blob: 8541f3541058f7b93738c9ecd4c464f8267a80a8 [file] [log] [blame]
/*
* Copyright (c) 1999-2013 Mark D. Hill and David A. Wood
* Copyright (c) 2009 Advanced Micro Devices, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* AMD's contributions to the MOESI hammer protocol do not constitute an
* endorsement of its similarity to any AMD products.
*/
machine(MachineType:L1Cache, "AMD Hammer-like protocol")
: Sequencer * sequencer;
CacheMemory * L1Icache;
CacheMemory * L1Dcache;
CacheMemory * L2cache;
Cycles cache_response_latency := 10;
Cycles issue_latency := 2;
Cycles l2_cache_hit_latency := 10;
bool no_mig_atomic := "True";
bool send_evictions;
// NETWORK BUFFERS
MessageBuffer * requestFromCache, network="To", virtual_network="2",
vnet_type="request";
MessageBuffer * responseFromCache, network="To", virtual_network="4",
vnet_type="response";
MessageBuffer * unblockFromCache, network="To", virtual_network="5",
vnet_type="unblock";
MessageBuffer * forwardToCache, network="From", virtual_network="3",
vnet_type="forward";
MessageBuffer * responseToCache, network="From", virtual_network="4",
vnet_type="response";
MessageBuffer * mandatoryQueue;
MessageBuffer * triggerQueue;
{
// STATES
state_declaration(State, desc="Cache states", default="L1Cache_State_I") {
// Base states
I, AccessPermission:Invalid, desc="Idle";
S, AccessPermission:Read_Only, desc="Shared";
O, AccessPermission:Read_Only, desc="Owned";
M, AccessPermission:Read_Only, desc="Modified (dirty)";
MM, AccessPermission:Read_Write, desc="Modified (dirty and locally modified)";
// Base states, locked and ready to service the mandatory queue
IR, AccessPermission:Invalid, desc="Idle";
SR, AccessPermission:Read_Only, desc="Shared";
OR, AccessPermission:Read_Only, desc="Owned";
MR, AccessPermission:Read_Only, desc="Modified (dirty)";
MMR, AccessPermission:Read_Write, desc="Modified (dirty and locally modified)";
// Transient States
IM, AccessPermission:Busy, "IM", desc="Issued GetX";
SM, AccessPermission:Read_Only, "SM", desc="Issued GetX, we still have a valid copy of the line";
OM, AccessPermission:Read_Only, "OM", desc="Issued GetX, received data";
ISM, AccessPermission:Read_Only, "ISM", desc="Issued GetX, received valid data, waiting for all acks";
M_W, AccessPermission:Read_Only, "M^W", desc="Issued GetS, received exclusive data";
MM_W, AccessPermission:Read_Write, "MM^W", desc="Issued GetX, received exclusive data";
IS, AccessPermission:Busy, "IS", desc="Issued GetS";
SS, AccessPermission:Read_Only, "SS", desc="Issued GetS, received data, waiting for all acks";
OI, AccessPermission:Busy, "OI", desc="Issued PutO, waiting for ack";
MI, AccessPermission:Busy, "MI", desc="Issued PutX, waiting for ack";
II, AccessPermission:Busy, "II", desc="Issued PutX/O, saw Other_GETS or Other_GETX, waiting for ack";
ST, AccessPermission:Busy, "ST", desc="S block transferring to L1";
OT, AccessPermission:Busy, "OT", desc="O block transferring to L1";
MT, AccessPermission:Busy, "MT", desc="M block transferring to L1";
MMT, AccessPermission:Busy, "MMT", desc="MM block transferring to L0";
//Transition States Related to Flushing
MI_F, AccessPermission:Busy, "MI_F", desc="Issued PutX due to a Flush, waiting for ack";
MM_F, AccessPermission:Busy, "MM_F", desc="Issued GETF due to a Flush, waiting for ack";
IM_F, AccessPermission:Busy, "IM_F", desc="Issued GetX due to a Flush";
ISM_F, AccessPermission:Read_Only, "ISM_F", desc="Issued GetX, received data, waiting for all acks";
SM_F, AccessPermission:Read_Only, "SM_F", desc="Issued GetX, we still have an old copy of the line";
OM_F, AccessPermission:Read_Only, "OM_F", desc="Issued GetX, received data";
MM_WF, AccessPermission:Busy, "MM_WF", desc="Issued GetX, received exclusive data";
}
// EVENTS
enumeration(Event, desc="Cache events") {
Load, desc="Load request from the processor";
Ifetch, desc="I-fetch request from the processor";
Store, desc="Store request from the processor";
L2_Replacement, desc="L2 Replacement";
L1_to_L2, desc="L1 to L2 transfer";
Trigger_L2_to_L1D, desc="Trigger L2 to L1-Data transfer";
Trigger_L2_to_L1I, desc="Trigger L2 to L1-Instruction transfer";
Complete_L2_to_L1, desc="L2 to L1 transfer completed";
// Requests
Other_GETX, desc="A GetX from another processor";
Other_GETS, desc="A GetS from another processor";
Merged_GETS, desc="A Merged GetS from another processor";
Other_GETS_No_Mig, desc="A GetS from another processor";
NC_DMA_GETS, desc="special GetS when only DMA exists";
Invalidate, desc="Invalidate block";
// Responses
Ack, desc="Received an ack message";
Shared_Ack, desc="Received an ack message, responder has a shared copy";
Data, desc="Received a data message";
Shared_Data, desc="Received a data message, responder has a shared copy";
Exclusive_Data, desc="Received a data message, responder had an exclusive copy, they gave it to us";
Writeback_Ack, desc="Writeback O.K. from directory";
Writeback_Nack, desc="Writeback not O.K. from directory";
// Triggers
All_acks, desc="Received all required data and message acks";
All_acks_no_sharers, desc="Received all acks and no other processor has a shared copy";
// For Flush
Flush_line, desc="flush the cache line from all caches";
Block_Ack, desc="the directory is blocked and ready for the flush";
}
// STRUCTURE DEFINITIONS
// CacheEntry
structure(Entry, desc="...", interface="AbstractCacheEntry") {
State CacheState, desc="cache state";
bool Dirty, desc="Is the data dirty (different than memory)?";
DataBlock DataBlk, desc="data for the block";
bool FromL2, default="false", desc="block just moved from L2";
bool AtomicAccessed, default="false", desc="block just moved from L2";
}
// TBE fields
structure(TBE, desc="...") {
State TBEState, desc="Transient state";
DataBlock DataBlk, desc="data for the block, required for concurrent writebacks";
bool Dirty, desc="Is the data dirty (different than memory)?";
int NumPendingMsgs, desc="Number of acks/data messages that this processor is waiting for";
bool Sharers, desc="On a GetS, did we find any other sharers in the system";
bool AppliedSilentAcks, default="false", desc="for full-bit dir, does the pending msg count reflect the silent acks";
MachineID LastResponder, desc="last machine to send a response for this request";
MachineID CurOwner, desc="current owner of the block, used for UnblockS responses";
Cycles InitialRequestTime, default="Cycles(0)",
desc="time the initial requests was sent from the L1Cache";
Cycles ForwardRequestTime, default="Cycles(0)",
desc="time the dir forwarded the request";
Cycles FirstResponseTime, default="Cycles(0)",
desc="the time the first response was received";
}
structure(TBETable, external="yes") {
TBE lookup(Addr);
void allocate(Addr);
void deallocate(Addr);
bool isPresent(Addr);
}
TBETable TBEs, template="<L1Cache_TBE>", constructor="m_number_of_TBEs";
Tick clockEdge();
void set_cache_entry(AbstractCacheEntry b);
void unset_cache_entry();
void set_tbe(TBE b);
void unset_tbe();
void wakeUpAllBuffers();
void wakeUpBuffers(Addr a);
Cycles curCycle();
MachineID mapAddressToMachine(Addr addr, MachineType mtype);
Entry getCacheEntry(Addr address), return_by_pointer="yes" {
Entry L2cache_entry := static_cast(Entry, "pointer", L2cache.lookup(address));
if(is_valid(L2cache_entry)) {
return L2cache_entry;
}
Entry L1Dcache_entry := static_cast(Entry, "pointer", L1Dcache.lookup(address));
if(is_valid(L1Dcache_entry)) {
return L1Dcache_entry;
}
Entry L1Icache_entry := static_cast(Entry, "pointer", L1Icache.lookup(address));
return L1Icache_entry;
}
void functionalRead(Addr addr, Packet *pkt) {
Entry cache_entry := getCacheEntry(addr);
if(is_valid(cache_entry)) {
testAndRead(addr, cache_entry.DataBlk, pkt);
} else {
TBE tbe := TBEs[addr];
if(is_valid(tbe)) {
testAndRead(addr, tbe.DataBlk, pkt);
} else {
error("Missing data block");
}
}
}
int functionalWrite(Addr addr, Packet *pkt) {
int num_functional_writes := 0;
Entry cache_entry := getCacheEntry(addr);
if(is_valid(cache_entry)) {
num_functional_writes := num_functional_writes +
testAndWrite(addr, cache_entry.DataBlk, pkt);
return num_functional_writes;
}
TBE tbe := TBEs[addr];
num_functional_writes := num_functional_writes +
testAndWrite(addr, tbe.DataBlk, pkt);
return num_functional_writes;
