| /* |
| * Copyright (c) 2012, 2015, 2017, 2021 ARM Limited |
| * All rights reserved |
| * |
| * The license below extends only to copyright in the software and shall |
| * not be construed as granting a license to any other intellectual |
| * property including but not limited to intellectual property relating |
| * to a hardware implementation of the functionality of the software |
| * licensed hereunder. You may use the software subject to the license |
| * terms below provided that you ensure that this notice is replicated |
| * unmodified and in its entirety in all distributions of the software, |
| * modified or unmodified, in source code or in binary form. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are |
| * met: redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer; |
| * redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution; |
| * neither the name of the copyright holders nor the names of its |
| * contributors may be used to endorse or promote products derived from |
| * this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "cpu/kvm/base.hh" |
| |
| #include <linux/kvm.h> |
| #include <sys/ioctl.h> |
| #include <sys/mman.h> |
| #include <unistd.h> |
| |
| #include <cerrno> |
| #include <csignal> |
| #include <ostream> |
| |
| #include "base/compiler.hh" |
| #include "debug/Checkpoint.hh" |
| #include "debug/Drain.hh" |
| #include "debug/Kvm.hh" |
| #include "debug/KvmIO.hh" |
| #include "debug/KvmRun.hh" |
| #include "params/BaseKvmCPU.hh" |
| #include "sim/process.hh" |
| #include "sim/system.hh" |
| |
| /* Used by some KVM macros */ |
| #define PAGE_SIZE pageSize |
| |
| namespace gem5 |
| { |
| |
| BaseKvmCPU::BaseKvmCPU(const BaseKvmCPUParams ¶ms) |
| : BaseCPU(params), |
| vm(*params.system->getKvmVM()), |
| _status(Idle), |
| dataPort(name() + ".dcache_port", this), |
| instPort(name() + ".icache_port", this), |
| alwaysSyncTC(params.alwaysSyncTC), |
| threadContextDirty(true), |
| kvmStateDirty(false), |
| vcpuID(vm.allocVCPUID()), vcpuFD(-1), vcpuMMapSize(0), |
| _kvmRun(NULL), mmioRing(NULL), |
| pageSize(sysconf(_SC_PAGE_SIZE)), |
| tickEvent([this]{ tick(); }, "BaseKvmCPU tick", |
| false, Event::CPU_Tick_Pri), |
| activeInstPeriod(0), |
| perfControlledByTimer(params.usePerfOverflow), |
| hostFactor(params.hostFactor), stats(this), |
| ctrInsts(0) |
| { |
| if (pageSize == -1) |
| panic("KVM: Failed to determine host page size (%i)\n", |
| errno); |
| |
| if (FullSystem) |
| thread = new SimpleThread(this, 0, params.system, params.mmu, |
| params.isa[0]); |
| else |
| thread = new SimpleThread(this, /* thread_num */ 0, params.system, |
| params.workload[0], params.mmu, |
| params.isa[0]); |
| |
| thread->setStatus(ThreadContext::Halted); |
| tc = thread->getTC(); |
| threadContexts.push_back(tc); |
| } |
| |
| BaseKvmCPU::~BaseKvmCPU() |
| { |
| if (_kvmRun) |
| munmap(_kvmRun, vcpuMMapSize); |
| close(vcpuFD); |
| } |
| |
| void |
| BaseKvmCPU::init() |
| { |
| BaseCPU::init(); |
| fatal_if(numThreads != 1, "KVM: Multithreading not supported"); |
| } |
| |
| void |
| BaseKvmCPU::startup() |
| { |
| const BaseKvmCPUParams &p = |
| dynamic_cast<const BaseKvmCPUParams &>(params()); |
| |
| Kvm &kvm(*vm.kvm); |
| |
| BaseCPU::startup(); |
| |
| assert(vcpuFD == -1); |
| |
| // Tell the VM that a CPU is about to start. |
| vm.cpuStartup(); |
| |
| // We can't initialize KVM CPUs in BaseKvmCPU::init() since we are |
| // not guaranteed that the parent KVM VM has initialized at that |
| // point. Initialize virtual CPUs here instead. |
| vcpuFD = vm.createVCPU(vcpuID); |
| |
| // Map the KVM run structure |
| vcpuMMapSize = kvm.getVCPUMMapSize(); |
| _kvmRun = (struct kvm_run *)mmap(0, vcpuMMapSize, |
| PROT_READ | PROT_WRITE, MAP_SHARED, |
