeQueue;
}
transition(I_C, PrbInvData, I_C) {
pi_sendProbeResponseInv;
ic_invCache;
pp_popProbeQueue;
}
transition({S, I}, PrbInv, I) {TagArrayRead, TagArrayWrite} {
pi_sendProbeResponseInv;
ic_invCache;
pp_popProbeQueue;
}
transition({S}, PrbShrData, S) {DataArrayRead} {
pd_sendProbeResponseData;
pp_popProbeQueue;
}
transition({I, I_C}, PrbShrData) {TagArrayRead} {
prm_sendProbeResponseMiss;
pp_popProbeQueue;
}
transition(I_C, PrbInv, I_C){
pi_sendProbeResponseInv;
ic_invCache;
pp_popProbeQueue;
}
transition(I_S, {PrbInv, PrbInvData}) {} {
pi_sendProbeResponseInv;
ic_invCache;
a_allocate; // but make sure there is room for incoming data when it arrives
pp_popProbeQueue;
}
transition(I_S, PrbShrData) {} {
prm_sendProbeResponseMiss;
pp_popProbeQueue;
}
transition(S_I, PrbInvData, I_C) {TagArrayWrite} {
pi_sendProbeResponseInv;
ic_invCache;
pp_popProbeQueue;
}
transition(S_I, PrbInv, I_C) {TagArrayWrite} {
pi_sendProbeResponseInv;
ic_invCache;
pp_popProbeQueue;
}
transition(S_I, PrbShrData) {DataArrayRead} {
pd_sendProbeResponseData;
sf_setSharedFlip;
pp_popProbeQueue;
}
}