}
Entry getL2CacheEntry(Addr address), return_by_pointer="yes" {
Entry L2cache_entry := static_cast(Entry, "pointer", L2cache.lookup(address));
return L2cache_entry;
}
Entry getL1DCacheEntry(Addr address), return_by_pointer="yes" {
Entry L1Dcache_entry := static_cast(Entry, "pointer", L1Dcache.lookup(address));
return L1Dcache_entry;
}
Entry getL1ICacheEntry(Addr address), return_by_pointer="yes" {
Entry L1Icache_entry := static_cast(Entry, "pointer", L1Icache.lookup(address));
return L1Icache_entry;
}
State getState(TBE tbe, Entry cache_entry, Addr addr) {
if(is_valid(tbe)) {
return tbe.TBEState;
} else if (is_valid(cache_entry)) {
return cache_entry.CacheState;
}
return State:I;
}
void setState(TBE tbe, Entry cache_entry, Addr addr, State state) {
assert((L1Dcache.isTagPresent(addr) && L1Icache.isTagPresent(addr)) == false);
assert((L1Icache.isTagPresent(addr) && L2cache.isTagPresent(addr)) == false);
assert((L1Dcache.isTagPresent(addr) && L2cache.isTagPresent(addr)) == false);
if (is_valid(tbe)) {
tbe.TBEState := state;
}
if (is_valid(cache_entry)) {
cache_entry.CacheState := state;
}
}
AccessPermission getAccessPermission(Addr addr) {
TBE tbe := TBEs[addr];
if(is_valid(tbe)) {
return L1Cache_State_to_permission(tbe.TBEState);
}
Entry cache_entry := getCacheEntry(addr);
if(is_valid(cache_entry)) {
return L1Cache_State_to_permission(cache_entry.CacheState);
}
return AccessPermission:NotPresent;
}
void setAccessPermission(Entry cache_entry, Addr addr, State state) {
if (is_valid(cache_entry)) {
cache_entry.changePermission(L1Cache_State_to_permission(state));
}
}
Event mandatory_request_type_to_event(RubyRequestType type) {
if (type == RubyRequestType:LD) {
return Event:Load;
} else if (type == RubyRequestType:IFETCH) {
return Event:Ifetch;
} else if ((type == RubyRequestType:ST) || (type == RubyRequestType:ATOMIC)) {
return Event:Store;
} else if ((type == RubyRequestType:FLUSH)) {
return Event:Flush_line;
} else {
error("Invalid RubyRequestType");
}
}
MachineType testAndClearLocalHit(Entry cache_entry) {
if (is_valid(cache_entry) && cache_entry.FromL2) {
cache_entry.FromL2 := false;
return MachineType:L2Cache;
}
return MachineType:L1Cache;
}
bool IsAtomicAccessed(Entry cache_entry) {
assert(is_valid(cache_entry));
return cache_entry.AtomicAccessed;
}
// ** OUT_PORTS **
out_port(requestNetwork_out, RequestMsg, requestFromCache);
out_port(responseNetwork_out, ResponseMsg, responseFromCache);
out_port(unblockNetwork_out, ResponseMsg, unblockFromCache);
out_port(triggerQueue_out, TriggerMsg, triggerQueue);
// ** IN_PORTS **
// Trigger Queue
in_port(triggerQueue_in, TriggerMsg, triggerQueue, rank=3) {
if (triggerQueue_in.isReady(clockEdge())) {
peek(triggerQueue_in, TriggerMsg) {
Entry cache_entry := getCacheEntry(in_msg.addr);
TBE tbe := TBEs[in_msg.addr];
if (in_msg.Type == TriggerType:L2_to_L1) {
trigger(Event:Complete_L2_to_L1, in_msg.addr, cache_entry, tbe);
} else if (in_msg.Type == TriggerType:ALL_ACKS) {
trigger(Event:All_acks, in_msg.addr, cache_entry, tbe);
} else if (in_msg.Type == TriggerType:ALL_ACKS_NO_SHARERS) {
trigger(Event:All_acks_no_sharers, in_msg.addr, cache_entry, tbe);
} else {
error("Unexpected message");
}
}
}
}
// Nothing from the unblock network
// Response Network
in_port(responseToCache_in, ResponseMsg, responseToCache, rank=2) {
if (responseToCache_in.isReady(clockEdge())) {
peek(responseToCache_in, ResponseMsg, block_on="addr") {
Entry cache_entry := getCacheEntry(in_msg.addr);
TBE tbe := TBEs[in_msg.addr];
if (in_msg.Type == CoherenceResponseType:ACK) {
trigger(Event:Ack, in_msg.addr, cache_entry, tbe);
} else if (in_msg.Type == CoherenceResponseType:ACK_SHARED) {
trigger(Event:Shared_Ack, in_msg.addr, cache_entry, tbe);
} else if (in_msg.Type == CoherenceResponseType:DATA) {
trigger(Event:Data, in_msg.addr, cache_entry, tbe);
} else if (in_msg.Type == CoherenceResponseType:DATA_SHARED) {
trigger(Event:Shared_Data, in_msg.addr, cache_entry, tbe);
} else if (in_msg.Type == CoherenceResponseType:DATA_EXCLUSIVE) {
trigger(Event:Exclusive_Data, in_msg.addr, cache_entry, tbe);
} else {
error("Unexpected message");
}
}
}
}
// Forward Network
in_port(forwardToCache_in, RequestMsg, forwardToCache, rank=1) {
if (forwardToCache_in.isReady(clockEdge())) {
peek(forwardToCache_in, RequestMsg, block_on="addr") {
Entry cache_entry := getCacheEntry(in_msg.addr);
TBE tbe := TBEs[in_msg.addr];
if ((in_msg.Type == CoherenceRequestType:GETX) ||
(in_msg.Type == CoherenceRequestType:GETF)) {
trigger(Event:Other_GETX, in_msg.addr, cache_entry, tbe);
} else if (in_msg.Type == CoherenceRequestType:MERGED_GETS) {
trigger(Event:Merged_GETS, in_msg.addr, cache_entry, tbe);
} else if (in_msg.Type == CoherenceRequestType:GETS) {
if (machineCount(MachineType:L1Cache) > 1) {
if (is_valid(cache_entry)) {
if (IsAtomicAccessed(cache_entry) && no_mig_atomic) {
trigger(Event:Other_GETS_No_Mig, in_msg.addr, cache_entry, tbe);
} else {
trigger(Event:Other_GETS, in_msg.addr, cache_entry, tbe);
}
} else {
trigger(Event:Other_GETS, in_msg.addr, cache_entry, tbe);
}
} else {
trigger(Event:NC_DMA_GETS, in_msg.addr, cache_entry, tbe);
}
} else if (in_msg.Type == CoherenceRequestType:INV) {
trigger(Event:Invalidate, in_msg.addr, cache_entry, tbe);
} else if (in_msg.Type == CoherenceRequestType:WB_ACK) {
trigger(Event:Writeback_Ack, in_msg.addr, cache_entry, tbe);
} else if (in_msg.Type == CoherenceRequestType:WB_NACK) {
trigger(Event:Writeback_Nack, in_msg.addr, cache_entry, tbe);
} else if (in_msg.Type == CoherenceRequestType:BLOCK_ACK) {
trigger(Event:Block_Ack, in_msg.addr, cache_entry, tbe);
} else {
error("Unexpected message");
}
}
}
}
// Nothing from the request network
// Mandatory Queue
in_port(mandatoryQueue_in, RubyRequest, mandatoryQueue, desc="...", rank=0) {
if (mandatoryQueue_in.isReady(clockEdge())) {
peek(mandatoryQueue_in, RubyRequest, block_on="LineAddress") {
// Check for data access to blocks in I-cache and ifetchs to blocks in D-cache
TBE tbe := TBEs[in_msg.LineAddress];
if (in_msg.Type == RubyRequestType:IFETCH) {
// ** INSTRUCTION ACCESS ***
Entry L1Icache_entry := getL1ICacheEntry(in_msg.LineAddress);
if (is_valid(L1Icache_entry)) {
// The tag matches for the L1, so the L1 fetches the line.
// We know it can't be in the L2 due to exclusion
trigger(mandatory_request_type_to_event(in_msg.Type),
in_msg.LineAddress, L1Icache_entry, tbe);
} else {
// Check to see if it is in the OTHER L1
Entry L1Dcache_entry := getL1DCacheEntry(in_msg.LineAddress);
if (is_valid(L1Dcache_entry)) {
// The block is in the wrong L1, try to write it to the L2
if (L2cache.cacheAvail(in_msg.LineAddress)) {
trigger(Event:L1_to_L2, in_msg.LineAddress, L1Dcache_entry, tbe);
} else {
Addr l2_victim_addr := L2cache.cacheProbe(in_msg.LineAddress);
trigger(Event:L2_Replacement,
l2_victim_addr,
getL2CacheEntry(l2_victim_addr),
TBEs[l2_victim_addr]);
}
}
if (L1Icache.cacheAvail(in_msg.LineAddress)) {
// L1 does't have the line, but we have space for it in the L1
Entry L2cache_entry := getL2CacheEntry(in_msg.LineAddress);
if (is_valid(L2cache_entry)) {
// L2 has it (maybe not with the right permissions)
trigger(Event:Trigger_L2_to_L1I, in_msg.LineAddress,
L2cache_entry, tbe);
} else {
// We have room, the L2 doesn't have it, so the L1 fetches the line
trigger(mandatory_request_type_to_event(in_msg.Type),
in_msg.LineAddress, L1Icache_entry, tbe);
}
} else {
// No room in the L1, so we need to make room
// Check if the line we want to evict is not locked
Addr l1i_victim_addr := L1Icache.cacheProbe(in_msg.LineAddress);
check_on_cache_probe(mandatoryQueue_in, l1i_victim_addr);
if (L2cache.cacheAvail(l1i_victim_addr)) {
// The L2 has room, so we move the line from the L1 to the L2
trigger(Event:L1_to_L2,
l1i_victim_addr,
getL1ICacheEntry(l1i_victim_addr),
TBEs[l1i_victim_addr]);
} else {
Addr l2_victim_addr := L2cache.cacheProbe(l1i_victim_addr);
// The L2 does not have room, so we replace a line from the L2
trigger(Event:L2_Replacement,
l2_victim_addr,
getL2CacheEntry(l2_victim_addr),
TBEs[l2_victim_addr]);
}
}
}
} else {
// *** DATA ACCESS ***
Entry L1Dcache_entry := getL1DCacheEntry(in_msg.LineAddress);
if (is_valid(L1Dcache_entry)) {
// The tag matches for the L1, so the L1 fetches the line.