| vcpuFD, 0); |
| if (_kvmRun == MAP_FAILED) |
| panic("KVM: Failed to map run data structure\n"); |
| |
| // Setup a pointer to the MMIO ring buffer if coalesced MMIO is |
| // available. The offset into the KVM's communication page is |
| // provided by the coalesced MMIO capability. |
| int mmioOffset(kvm.capCoalescedMMIO()); |
| if (!p.useCoalescedMMIO) { |
| inform("KVM: Coalesced MMIO disabled by config.\n"); |
| } else if (mmioOffset) { |
| inform("KVM: Coalesced IO available\n"); |
| mmioRing = (struct kvm_coalesced_mmio_ring *)( |
| (char *)_kvmRun + (mmioOffset * pageSize)); |
| } else { |
| inform("KVM: Coalesced not supported by host OS\n"); |
| } |
| |
| schedule(new EventFunctionWrapper([this]{ |
| restartEqThread(); |
| }, name(), true), curTick()); |
| } |
| |
| BaseKvmCPU::Status |
| BaseKvmCPU::KVMCpuPort::nextIOState() const |
| { |
| return (activeMMIOReqs || pendingMMIOPkts.size()) |
| ? RunningMMIOPending : RunningServiceCompletion; |
| } |
| |
| Tick |
| BaseKvmCPU::KVMCpuPort::submitIO(PacketPtr pkt) |
| { |
| if (cpu->system->isAtomicMode()) { |
| Tick delay = sendAtomic(pkt); |
| delete pkt; |
| return delay; |
| } else { |
| if (pendingMMIOPkts.empty() && sendTimingReq(pkt)) { |
| activeMMIOReqs++; |
| } else { |
| pendingMMIOPkts.push(pkt); |
| } |
| // Return value is irrelevant for timing-mode accesses. |
| return 0; |
| } |
| } |
| |
| bool |
| BaseKvmCPU::KVMCpuPort::recvTimingResp(PacketPtr pkt) |
| { |
| DPRINTF(KvmIO, "KVM: Finished timing request\n"); |
| |
| delete pkt; |
| activeMMIOReqs--; |
| |
| // We can switch back into KVM when all pending and in-flight MMIO |
| // operations have completed. |
| if (!(activeMMIOReqs || pendingMMIOPkts.size())) { |
| DPRINTF(KvmIO, "KVM: Finished all outstanding timing requests\n"); |
| cpu->finishMMIOPending(); |
| } |
| return true; |
| } |
| |
| void |
| BaseKvmCPU::KVMCpuPort::recvReqRetry() |
| { |
| DPRINTF(KvmIO, "KVM: Retry for timing request\n"); |
| |
| assert(pendingMMIOPkts.size()); |
| |
| // Assuming that we can issue infinite requests this cycle is a bit |
| // unrealistic, but it's not worth modeling something more complex in |
| // KVM. |
| while (pendingMMIOPkts.size() && sendTimingReq(pendingMMIOPkts.front())) { |
| pendingMMIOPkts.pop(); |
| activeMMIOReqs++; |
| } |
| } |
| |
| void |
| BaseKvmCPU::finishMMIOPending() |
| { |
| assert(_status == RunningMMIOPending); |
| assert(!tickEvent.scheduled()); |
| |
| _status = RunningServiceCompletion; |
| schedule(tickEvent, nextCycle()); |
| } |
| |
| void |
| BaseKvmCPU::restartEqThread() |
| { |
| // Do thread-specific initialization. We need to setup signal |
| // delivery for counters and timers from within the thread that |
| // will execute the event queue to ensure that signals are |
| // delivered to the right threads. |
| const BaseKvmCPUParams &p = |
| dynamic_cast<const BaseKvmCPUParams &>(params()); |
| |
| vcpuThread = pthread_self(); |
| |
| // Setup signal handlers. This has to be done after the vCPU is |
| // created since it manipulates the vCPU signal mask. |
| setupSignalHandler(); |
| |
| setupCounters(); |
| |
| if (p.usePerfOverflow) { |
| runTimer.reset(new PerfKvmTimer(hwCycles, |
| KVM_KICK_SIGNAL, |
| p.hostFactor, |
| p.hostFreq)); |
| } else { |
| runTimer.reset(new PosixKvmTimer(KVM_KICK_SIGNAL, CLOCK_MONOTONIC, |
| p.hostFactor, |
| p.hostFreq)); |
| } |
| } |
| |
| BaseKvmCPU::StatGroup::StatGroup(statistics::Group *parent) |
| : statistics::Group(parent), |
| ADD_STAT(committedInsts, statistics::units::Count::get(), |
| "Number of instructions committed"), |
| ADD_STAT(numVMExits, statistics::units::Count::get(), |
| "total number of KVM exits"), |
| ADD_STAT(numVMHalfEntries, statistics::units::Count::get(), |