// We know it can't be in the L2 due to exclusion
trigger(mandatory_request_type_to_event(in_msg.Type),
in_msg.LineAddress, L1Dcache_entry, tbe);
} else {
// Check to see if it is in the OTHER L1
Entry L1Icache_entry := getL1ICacheEntry(in_msg.LineAddress);
if (is_valid(L1Icache_entry)) {
// The block is in the wrong L1, try to write it to the L2
if (L2cache.cacheAvail(in_msg.LineAddress)) {
trigger(Event:L1_to_L2, in_msg.LineAddress, L1Icache_entry, tbe);
} else {
Addr l2_victim_addr := L2cache.cacheProbe(in_msg.LineAddress);
trigger(Event:L2_Replacement,
l2_victim_addr,
getL2CacheEntry(l2_victim_addr),
TBEs[l2_victim_addr]);
}
}
if (L1Dcache.cacheAvail(in_msg.LineAddress)) {
// L1 does't have the line, but we have space for it in the L1
Entry L2cache_entry := getL2CacheEntry(in_msg.LineAddress);
if (is_valid(L2cache_entry)) {
// L2 has it (maybe not with the right permissions)
trigger(Event:Trigger_L2_to_L1D, in_msg.LineAddress,
L2cache_entry, tbe);
} else {
// We have room, the L2 doesn't have it, so the L1 fetches the line
trigger(mandatory_request_type_to_event(in_msg.Type),
in_msg.LineAddress, L1Dcache_entry, tbe);
}
} else {
// No room in the L1, so we need to make room
// Check if the line we want to evict is not locked
Addr l1d_victim_addr := L1Dcache.cacheProbe(in_msg.LineAddress);
check_on_cache_probe(mandatoryQueue_in, l1d_victim_addr);
if (L2cache.cacheAvail(l1d_victim_addr)) {
// The L2 has room, so we move the line from the L1 to the L2
trigger(Event:L1_to_L2,
l1d_victim_addr,
getL1DCacheEntry(l1d_victim_addr),
TBEs[l1d_victim_addr]);
} else {
Addr l2_victim_addr := L2cache.cacheProbe(l1d_victim_addr);
// The L2 does not have room, so we replace a line from the L2
trigger(Event:L2_Replacement,
l2_victim_addr,
getL2CacheEntry(l2_victim_addr),
TBEs[l2_victim_addr]);
}
}
}
}
}
}
}
// ACTIONS
action(a_issueGETS, "a", desc="Issue GETS") {
enqueue(requestNetwork_out, RequestMsg, issue_latency) {
assert(is_valid(tbe));
out_msg.addr := address;
out_msg.Type := CoherenceRequestType:GETS;
out_msg.Requestor := machineID;
out_msg.Destination.add(mapAddressToMachine(address, MachineType:Directory));
out_msg.MessageSize := MessageSizeType:Request_Control;
out_msg.InitialRequestTime := curCycle();
// One from each other cache (n-1) plus the memory (+1)
tbe.NumPendingMsgs := machineCount(MachineType:L1Cache);
}
}
action(b_issueGETX, "b", desc="Issue GETX") {
enqueue(requestNetwork_out, RequestMsg, issue_latency) {
assert(is_valid(tbe));
out_msg.addr := address;
out_msg.Type := CoherenceRequestType:GETX;
out_msg.Requestor := machineID;
out_msg.Destination.add(mapAddressToMachine(address, MachineType:Directory));
out_msg.MessageSize := MessageSizeType:Request_Control;
out_msg.InitialRequestTime := curCycle();
// One from each other cache (n-1) plus the memory (+1)
tbe.NumPendingMsgs := machineCount(MachineType:L1Cache);
}
}
action(b_issueGETXIfMoreThanOne, "bo", desc="Issue GETX") {
if (machineCount(MachineType:L1Cache) > 1) {
enqueue(requestNetwork_out, RequestMsg, issue_latency) {
assert(is_valid(tbe));
out_msg.addr := address;
out_msg.Type := CoherenceRequestType:GETX;
out_msg.Requestor := machineID;
out_msg.Destination.add(mapAddressToMachine(address, MachineType:Directory));
out_msg.MessageSize := MessageSizeType:Request_Control;
out_msg.InitialRequestTime := curCycle();
}
}
// One from each other cache (n-1) plus the memory (+1)
tbe.NumPendingMsgs := machineCount(MachineType:L1Cache);
}
action(bf_issueGETF, "bf", desc="Issue GETF") {
enqueue(requestNetwork_out, RequestMsg, issue_latency) {
assert(is_valid(tbe));
out_msg.addr := address;
out_msg.Type := CoherenceRequestType:GETF;
out_msg.Requestor := machineID;
out_msg.Destination.add(mapAddressToMachine(address, MachineType:Directory));
out_msg.MessageSize := MessageSizeType:Request_Control;
out_msg.InitialRequestTime := curCycle();
// One from each other cache (n-1) plus the memory (+1)
tbe.NumPendingMsgs := machineCount(MachineType:L1Cache);
}
}
action(c_sendExclusiveData, "c", desc="Send exclusive data from cache to requestor") {
peek(forwardToCache_in, RequestMsg) {
enqueue(responseNetwork_out, ResponseMsg, cache_response_latency) {
assert(is_valid(cache_entry));
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:DATA_EXCLUSIVE;
out_msg.Sender := machineID;
out_msg.Destination.add(in_msg.Requestor);
out_msg.DataBlk := cache_entry.DataBlk;
out_msg.Dirty := cache_entry.Dirty;
if (in_msg.DirectedProbe) {
out_msg.Acks := machineCount(MachineType:L1Cache);
} else {
out_msg.Acks := 2;
}
out_msg.SilentAcks := in_msg.SilentAcks;
out_msg.MessageSize := MessageSizeType:Response_Data;
out_msg.InitialRequestTime := in_msg.InitialRequestTime;
out_msg.ForwardRequestTime := in_msg.ForwardRequestTime;
}
}
}
action(ct_sendExclusiveDataFromTBE, "ct", desc="Send exclusive data from tbe to requestor") {
peek(forwardToCache_in, RequestMsg) {
enqueue(responseNetwork_out, ResponseMsg, cache_response_latency) {
assert(is_valid(tbe));
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:DATA_EXCLUSIVE;
out_msg.Sender := machineID;
out_msg.Destination.add(in_msg.Requestor);
out_msg.DataBlk := tbe.DataBlk;
out_msg.Dirty := tbe.Dirty;
if (in_msg.DirectedProbe) {
out_msg.Acks := machineCount(MachineType:L1Cache);
} else {
out_msg.Acks := 2;
}
out_msg.SilentAcks := in_msg.SilentAcks;
out_msg.MessageSize := MessageSizeType:Response_Data;
out_msg.InitialRequestTime := in_msg.InitialRequestTime;
out_msg.ForwardRequestTime := in_msg.ForwardRequestTime;
}
}
}
action(d_issuePUT, "d", desc="Issue PUT") {
enqueue(requestNetwork_out, RequestMsg, issue_latency) {
out_msg.addr := address;
out_msg.Type := CoherenceRequestType:PUT;
out_msg.Requestor := machineID;
out_msg.Destination.add(mapAddressToMachine(address, MachineType:Directory));
out_msg.MessageSize := MessageSizeType:Writeback_Control;
}
}
action(df_issuePUTF, "df", desc="Issue PUTF") {
enqueue(requestNetwork_out, RequestMsg, issue_latency) {
out_msg.addr := address;
out_msg.Type := CoherenceRequestType:PUTF;
out_msg.Requestor := machineID;
out_msg.Destination.add(mapAddressToMachine(address, MachineType:Directory));
out_msg.MessageSize := MessageSizeType:Writeback_Control;
}
}
action(e_sendData, "e", desc="Send data from cache to requestor") {
peek(forwardToCache_in, RequestMsg) {
enqueue(responseNetwork_out, ResponseMsg, cache_response_latency) {
assert(is_valid(cache_entry));
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:DATA;
out_msg.Sender := machineID;
out_msg.Destination.add(in_msg.Requestor);
out_msg.DataBlk := cache_entry.DataBlk;
out_msg.Dirty := cache_entry.Dirty;
if (in_msg.DirectedProbe) {
out_msg.Acks := machineCount(MachineType:L1Cache);
} else {
out_msg.Acks := 2;
}
out_msg.SilentAcks := in_msg.SilentAcks;
out_msg.MessageSize := MessageSizeType:Response_Data;
out_msg.InitialRequestTime := in_msg.InitialRequestTime;
out_msg.ForwardRequestTime := in_msg.ForwardRequestTime;
}
}
}
action(ee_sendDataShared, "\e", desc="Send data from cache to requestor, remaining the owner") {
peek(forwardToCache_in, RequestMsg) {
enqueue(responseNetwork_out, ResponseMsg, cache_response_latency) {
assert(is_valid(cache_entry));
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:DATA_SHARED;
out_msg.Sender := machineID;
out_msg.Destination.add(in_msg.Requestor);
out_msg.DataBlk := cache_entry.DataBlk;
out_msg.Dirty := cache_entry.Dirty;
DPRINTF(RubySlicc, "%s\n", out_msg.DataBlk);
if (in_msg.DirectedProbe) {
out_msg.Acks := machineCount(MachineType:L1Cache);
} else {
out_msg.Acks := 2;
}
out_msg.SilentAcks := in_msg.SilentAcks;
out_msg.MessageSize := MessageSizeType:Response_Data;
out_msg.InitialRequestTime := in_msg.InitialRequestTime;
out_msg.ForwardRequestTime := in_msg.ForwardRequestTime;
}
}
}
action(et_sendDataSharedFromTBE, "\et", desc="Send data from TBE to requestor, keep a shared copy") {
peek(forwardToCache_in, RequestMsg) {
enqueue(responseNetwork_out, ResponseMsg, cache_response_latency) {
assert(is_valid(tbe));
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:DATA_SHARED;
out_msg.Sender := machineID;
out_msg.Destination.add(in_msg.Requestor);
out_msg.DataBlk := tbe.DataBlk;
out_msg.Dirty := tbe.Dirty;
DPRINTF(RubySlicc, "%s\n", out_msg.DataBlk);
if (in_msg.DirectedProbe) {
out_msg.Acks := machineCount(MachineType:L1Cache);
} else {
out_msg.Acks := 2;
}
out_msg.SilentAcks := in_msg.SilentAcks;
out_msg.MessageSize := MessageSizeType:Response_Data;
out_msg.InitialRequestTime := in_msg.InitialRequestTime;
out_msg.ForwardRequestTime := in_msg.ForwardRequestTime;
}
}
}
action(em_sendDataSharedMultiple, "em", desc="Send data from cache to all requestors, still the owner") {
peek(forwardToCache_in, RequestMsg) {
enqueue(responseNetwork_out, ResponseMsg, cache_response_latency) {
assert(is_valid(cache_entry));
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:DATA_SHARED;
out_msg.Sender := machineID;
out_msg.Destination := in_msg.MergedRequestors;
out_msg.DataBlk := cache_entry.DataBlk;
out_msg.Dirty := cache_entry.Dirty;
DPRINTF(RubySlicc, "%s\n", out_msg.DataBlk);
out_msg.Acks := machineCount(MachineType:L1Cache);
out_msg.SilentAcks := in_msg.SilentAcks;
out_msg.MessageSize := MessageSizeType:Response_Data;
out_msg.InitialRequestTime := in_msg.InitialRequestTime;
out_msg.ForwardRequestTime := in_msg.ForwardRequestTime;
}
}
}
action(emt_sendDataSharedMultipleFromTBE, "emt", desc="Send data from tbe to all requestors") {
peek(forwardToCache_in, RequestMsg) {
enqueue(responseNetwork_out, ResponseMsg, cache_response_latency) {
assert(is_valid(tbe));
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:DATA_SHARED;
out_msg.Sender := machineID;
out_msg.Destination := in_msg.MergedRequestors;
out_msg.DataBlk := tbe.DataBlk;
out_msg.Dirty := tbe.Dirty;
DPRINTF(RubySlicc, "%s\n", out_msg.DataBlk);
out_msg.Acks := machineCount(MachineType:L1Cache);
out_msg.SilentAcks := in_msg.SilentAcks;
out_msg.MessageSize := MessageSizeType:Response_Data;
out_msg.InitialRequestTime := in_msg.InitialRequestTime;
out_msg.ForwardRequestTime := in_msg.ForwardRequestTime;
}
}
}
action(f_sendAck, "f", desc="Send ack from cache to requestor") {
peek(forwardToCache_in, RequestMsg) {
enqueue(responseNetwork_out, ResponseMsg, cache_response_latency) {
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:ACK;
out_msg.Sender := machineID;
out_msg.Destination.add(in_msg.Requestor);
out_msg.Acks := 1;
out_msg.SilentAcks := in_msg.SilentAcks;
assert(in_msg.DirectedProbe == false);
out_msg.MessageSize := MessageSizeType:Response_Control;
out_msg.InitialRequestTime := in_msg.InitialRequestTime;
out_msg.ForwardRequestTime := in_msg.ForwardRequestTime;
}
}
}
action(ff_sendAckShared, "\f", desc="Send shared ack from cache to requestor") {
peek(forwardToCache_in, RequestMsg) {
enqueue(responseNetwork_out, ResponseMsg, cache_response_latency) {
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:ACK_SHARED;
out_msg.Sender := machineID;
out_msg.Destination.add(in_msg.Requestor);
out_msg.Acks := 1;
out_msg.SilentAcks := in_msg.SilentAcks;
assert(in_msg.DirectedProbe == false);
out_msg.MessageSize := MessageSizeType:Response_Control;
out_msg.InitialRequestTime := in_msg.InitialRequestTime;
out_msg.ForwardRequestTime := in_msg.ForwardRequestTime;
}
}
}
action(g_sendUnblock, "g", desc="Send unblock to memory") {
enqueue(unblockNetwork_out, ResponseMsg, cache_response_latency) {
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:UNBLOCK;
out_msg.Sender := machineID;
out_msg.Destination.add(mapAddressToMachine(address, MachineType:Directory));
out_msg.MessageSize := MessageSizeType:Unblock_Control;
}
}
action(gm_sendUnblockM, "gm", desc="Send unblock to memory and indicate M/O/E state") {
enqueue(unblockNetwork_out, ResponseMsg, cache_response_latency) {
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:UNBLOCKM;
out_msg.Sender := machineID;
out_msg.Destination.add(mapAddressToMachine(address, MachineType:Directory));
out_msg.MessageSize := MessageSizeType:Unblock_Control;
}
}
action(gs_sendUnblockS, "gs", desc="Send unblock to memory and indicate S state") {
enqueue(unblockNetwork_out, ResponseMsg, cache_response_latency) {
assert(is_valid(tbe));
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:UNBLOCKS;
out_msg.Sender := machineID;
out_msg.CurOwner := tbe.CurOwner;
out_msg.Destination.add(mapAddressToMachine(address, MachineType:Directory));
out_msg.MessageSize := MessageSizeType:Unblock_Control;
}
}
action(h_load_hit, "hd", desc="Notify sequencer the load completed.") {
assert(is_valid(cache_entry));
DPRINTF(RubySlicc, "%s\n", cache_entry.DataBlk);
L1Dcache.setMRU(cache_entry);
sequencer.readCallback(address, cache_entry.DataBlk, false,
testAndClearLocalHit(cache_entry));
}
action(h_ifetch_hit, "hi", desc="Notify sequencer the ifetch completed.") {
assert(is_valid(cache_entry));
DPRINTF(RubySlicc, "%s\n", cache_entry.DataBlk);
L1Icache.setMRU(cache_entry);
sequencer.readCallback(address, cache_entry.DataBlk, false,
testAndClearLocalHit(cache_entry));
}
action(hx_external_load_hit, "hx", desc="load required external msgs") {
assert(is_valid(cache_entry));
assert(is_valid(tbe));
DPRINTF(RubySlicc, "%s\n", cache_entry.DataBlk);
peek(responseToCache_in, ResponseMsg) {
L1Icache.setMRU(address);
L1Dcache.setMRU(address);
sequencer.readCallback(address, cache_entry.DataBlk, true,
machineIDToMachineType(in_msg.Sender), tbe.InitialRequestTime,
tbe.ForwardRequestTime, tbe.FirstResponseTime);
}
}
action(hh_store_hit, "\h", desc="Notify sequencer that store completed.") {
assert(is_valid(cache_entry));
DPRINTF(RubySlicc, "%s\n", cache_entry.DataBlk);
peek(mandatoryQueue_in, RubyRequest) {
L1Dcache.setMRU(cache_entry);
sequencer.writeCallback(address, cache_entry.DataBlk, false,
testAndClearLocalHit(cache_entry));
cache_entry.Dirty := true;
if (in_msg.Type == RubyRequestType:ATOMIC) {
cache_entry.AtomicAccessed := true;
}
}
}
action(hh_flush_hit, "\hf", desc="Notify sequencer that flush completed.") {
assert(is_valid(tbe));
DPRINTF(RubySlicc, "%s\n", tbe.DataBlk);
sequencer.writeCallback(address, tbe.DataBlk, false, MachineType:L1Cache);
}
action(sx_external_store_hit, "sx", desc="store required external msgs.") {
assert(is_valid(cache_entry));
assert(is_valid(tbe));
DPRINTF(RubySlicc, "%s\n", cache_entry.DataBlk);