| "number of KVM entries to finalize pending operations"), |
| ADD_STAT(numExitSignal, statistics::units::Count::get(), |
| "exits due to signal delivery"), |
| ADD_STAT(numMMIO, statistics::units::Count::get(), |
| "number of VM exits due to memory mapped IO"), |
| ADD_STAT(numCoalescedMMIO, statistics::units::Count::get(), |
| "number of coalesced memory mapped IO requests"), |
| ADD_STAT(numIO, statistics::units::Count::get(), |
| "number of VM exits due to legacy IO"), |
| ADD_STAT(numHalt, statistics::units::Count::get(), |
| "number of VM exits due to wait for interrupt instructions"), |
| ADD_STAT(numInterrupts, statistics::units::Count::get(), |
| "number of interrupts delivered"), |
| ADD_STAT(numHypercalls, statistics::units::Count::get(), "number of hypercalls") |
| { |
| } |
| |
| void |
| BaseKvmCPU::serializeThread(CheckpointOut &cp, ThreadID tid) const |
| { |
| if (debug::Checkpoint) { |
| DPRINTF(Checkpoint, "KVM: Serializing thread %i:\n", tid); |
| dump(); |
| } |
| |
| assert(tid == 0); |
| assert(_status == Idle); |
| thread->serialize(cp); |
| } |
| |
| void |
| BaseKvmCPU::unserializeThread(CheckpointIn &cp, ThreadID tid) |
| { |
| DPRINTF(Checkpoint, "KVM: Unserialize thread %i:\n", tid); |
| |
| assert(tid == 0); |
| assert(_status == Idle); |
| thread->unserialize(cp); |
| threadContextDirty = true; |
| } |
| |
| DrainState |
| BaseKvmCPU::drain() |
| { |
| if (switchedOut()) |
| return DrainState::Drained; |
| |
| DPRINTF(Drain, "BaseKvmCPU::drain\n"); |
| |
| // The event queue won't be locked when calling drain since that's |
| // not done from an event. Lock the event queue here to make sure |
| // that scoped migrations continue to work if we need to |
| // synchronize the thread context. |
| std::lock_guard<EventQueue> lock(*this->eventQueue()); |
| |
| switch (_status) { |
| case Running: |
| // The base KVM code is normally ready when it is in the |
| // Running state, but the architecture specific code might be |
| // of a different opinion. This may happen when the CPU been |
| // notified of an event that hasn't been accepted by the vCPU |
| // yet. |
| if (!archIsDrained()) |
| return DrainState::Draining; |
| |
| // The state of the CPU is consistent, so we don't need to do |
| // anything special to drain it. We simply de-schedule the |
| // tick event and enter the Idle state to prevent nasty things |
| // like MMIOs from happening. |
| if (tickEvent.scheduled()) |
| deschedule(tickEvent); |
| _status = Idle; |
| |
| [[fallthrough]]; |
| case Idle: |
| // Idle, no need to drain |
| assert(!tickEvent.scheduled()); |
| |
| // Sync the thread context here since we'll need it when we |
| // switch CPUs or checkpoint the CPU. |
| syncThreadContext(); |
| |
| return DrainState::Drained; |
| |
| case RunningServiceCompletion: |
| // The CPU has just requested a service that was handled in |
| // the RunningService state, but the results have still not |
| // been reported to the CPU. Now, we /could/ probably just |
| // update the register state ourselves instead of letting KVM |
| // handle it, but that would be tricky. Instead, we enter KVM |
| // and let it do its stuff. |
| DPRINTF(Drain, "KVM CPU is waiting for service completion, " |
| "requesting drain.\n"); |
| return DrainState::Draining; |
| |
| case RunningMMIOPending: |
| // We need to drain since there are in-flight timing accesses |
| DPRINTF(Drain, "KVM CPU is waiting for timing accesses to complete, " |
| "requesting drain.\n"); |
| return DrainState::Draining; |
| |
| case RunningService: |
| // We need to drain since the CPU is waiting for service (e.g., MMIOs) |
| DPRINTF(Drain, "KVM CPU is waiting for service, requesting drain.\n"); |
| return DrainState::Draining; |
| |