peek(responseToCache_in, ResponseMsg) {
L1Icache.setMRU(address);
L1Dcache.setMRU(address);
sequencer.writeCallback(address, cache_entry.DataBlk, true,
machineIDToMachineType(in_msg.Sender), tbe.InitialRequestTime,
tbe.ForwardRequestTime, tbe.FirstResponseTime);
}
DPRINTF(RubySlicc, "%s\n", cache_entry.DataBlk);
cache_entry.Dirty := true;
}
action(sxt_trig_ext_store_hit, "sxt", desc="store required external msgs.") {
assert(is_valid(cache_entry));
assert(is_valid(tbe));
DPRINTF(RubySlicc, "%s\n", cache_entry.DataBlk);
L1Icache.setMRU(address);
L1Dcache.setMRU(address);
sequencer.writeCallback(address, cache_entry.DataBlk, true,
machineIDToMachineType(tbe.LastResponder), tbe.InitialRequestTime,
tbe.ForwardRequestTime, tbe.FirstResponseTime);
cache_entry.Dirty := true;
}
action(i_allocateTBE, "i", desc="Allocate TBE") {
check_allocate(TBEs);
assert(is_valid(cache_entry));
TBEs.allocate(address);
set_tbe(TBEs[address]);
tbe.DataBlk := cache_entry.DataBlk; // Data only used for writebacks
tbe.Dirty := cache_entry.Dirty;
tbe.Sharers := false;
}
action(it_allocateTBE, "it", desc="Allocate TBE") {
check_allocate(TBEs);
TBEs.allocate(address);
set_tbe(TBEs[address]);
tbe.Dirty := false;
tbe.Sharers := false;
}
action(j_popTriggerQueue, "j", desc="Pop trigger queue.") {
triggerQueue_in.dequeue(clockEdge());
}
action(k_popMandatoryQueue, "k", desc="Pop mandatory queue.") {
mandatoryQueue_in.dequeue(clockEdge());
}
action(l_popForwardQueue, "l", desc="Pop forwareded request queue.") {
forwardToCache_in.dequeue(clockEdge());
}
action(hp_copyFromTBEToL2, "li", desc="Copy data from TBE to L2 cache entry.") {
assert(is_valid(cache_entry));
assert(is_valid(tbe));
cache_entry.Dirty := tbe.Dirty;
cache_entry.DataBlk := tbe.DataBlk;
}
action(nb_copyFromTBEToL1, "fu", desc="Copy data from TBE to L1 cache entry.") {
assert(is_valid(cache_entry));
assert(is_valid(tbe));
cache_entry.Dirty := tbe.Dirty;
cache_entry.DataBlk := tbe.DataBlk;
cache_entry.FromL2 := true;
}
action(m_decrementNumberOfMessages, "m", desc="Decrement the number of messages for which we're waiting") {
peek(responseToCache_in, ResponseMsg) {
assert(in_msg.Acks >= 0);
assert(is_valid(tbe));
DPRINTF(RubySlicc, "Sender = %s\n", in_msg.Sender);
DPRINTF(RubySlicc, "SilentAcks = %d\n", in_msg.SilentAcks);
if (tbe.AppliedSilentAcks == false) {
tbe.NumPendingMsgs := tbe.NumPendingMsgs - in_msg.SilentAcks;
tbe.AppliedSilentAcks := true;
}
DPRINTF(RubySlicc, "%d\n", tbe.NumPendingMsgs);
tbe.NumPendingMsgs := tbe.NumPendingMsgs - in_msg.Acks;
DPRINTF(RubySlicc, "%d\n", tbe.NumPendingMsgs);
APPEND_TRANSITION_COMMENT(tbe.NumPendingMsgs);
APPEND_TRANSITION_COMMENT(in_msg.Sender);
tbe.LastResponder := in_msg.Sender;
if (tbe.InitialRequestTime != zero_time() && in_msg.InitialRequestTime != zero_time()) {
assert(tbe.InitialRequestTime == in_msg.InitialRequestTime);
}
if (in_msg.InitialRequestTime != zero_time()) {
tbe.InitialRequestTime := in_msg.InitialRequestTime;
}
if (tbe.ForwardRequestTime != zero_time() && in_msg.ForwardRequestTime != zero_time()) {
assert(tbe.ForwardRequestTime == in_msg.ForwardRequestTime);
}
if (in_msg.ForwardRequestTime != zero_time()) {
tbe.ForwardRequestTime := in_msg.ForwardRequestTime;
}
if (tbe.FirstResponseTime == zero_time()) {
tbe.FirstResponseTime := curCycle();
}
}
}
action(uo_updateCurrentOwner, "uo", desc="When moving SS state, update current owner.") {
peek(responseToCache_in, ResponseMsg) {
assert(is_valid(tbe));
tbe.CurOwner := in_msg.Sender;
}
}
action(n_popResponseQueue, "n", desc="Pop response queue") {
responseToCache_in.dequeue(clockEdge());
}
action(ll_L2toL1Transfer, "ll", desc="") {
enqueue(triggerQueue_out, TriggerMsg, l2_cache_hit_latency) {
out_msg.addr := address;
out_msg.Type := TriggerType:L2_to_L1;
}
}
action(o_checkForCompletion, "o", desc="Check if we have received all the messages required for completion") {
assert(is_valid(tbe));
if (tbe.NumPendingMsgs == 0) {
enqueue(triggerQueue_out, TriggerMsg) {
out_msg.addr := address;
if (tbe.Sharers) {
out_msg.Type := TriggerType:ALL_ACKS;
} else {
out_msg.Type := TriggerType:ALL_ACKS_NO_SHARERS;
}
}
}
}
action(p_decrementNumberOfMessagesByOne, "p", desc="Decrement the number of messages for which we're waiting by one") {
assert(is_valid(tbe));
tbe.NumPendingMsgs := tbe.NumPendingMsgs - 1;
}
action(pp_incrementNumberOfMessagesByOne, "\p", desc="Increment the number of messages for which we're waiting by one") {
assert(is_valid(tbe));
tbe.NumPendingMsgs := tbe.NumPendingMsgs + 1;
}
action(q_sendDataFromTBEToCache, "q", desc="Send data from TBE to cache") {
peek(forwardToCache_in, RequestMsg) {
assert(in_msg.Requestor != machineID);
enqueue(responseNetwork_out, ResponseMsg, cache_response_latency) {
assert(is_valid(tbe));
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:DATA;
out_msg.Sender := machineID;
out_msg.Destination.add(in_msg.Requestor);
DPRINTF(RubySlicc, "%s\n", out_msg.Destination);
out_msg.DataBlk := tbe.DataBlk;
out_msg.Dirty := tbe.Dirty;
if (in_msg.DirectedProbe) {
out_msg.Acks := machineCount(MachineType:L1Cache);
} else {
out_msg.Acks := 2;
}
out_msg.SilentAcks := in_msg.SilentAcks;
out_msg.MessageSize := MessageSizeType:Response_Data;
out_msg.InitialRequestTime := in_msg.InitialRequestTime;
out_msg.ForwardRequestTime := in_msg.ForwardRequestTime;
}
}
}
action(sq_sendSharedDataFromTBEToCache, "sq", desc="Send shared data from TBE to cache, still the owner") {
peek(forwardToCache_in, RequestMsg) {
assert(in_msg.Requestor != machineID);
enqueue(responseNetwork_out, ResponseMsg, cache_response_latency) {
assert(is_valid(tbe));
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:DATA_SHARED;
out_msg.Sender := machineID;
out_msg.Destination.add(in_msg.Requestor);
DPRINTF(RubySlicc, "%s\n", out_msg.Destination);
out_msg.DataBlk := tbe.DataBlk;
out_msg.Dirty := tbe.Dirty;
if (in_msg.DirectedProbe) {
out_msg.Acks := machineCount(MachineType:L1Cache);
} else {
out_msg.Acks := 2;
}
out_msg.SilentAcks := in_msg.SilentAcks;
out_msg.MessageSize := MessageSizeType:Response_Data;
out_msg.InitialRequestTime := in_msg.InitialRequestTime;
out_msg.ForwardRequestTime := in_msg.ForwardRequestTime;
}
}
}
action(qm_sendDataFromTBEToCache, "qm", desc="Send data from TBE to cache, multiple sharers, still the owner") {
peek(forwardToCache_in, RequestMsg) {
enqueue(responseNetwork_out, ResponseMsg, cache_response_latency) {
assert(is_valid(tbe));
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:DATA_SHARED;
out_msg.Sender := machineID;
out_msg.Destination := in_msg.MergedRequestors;
DPRINTF(RubySlicc, "%s\n", out_msg.Destination);
out_msg.DataBlk := tbe.DataBlk;
out_msg.Dirty := tbe.Dirty;
out_msg.Acks := machineCount(MachineType:L1Cache);
out_msg.SilentAcks := in_msg.SilentAcks;
out_msg.MessageSize := MessageSizeType:Response_Data;
out_msg.InitialRequestTime := in_msg.InitialRequestTime;
out_msg.ForwardRequestTime := in_msg.ForwardRequestTime;
}
}
}
action(qq_sendDataFromTBEToMemory, "\q", desc="Send data from TBE to memory") {
enqueue(unblockNetwork_out, ResponseMsg, cache_response_latency) {
assert(is_valid(tbe));
out_msg.addr := address;
out_msg.Sender := machineID;
out_msg.Destination.add(mapAddressToMachine(address, MachineType:Directory));
out_msg.Dirty := tbe.Dirty;
if (tbe.Dirty) {
out_msg.Type := CoherenceResponseType:WB_DIRTY;
out_msg.DataBlk := tbe.DataBlk;
out_msg.MessageSize := MessageSizeType:Writeback_Data;
} else {
out_msg.Type := CoherenceResponseType:WB_CLEAN;
// NOTE: in a real system this would not send data. We send
// data here only so we can check it at the memory
out_msg.DataBlk := tbe.DataBlk;
out_msg.MessageSize := MessageSizeType:Writeback_Control;
}
}
}
action(r_setSharerBit, "r", desc="We saw other sharers") {
assert(is_valid(tbe));
tbe.Sharers := true;
}
action(s_deallocateTBE, "s", desc="Deallocate TBE") {
TBEs.deallocate(address);
unset_tbe();
}
action(t_sendExclusiveDataFromTBEToMemory, "t", desc="Send exclusive data from TBE to memory") {
enqueue(unblockNetwork_out, ResponseMsg, cache_response_latency) {
assert(is_valid(tbe));
out_msg.addr := address;
out_msg.Sender := machineID;
out_msg.Destination.add(mapAddressToMachine(address, MachineType:Directory));
out_msg.DataBlk := tbe.DataBlk;
out_msg.Dirty := tbe.Dirty;
if (tbe.Dirty) {
out_msg.Type := CoherenceResponseType:WB_EXCLUSIVE_DIRTY;
out_msg.DataBlk := tbe.DataBlk;
out_msg.MessageSize := MessageSizeType:Writeback_Data;
} else {
out_msg.Type := CoherenceResponseType:WB_EXCLUSIVE_CLEAN;
// NOTE: in a real system this would not send data. We send
// data here only so we can check it at the memory
out_msg.DataBlk := tbe.DataBlk;
out_msg.MessageSize := MessageSizeType:Writeback_Control;
}
}
}
action(u_writeDataToCache, "u", desc="Write data to cache") {
peek(responseToCache_in, ResponseMsg) {
assert(is_valid(cache_entry));
cache_entry.DataBlk := in_msg.DataBlk;
cache_entry.Dirty := in_msg.Dirty;
}
}
action(uf_writeDataToCacheTBE, "uf", desc="Write data to TBE") {
peek(responseToCache_in, ResponseMsg) {
assert(is_valid(tbe));
tbe.DataBlk := in_msg.DataBlk;
tbe.Dirty := in_msg.Dirty;
}
}
action(v_writeDataToCacheVerify, "v", desc="Write data to cache, assert it was same as before") {
peek(responseToCache_in, ResponseMsg) {
assert(is_valid(cache_entry));
DPRINTF(RubySlicc, "Cached Data Block: %s, Msg Data Block: %s\n",
cache_entry.DataBlk, in_msg.DataBlk);
assert(cache_entry.DataBlk == in_msg.DataBlk);
cache_entry.DataBlk := in_msg.DataBlk;
cache_entry.Dirty := in_msg.Dirty || cache_entry.Dirty;
}
}
action(vt_writeDataToTBEVerify, "vt", desc="Write data to TBE, assert it was same as before") {
peek(responseToCache_in, ResponseMsg) {
assert(is_valid(tbe));
DPRINTF(RubySlicc, "Cached Data Block: %s, Msg Data Block: %s\n",
tbe.DataBlk, in_msg.DataBlk);
assert(tbe.DataBlk == in_msg.DataBlk);
tbe.DataBlk := in_msg.DataBlk;
tbe.Dirty := in_msg.Dirty || tbe.Dirty;
}
}
action(gg_deallocateL1CacheBlock, "\g", desc="Deallocate cache block. Sets the cache to invalid, allowing a replacement in parallel with a fetch.") {
if (L1Dcache.isTagPresent(address)) {
L1Dcache.deallocate(address);
} else {
L1Icache.deallocate(address);
}
unset_cache_entry();
}
action(ii_allocateL1DCacheBlock, "\i", desc="Set L1 D-cache tag equal to tag of block B.") {
if (is_invalid(cache_entry)) {
set_cache_entry(L1Dcache.allocate(address, new Entry));
}
}
action(jj_allocateL1ICacheBlock, "\j", desc="Set L1 I-cache tag equal to tag of block B.") {
if (is_invalid(cache_entry)) {
set_cache_entry(L1Icache.allocate(address, new Entry));
}
}
action(vv_allocateL2CacheBlock, "\v", desc="Set L2 cache tag equal to tag of block B.") {
set_cache_entry(L2cache.allocate(address, new Entry));
}
action(rr_deallocateL2CacheBlock, "\r", desc="Deallocate L2 cache block. Sets the cache to not present, allowing a replacement in parallel with a fetch.") {
L2cache.deallocate(address);
unset_cache_entry();
}
action(gr_deallocateCacheBlock, "\gr", desc="Deallocate an L1 or L2 cache block.") {
if (L1Dcache.isTagPresent(address)) {
L1Dcache.deallocate(address);
}
else if (L1Icache.isTagPresent(address)){
L1Icache.deallocate(address);
}
else {
assert(L2cache.isTagPresent(address));
L2cache.deallocate(address);
}
unset_cache_entry();
}
action(forward_eviction_to_cpu, "\cc", desc="sends eviction information to the processor") {
if (send_evictions) {
DPRINTF(RubySlicc, "Sending invalidation for %#x to the CPU\n", address);
sequencer.evictionCallback(address);
}
}
action(uu_profileL1DataMiss, "\udm", desc="Profile the demand miss") {
++L1Dcache.demand_misses;
}
action(uu_profileL1DataHit, "\udh", desc="Profile the demand hits") {
++L1Dcache.demand_hits;
}
action(uu_profileL1InstMiss, "\uim", desc="Profile the demand miss") {
++L1Icache.demand_misses;
}
action(uu_profileL1InstHit, "\uih", desc="Profile the demand hits") {
++L1Icache.demand_hits;
}
action(uu_profileL2Miss, "\um", desc="Profile the demand miss") {
++L2cache.demand_misses;
}
action(uu_profileL2Hit, "\uh", desc="Profile the demand hits ") {
++L2cache.demand_hits;
}
action(zz_stallAndWaitMandatoryQueue, "\z", desc="Send the head of the mandatory queue to the back of the queue.") {
stall_and_wait(mandatoryQueue_in, address);
}
action(z_stall, "z", desc="stall") {
// do nothing and the special z_stall action will return a protocol stall
// so that the next port is checked
}
action(kd_wakeUpDependents, "kd", desc="wake-up dependents") {
wakeUpBuffers(address);
}
action(ka_wakeUpAllDependents, "ka", desc="wake-up all dependents") {
wakeUpAllBuffers();
}
//*****************************************************
// TRANSITIONS
//*****************************************************
// Transitions for Load/Store/L2_Replacement from transient states
transition({IM, IM_F, MM_WF, SM, SM_F, ISM, ISM_F, OM, OM_F, IS, SS, OI, MI, II, ST, OT, MT, MMT}, {Store, L2_Replacement}) {
zz_stallAndWaitMandatoryQueue;
}
transition({IM, IM_F, MM_WF, SM, SM_F, ISM, ISM_F, OM, OM_F, IS, SS, OI, MI, II}, {Flush_line}) {
zz_stallAndWaitMandatoryQueue;
}
transition({M_W, MM_W}, {L2_Replacement, Flush_line}) {
zz_stallAndWaitMandatoryQueue;
}
transition({IM, IS, OI, MI, II, ST, OT, MT, MMT, MI_F, MM_F, OM_F, IM_F, ISM_F, SM_F, MM_WF}, {Load, Ifetch}) {
zz_stallAndWaitMandatoryQueue;
}
transition({IM, SM, ISM, OM, IS, SS, MM_W, M_W, OI, MI, II, ST, OT, MT, MMT, IM_F, SM_F, ISM_F, OM_F, MM_WF, MI_F, MM_F, IR, SR, OR, MR, MMR}, L1_to_L2) {
zz_stallAndWaitMandatoryQueue;
}
transition({MI_F, MM_F}, {Store}) {
zz_stallAndWaitMandatoryQueue;
}
transition({MM_F, MI_F}, {Flush_line}) {
zz_stallAndWaitMandatoryQueue;
}
transition({ST, OT, MT, MMT}, {Other_GETX, NC_DMA_GETS, Other_GETS, Merged_GETS, Other_GETS_No_Mig, Invalidate, Flush_line}) {
z_stall;
}
transition({IR, SR, OR, MR, MMR}, {Other_GETX, NC_DMA_GETS, Other_GETS, Merged_GETS, Other_GETS_No_Mig, Invalidate}) {
z_stall;
}
// Transitions moving data between the L1 and L2 caches
transition({S, O, M, MM}, L1_to_L2) {
i_allocateTBE;
gg_deallocateL1CacheBlock;
vv_allocateL2CacheBlock;
hp_copyFromTBEToL2;
s_deallocateTBE;
}
transition(S, Trigger_L2_to_L1D, ST) {
i_allocateTBE;
rr_deallocateL2CacheBlock;
ii_allocateL1DCacheBlock;
nb_copyFromTBEToL1;
s_deallocateTBE;
zz_stallAndWaitMandatoryQueue;