| default: |
| panic("KVM: Unhandled CPU state in drain()\n"); |
| return DrainState::Drained; |
| } |
| } |
| |
| void |
| BaseKvmCPU::drainResume() |
| { |
| assert(!tickEvent.scheduled()); |
| |
| // We might have been switched out. In that case, we don't need to |
| // do anything. |
| if (switchedOut()) |
| return; |
| |
| DPRINTF(Kvm, "drainResume\n"); |
| verifyMemoryMode(); |
| |
| /* The simulator may have terminated the threads servicing event |
| * queues. In that case, we need to re-initialize the new |
| * threads. */ |
| schedule(new EventFunctionWrapper([this]{ |
| restartEqThread(); |
| }, name(), true), curTick()); |
| |
| // The tick event is de-scheduled as a part of the draining |
| // process. Re-schedule it if the thread context is active. |
| if (tc->status() == ThreadContext::Active) { |
| schedule(tickEvent, nextCycle()); |
| _status = Running; |
| } else { |
| _status = Idle; |
| } |
| } |
| |
| void |
| BaseKvmCPU::notifyFork() |
| { |
| // We should have drained prior to forking, which means that the |
| // tick event shouldn't be scheduled and the CPU is idle. |
| assert(!tickEvent.scheduled()); |
| assert(_status == Idle); |
| |
| if (vcpuFD != -1) { |
| if (close(vcpuFD) == -1) |
| warn("kvm CPU: notifyFork failed to close vcpuFD\n"); |
| |
| if (_kvmRun) |
| munmap(_kvmRun, vcpuMMapSize); |
| |
| vcpuFD = -1; |
| _kvmRun = NULL; |
| |
| hwInstructions.detach(); |
| hwCycles.detach(); |
| } |
| } |
| |
| void |
| BaseKvmCPU::switchOut() |
| { |
| DPRINTF(Kvm, "switchOut\n"); |
| |
| BaseCPU::switchOut(); |
| |
| // We should have drained prior to executing a switchOut, which |
| // means that the tick event shouldn't be scheduled and the CPU is |
| // idle. |
| assert(!tickEvent.scheduled()); |
| assert(_status == Idle); |
| } |
| |
| void |
| BaseKvmCPU::takeOverFrom(BaseCPU *cpu) |
| { |
| DPRINTF(Kvm, "takeOverFrom\n"); |
| |
| BaseCPU::takeOverFrom(cpu); |
| |
| // We should have drained prior to executing a switchOut, which |
| // means that the tick event shouldn't be scheduled and the CPU is |
| // idle. |
| assert(!tickEvent.scheduled()); |
| assert(_status == Idle); |
| assert(threadContexts.size() == 1); |
| |
| // Force an update of the KVM state here instead of flagging the |
| // TC as dirty. This is not ideal from a performance point of |
| // view, but it makes debugging easier as it allows meaningful KVM |
| // state to be dumped before and after a takeover. |
| updateKvmState(); |
| threadContextDirty = false; |
| } |
| |
| void |
| BaseKvmCPU::verifyMemoryMode() const |
| { |
| if (!(system->bypassCaches())) { |
| fatal("The KVM-based CPUs requires the memory system to be in the " |
| "'noncaching' mode.\n"); |
| } |
| } |
| |
| void |
| BaseKvmCPU::wakeup(ThreadID tid) |
| { |
| DPRINTF(Kvm, "wakeup()\n"); |
| // This method might have been called from another |
| // context. Migrate to this SimObject's event queue when |
| // delivering the wakeup signal. |
| EventQueue::ScopedMigration migrate(eventQueue()); |
| |
| // Kick the vCPU to get it to come out of KVM. |
| kick(); |
| |
| if (thread->status() != ThreadContext::Suspended) |
| return; |
| |
| thread->activate(); |
| } |
| |
| void |
| BaseKvmCPU::activateContext(ThreadID thread_num) |
| { |
| DPRINTF(Kvm, "ActivateContext %d\n", thread_num); |
| |
| assert(thread_num == 0); |
| assert(thread); |
| |
| assert(_status == Idle); |
| assert(!tickEvent.scheduled()); |
| |
| baseStats.numCycles += |
| ticksToCycles(thread->lastActivate - thread->lastSuspend); |
| |
| schedule(tickEvent, clockEdge(Cycles(0))); |
| _status = Running; |
| } |
| |
| |
| void |
| BaseKvmCPU::suspendContext(ThreadID thread_num) |
| { |
| DPRINTF(Kvm, "SuspendContext %d\n", thread_num); |
| |