ll_L2toL1Transfer;
}
transition(O, Trigger_L2_to_L1D, OT) {
i_allocateTBE;
rr_deallocateL2CacheBlock;
ii_allocateL1DCacheBlock;
nb_copyFromTBEToL1;
s_deallocateTBE;
zz_stallAndWaitMandatoryQueue;
ll_L2toL1Transfer;
}
transition(M, Trigger_L2_to_L1D, MT) {
i_allocateTBE;
rr_deallocateL2CacheBlock;
ii_allocateL1DCacheBlock;
nb_copyFromTBEToL1;
s_deallocateTBE;
zz_stallAndWaitMandatoryQueue;
ll_L2toL1Transfer;
}
transition(MM, Trigger_L2_to_L1D, MMT) {
i_allocateTBE;
rr_deallocateL2CacheBlock;
ii_allocateL1DCacheBlock;
nb_copyFromTBEToL1;
s_deallocateTBE;
zz_stallAndWaitMandatoryQueue;
ll_L2toL1Transfer;
}
transition(S, Trigger_L2_to_L1I, ST) {
i_allocateTBE;
rr_deallocateL2CacheBlock;
jj_allocateL1ICacheBlock;
nb_copyFromTBEToL1;
s_deallocateTBE;
zz_stallAndWaitMandatoryQueue;
ll_L2toL1Transfer;
}
transition(O, Trigger_L2_to_L1I, OT) {
i_allocateTBE;
rr_deallocateL2CacheBlock;
jj_allocateL1ICacheBlock;
nb_copyFromTBEToL1;
s_deallocateTBE;
zz_stallAndWaitMandatoryQueue;
ll_L2toL1Transfer;
}
transition(M, Trigger_L2_to_L1I, MT) {
i_allocateTBE;
rr_deallocateL2CacheBlock;
jj_allocateL1ICacheBlock;
nb_copyFromTBEToL1;
s_deallocateTBE;
zz_stallAndWaitMandatoryQueue;
ll_L2toL1Transfer;
}
transition(MM, Trigger_L2_to_L1I, MMT) {
i_allocateTBE;
rr_deallocateL2CacheBlock;
jj_allocateL1ICacheBlock;
nb_copyFromTBEToL1;
s_deallocateTBE;
zz_stallAndWaitMandatoryQueue;
ll_L2toL1Transfer;
}
transition(ST, Complete_L2_to_L1, SR) {
j_popTriggerQueue;
kd_wakeUpDependents;
}
transition(OT, Complete_L2_to_L1, OR) {
j_popTriggerQueue;
kd_wakeUpDependents;
}
transition(MT, Complete_L2_to_L1, MR) {
j_popTriggerQueue;
kd_wakeUpDependents;
}
transition(MMT, Complete_L2_to_L1, MMR) {
j_popTriggerQueue;
kd_wakeUpDependents;
}
// Transitions from Idle
transition({I,IR}, Load, IS) {
ii_allocateL1DCacheBlock;
i_allocateTBE;
a_issueGETS;
uu_profileL1DataMiss;
uu_profileL2Miss;
k_popMandatoryQueue;
}
transition({I,IR}, Ifetch, IS) {
jj_allocateL1ICacheBlock;
i_allocateTBE;
a_issueGETS;
uu_profileL1InstMiss;
uu_profileL2Miss;
k_popMandatoryQueue;
}
transition({I,IR}, Store, IM) {
ii_allocateL1DCacheBlock;
i_allocateTBE;
b_issueGETX;
uu_profileL1DataMiss;
uu_profileL2Miss;
k_popMandatoryQueue;
}
transition({I, IR}, Flush_line, IM_F) {
it_allocateTBE;
bf_issueGETF;
k_popMandatoryQueue;
}
transition(I, {Other_GETX, NC_DMA_GETS, Other_GETS, Other_GETS_No_Mig, Invalidate}) {
f_sendAck;
l_popForwardQueue;
}
// Transitions from Shared
transition({S, SM, ISM}, Load) {
h_load_hit;
uu_profileL1DataHit;
k_popMandatoryQueue;
}
transition({S, SM, ISM}, Ifetch) {
h_ifetch_hit;
uu_profileL1InstHit;
k_popMandatoryQueue;
}
transition(SR, Load, S) {
h_load_hit;
uu_profileL1DataMiss;
uu_profileL2Hit;
k_popMandatoryQueue;
ka_wakeUpAllDependents;
}
transition(SR, Ifetch, S) {
h_ifetch_hit;
uu_profileL1InstMiss;
uu_profileL2Hit;
k_popMandatoryQueue;
ka_wakeUpAllDependents;
}
transition({S,SR}, Store, SM) {
i_allocateTBE;
b_issueGETX;
uu_profileL1DataMiss;
uu_profileL2Miss;
k_popMandatoryQueue;
}
transition({S, SR}, Flush_line, SM_F) {
i_allocateTBE;
bf_issueGETF;
forward_eviction_to_cpu;
gg_deallocateL1CacheBlock;
k_popMandatoryQueue;
}
transition(S, L2_Replacement, I) {
forward_eviction_to_cpu;
rr_deallocateL2CacheBlock;
ka_wakeUpAllDependents;
}
transition(S, {Other_GETX, Invalidate}, I) {
f_sendAck;
forward_eviction_to_cpu;
gr_deallocateCacheBlock;
l_popForwardQueue;
}
transition(S, {NC_DMA_GETS, Other_GETS, Other_GETS_No_Mig}) {
ff_sendAckShared;
l_popForwardQueue;
}
// Transitions from Owned
transition({O, OM, SS, MM_W, M_W}, {Load}) {
h_load_hit;
uu_profileL1DataHit;
k_popMandatoryQueue;
}
transition({O, OM, SS, MM_W, M_W}, {Ifetch}) {
h_ifetch_hit;
uu_profileL1InstHit;
k_popMandatoryQueue;
}
transition(OR, Load, O) {
h_load_hit;
uu_profileL1DataMiss;
uu_profileL2Hit;
k_popMandatoryQueue;
ka_wakeUpAllDependents;
}
transition(OR, Ifetch, O) {
h_ifetch_hit;
uu_profileL1InstMiss;
uu_profileL2Hit;
k_popMandatoryQueue;
ka_wakeUpAllDependents;
}
transition({O,OR}, Store, OM) {
i_allocateTBE;
b_issueGETX;
p_decrementNumberOfMessagesByOne;
uu_profileL1DataMiss;
uu_profileL2Miss;
k_popMandatoryQueue;
}
transition({O, OR}, Flush_line, OM_F) {
i_allocateTBE;
bf_issueGETF;
p_decrementNumberOfMessagesByOne;
forward_eviction_to_cpu;
gg_deallocateL1CacheBlock;
k_popMandatoryQueue;
}
transition(O, L2_Replacement, OI) {
i_allocateTBE;
d_issuePUT;
forward_eviction_to_cpu;
rr_deallocateL2CacheBlock;
ka_wakeUpAllDependents;
}
transition(O, {Other_GETX, Invalidate}, I) {
e_sendData;
forward_eviction_to_cpu;
gr_deallocateCacheBlock;
l_popForwardQueue;
}
transition(O, {NC_DMA_GETS, Other_GETS, Other_GETS_No_Mig}) {
ee_sendDataShared;
l_popForwardQueue;
}
transition(O, Merged_GETS) {
em_sendDataSharedMultiple;
l_popForwardQueue;
}
// Transitions from Modified
transition({MM, M}, {Ifetch}) {
h_ifetch_hit;
uu_profileL1InstHit;
k_popMandatoryQueue;
}
transition({MM, M}, {Load}) {
h_load_hit;
uu_profileL1DataHit;
k_popMandatoryQueue;
}
transition(MM, Store) {
hh_store_hit;
uu_profileL1DataHit;
k_popMandatoryQueue;
}
transition(MMR, Load, MM) {
h_load_hit;
uu_profileL1DataMiss;
uu_profileL2Hit;
k_popMandatoryQueue;
ka_wakeUpAllDependents;
}
transition(MMR, Ifetch, MM) {
h_ifetch_hit;
uu_profileL1InstMiss;
uu_profileL2Hit;
k_popMandatoryQueue;
ka_wakeUpAllDependents;
}
transition(MMR, Store, MM) {
hh_store_hit;
uu_profileL1DataMiss;
uu_profileL2Hit;
k_popMandatoryQueue;
ka_wakeUpAllDependents;
}
transition({MM, M, MMR, MR}, Flush_line, MM_F) {
i_allocateTBE;
bf_issueGETF;
p_decrementNumberOfMessagesByOne;
forward_eviction_to_cpu;
gg_deallocateL1CacheBlock;
k_popMandatoryQueue;
}
transition(MM_F, Block_Ack, MI_F) {
df_issuePUTF;
l_popForwardQueue;
kd_wakeUpDependents;
}
transition(MM, L2_Replacement, MI) {
i_allocateTBE;
d_issuePUT;
forward_eviction_to_cpu;
rr_deallocateL2CacheBlock;
ka_wakeUpAllDependents;
}
transition(MM, {Other_GETX, Invalidate}, I) {
c_sendExclusiveData;
forward_eviction_to_cpu;
gr_deallocateCacheBlock;
l_popForwardQueue;
}
transition(MM, Other_GETS, I) {
c_sendExclusiveData;
forward_eviction_to_cpu;
gr_deallocateCacheBlock;
l_popForwardQueue;
}
transition(MM, NC_DMA_GETS, O) {
ee_sendDataShared;
l_popForwardQueue;
}
transition(MM, Other_GETS_No_Mig, O) {
ee_sendDataShared;
l_popForwardQueue;
}
transition(MM, Merged_GETS, O) {
em_sendDataSharedMultiple;
l_popForwardQueue;
}
// Transitions from Dirty Exclusive
transition(M, Store, MM) {
hh_store_hit;
uu_profileL1DataHit;
k_popMandatoryQueue;
}
transition(MR, Load, M) {
h_load_hit;
uu_profileL1DataMiss;
uu_profileL2Hit;
k_popMandatoryQueue;
ka_wakeUpAllDependents;
}
transition(MR, Ifetch, M) {
h_ifetch_hit;
uu_profileL1InstMiss;
uu_profileL2Hit;
k_popMandatoryQueue;
ka_wakeUpAllDependents;
}
transition(MR, Store, MM) {
hh_store_hit;
uu_profileL1DataMiss;
uu_profileL2Hit;
k_popMandatoryQueue;
ka_wakeUpAllDependents;
}
transition(M, L2_Replacement, MI) {
i_allocateTBE;
d_issuePUT;
forward_eviction_to_cpu;
rr_deallocateL2CacheBlock;
ka_wakeUpAllDependents;
}
transition(M, {Other_GETX, Invalidate}, I) {
c_sendExclusiveData;
forward_eviction_to_cpu;
gr_deallocateCacheBlock;
l_popForwardQueue;
}
transition(M, {Other_GETS, Other_GETS_No_Mig}, O) {
ee_sendDataShared;
l_popForwardQueue;
}
transition(M, NC_DMA_GETS, O) {
ee_sendDataShared;
l_popForwardQueue;
}
transition(M, Merged_GETS, O) {
em_sendDataSharedMultiple;
l_popForwardQueue;
}
// Transitions from IM
transition({IM, IM_F}, {Other_GETX, NC_DMA_GETS, Other_GETS, Other_GETS_No_Mig, Invalidate}) {
f_sendAck;
l_popForwardQueue;
}
transition({IM, IM_F, MM_F}, Ack) {
m_decrementNumberOfMessages;
o_checkForCompletion;
n_popResponseQueue;
}
transition(IM, Data, ISM) {
u_writeDataToCache;
m_decrementNumberOfMessages;
o_checkForCompletion;
n_popResponseQueue;
}
transition(IM_F, Data, ISM_F) {
uf_writeDataToCacheTBE;
m_decrementNumberOfMessages;
o_checkForCompletion;
n_popResponseQueue;
}
transition(IM, Exclusive_Data, MM_W) {
u_writeDataToCache;
m_decrementNumberOfMessages;
o_checkForCompletion;
sx_external_store_hit;
n_popResponseQueue;
kd_wakeUpDependents;
}
transition(IM_F, Exclusive_Data, MM_WF) {
uf_writeDataToCacheTBE;
m_decrementNumberOfMessages;
o_checkForCompletion;
n_popResponseQueue;
}
// Transitions from SM
transition({SM, SM_F}, {NC_DMA_GETS, Other_GETS, Other_GETS_No_Mig}) {
ff_sendAckShared;
l_popForwardQueue;
}
transition(SM, {Other_GETX, Invalidate}, IM) {
f_sendAck;
forward_eviction_to_cpu;
l_popForwardQueue;
}
transition(SM_F, {Other_GETX, Invalidate}, IM_F) {
f_sendAck;
forward_eviction_to_cpu;
l_popForwardQueue;
}
transition({SM, SM_F}, Ack) {
m_decrementNumberOfMessages;
o_checkForCompletion;
n_popResponseQueue;
}
transition(SM, {Data, Exclusive_Data}, ISM) {
v_writeDataToCacheVerify;
m_decrementNumberOfMessages;
o_checkForCompletion;
n_popResponseQueue;
}
transition(SM_F, {Data, Exclusive_Data}, ISM_F) {
vt_writeDataToTBEVerify;
m_decrementNumberOfMessages;
o_checkForCompletion;
n_popResponseQueue;
}
// Transitions from ISM
transition({ISM, ISM_F}, Ack) {
m_decrementNumberOfMessages;
o_checkForCompletion;
n_popResponseQueue;
}
transition(ISM, All_acks_no_sharers, MM) {
sxt_trig_ext_store_hit;
gm_sendUnblockM;
s_deallocateTBE;
j_popTriggerQueue;
kd_wakeUpDependents;
}
transition(ISM_F, All_acks_no_sharers, MI_F) {
df_issuePUTF;
j_popTriggerQueue;
kd_wakeUpDependents;
}
// Transitions from OM
transition(OM, {Other_GETX, Invalidate}, IM) {
e_sendData;
pp_incrementNumberOfMessagesByOne;
forward_eviction_to_cpu;
l_popForwardQueue;
}
transition(OM_F, {Other_GETX, Invalidate}, IM_F) {
q_sendDataFromTBEToCache;
pp_incrementNumberOfMessagesByOne;
forward_eviction_to_cpu;
l_popForwardQueue;
}
transition(OM, {NC_DMA_GETS, Other_GETS, Other_GETS_No_Mig}) {
ee_sendDataShared;
l_popForwardQueue;
}
transition(OM, Merged_GETS) {
em_sendDataSharedMultiple;
l_popForwardQueue;
}
transition(OM_F, {NC_DMA_GETS, Other_GETS, Other_GETS_No_Mig}) {
et_sendDataSharedFromTBE;
l_popForwardQueue;
}
transition(OM_F, Merged_GETS) {
emt_sendDataSharedMultipleFromTBE;
l_popForwardQueue;
}
transition({OM, OM_F}, Ack) {
m_decrementNumberOfMessages;
o_checkForCompletion;
n_popResponseQueue;
}
transition(OM, {All_acks, All_acks_no_sharers}, MM) {
sxt_trig_ext_store_hit;
gm_sendUnblockM;
s_deallocateTBE;
j_popTriggerQueue;
kd_wakeUpDependents;
}
transition({MM_F, OM_F}, {All_acks, All_acks_no_sharers}, MI_F) {
df_issuePUTF;
j_popTriggerQueue;
kd_wakeUpDependents;
}
// Transitions from IS
transition(IS, {Other_GETX, NC_DMA_GETS, Other_GETS, Other_GETS_No_Mig, Invalidate}) {
f_sendAck;
l_popForwardQueue;
}
transition(IS, Ack) {
m_decrementNumberOfMessages;
o_checkForCompletion;
n_popResponseQueue;
}
transition(IS, Shared_Ack) {
m_decrementNumberOfMessages;
r_setSharerBit;
o_checkForCompletion;
n_popResponseQueue;
}
transition(IS, Data, SS) {
u_writeDataToCache;
m_decrementNumberOfMessages;
o_checkForCompletion;
hx_external_load_hit;
uo_updateCurrentOwner;
n_popResponseQueue;
kd_wakeUpDependents;
}
transition(IS, Exclusive_Data, M_W) {
u_writeDataToCache;
m_decrementNumberOfMessages;
o_checkForCompletion;
hx_external_load_hit;
n_popResponseQueue;
kd_wakeUpDependents;
}
transition(IS, Shared_Data, SS) {
u_writeDataToCache;
r_setSharerBit;
m_decrementNumberOfMessages;
o_checkForCompletion;
hx_external_load_hit;
uo_updateCurrentOwner;
n_popResponseQueue;
kd_wakeUpDependents;
}
// Transitions from SS
transition(SS, Ack) {
m_decrementNumberOfMessages;
o_checkForCompletion;
n_popResponseQueue;
}
transition(SS, Shared_Ack) {
m_decrementNumberOfMessages;
r_setSharerBit;
o_checkForCompletion;
n_popResponseQueue;
}
transition(SS, All_acks, S) {
gs_sendUnblockS;
s_deallocateTBE;
j_popTriggerQueue;
kd_wakeUpDependents;
}
transition(SS, All_acks_no_sharers, S) {
// Note: The directory might still be the owner, so that is why we go to S
gs_sendUnblockS;
s_deallocateTBE;
j_popTriggerQueue;
kd_wakeUpDependents;
}
// Transitions from MM_W
transition(MM_W, Store) {
hh_store_hit;
uu_profileL1DataHit;
k_popMandatoryQueue;
}
transition({MM_W, MM_WF}, Ack) {
m_decrementNumberOfMessages;
o_checkForCompletion;
n_popResponseQueue;
}
transition(MM_W, All_acks_no_sharers, MM) {
gm_sendUnblockM;
s_deallocateTBE;
j_popTriggerQueue;
kd_wakeUpDependents;
}
transition(MM_WF, All_acks_no_sharers, MI_F) {
df_issuePUTF;
j_popTriggerQueue;
kd_wakeUpDependents;
}
// Transitions from M_W
transition(M_W, Store, MM_W) {
hh_store_hit;
uu_profileL1DataHit;
k_popMandatoryQueue;
}
transition(M_W, Ack) {
m_decrementNumberOfMessages;
o_checkForCompletion;
n_popResponseQueue;
}
transition(M_W, All_acks_no_sharers, M) {
gm_sendUnblockM;
s_deallocateTBE;
j_popTriggerQueue;
kd_wakeUpDependents;
}
// Transitions from OI/MI
transition({OI, MI}, {Other_GETX, Invalidate}, II) {
q_sendDataFromTBEToCache;
l_popForwardQueue;
}
transition({OI, MI}, {NC_DMA_GETS, Other_GETS, Other_GETS_No_Mig}, OI) {
sq_sendSharedDataFromTBEToCache;
l_popForwardQueue;
}
transition({OI, MI}, Merged_GETS, OI) {
qm_sendDataFromTBEToCache;
l_popForwardQueue;
}
transition(MI, Writeback_Ack, I) {
t_sendExclusiveDataFromTBEToMemory;
s_deallocateTBE;
l_popForwardQueue;
kd_wakeUpDependents;
}
transition(MI_F, Writeback_Ack, I) {
hh_flush_hit;
t_sendExclusiveDataFromTBEToMemory;
s_deallocateTBE;
l_popForwardQueue;
kd_wakeUpDependents;
}
transition(OI, Writeback_Ack, I) {
qq_sendDataFromTBEToMemory;
s_deallocateTBE;
l_popForwardQueue;
kd_wakeUpDependents;
}
// Transitions from II
transition(II, {NC_DMA_GETS, Other_GETS, Other_GETS_No_Mig, Other_GETX, Invalidate}, II) {
f_sendAck;
l_popForwardQueue;
}
transition(II, Writeback_Ack, I) {
g_sendUnblock;
s_deallocateTBE;
l_popForwardQueue;
kd_wakeUpDependents;
}
transition(II, Writeback_Nack, I) {
s_deallocateTBE;
l_popForwardQueue;
kd_wakeUpDependents;
}
transition(MM_F, {Other_GETX, Invalidate}, IM_F) {
ct_sendExclusiveDataFromTBE;
pp_incrementNumberOfMessagesByOne;
l_popForwardQueue;
}
transition(MM_F, Other_GETS, IM_F) {
ct_sendExclusiveDataFromTBE;
pp_incrementNumberOfMessagesByOne;
l_popForwardQueue;
}
transition(MM_F, NC_DMA_GETS, OM_F) {
sq_sendSharedDataFromTBEToCache;
l_popForwardQueue;
}
transition(MM_F, Other_GETS_No_Mig, OM_F) {
et_sendDataSharedFromTBE;
l_popForwardQueue;
}
transition(MM_F, Merged_GETS, OM_F) {
emt_sendDataSharedMultipleFromTBE;
l_popForwardQueue;
}
}