| assert(thread_num == 0); |
| assert(thread); |
| |
| if (_status == Idle) |
| return; |
| |
| assert(_status == Running || _status == RunningServiceCompletion); |
| |
| // The tick event may no be scheduled if the quest has requested |
| // the monitor to wait for interrupts. The normal CPU models can |
| // get their tick events descheduled by quiesce instructions, but |
| // that can't happen here. |
| if (tickEvent.scheduled()) |
| deschedule(tickEvent); |
| |
| _status = Idle; |
| } |
| |
| void |
| BaseKvmCPU::deallocateContext(ThreadID thread_num) |
| { |
| // for now, these are equivalent |
| suspendContext(thread_num); |
| } |
| |
| void |
| BaseKvmCPU::haltContext(ThreadID thread_num) |
| { |
| // for now, these are equivalent |
| suspendContext(thread_num); |
| updateCycleCounters(BaseCPU::CPU_STATE_SLEEP); |
| } |
| |
| ThreadContext * |
| BaseKvmCPU::getContext(int tn) |
| { |
| assert(tn == 0); |
| syncThreadContext(); |
| return tc; |
| } |
| |
| |
| Counter |
| BaseKvmCPU::totalInsts() const |
| { |
| return ctrInsts; |
| } |
| |
| Counter |
| BaseKvmCPU::totalOps() const |
| { |
| hack_once("Pretending totalOps is equivalent to totalInsts()\n"); |
| return ctrInsts; |
| } |
| |
| void |
| BaseKvmCPU::dump() const |
| { |
| inform("State dumping not implemented."); |
| } |
| |
| void |
| BaseKvmCPU::tick() |
| { |
| Tick delay(0); |
| assert(_status != Idle && _status != RunningMMIOPending); |
| |
| switch (_status) { |
| case RunningService: |
| // handleKvmExit() will determine the next state of the CPU |
| delay = handleKvmExit(); |
| |
| if (tryDrain()) |
| _status = Idle; |
| break; |
| |
| case RunningServiceCompletion: |
| case Running: { |
| auto &queue = thread->comInstEventQueue; |
| const uint64_t nextInstEvent( |
| queue.empty() ? MaxTick : queue.nextTick()); |
| // Enter into KVM and complete pending IO instructions if we |
| // have an instruction event pending. |
| const Tick ticksToExecute( |
| nextInstEvent > ctrInsts ? |
| curEventQueue()->nextTick() - curTick() : 0); |
| |
| if (alwaysSyncTC) |
| threadContextDirty = true; |
| |
| // We might need to update the KVM state. |
| syncKvmState(); |
| |
| // Setup any pending instruction count breakpoints using |
| // PerfEvent if we are going to execute more than just an IO |
| // completion. |
| if (ticksToExecute > 0) |
| setupInstStop(); |
| |
| DPRINTF(KvmRun, "Entering KVM...\n"); |
| if (drainState() == DrainState::Draining) { |
| // Force an immediate exit from KVM after completing |
| // pending operations. The architecture-specific code |
| // takes care to run until it is in a state where it can |
| // safely be drained. |
| delay = kvmRunDrain(); |
| } else { |
| delay = kvmRun(ticksToExecute); |
| } |
| |
| // The CPU might have been suspended before entering into |
| // KVM. Assume that the CPU was suspended /before/ entering |
| // into KVM and skip the exit handling. |
| if (_status == Idle) |
| break; |
| |
| // Entering into KVM implies that we'll have to reload the thread |
| // context from KVM if we want to access it. Flag the KVM state as |
| // dirty with respect to the cached thread context. |
| kvmStateDirty = true; |
| |
| if (alwaysSyncTC) |
| syncThreadContext(); |
| |
| // Enter into the RunningService state unless the |
| // simulation was stopped by a timer. |
| if (_kvmRun->exit_reason != KVM_EXIT_INTR) { |
| _status = RunningService; |
| } else { |
| ++stats.numExitSignal; |
| _status = Running; |
| } |
| |
| // Service any pending instruction events. The vCPU should |
| // have exited in time for the event using the instruction |
| // counter configured by setupInstStop(). |
| queue.serviceEvents(ctrInsts); |
| |
| if (tryDrain()) |
| _status = Idle; |
| } break; |
| |
| default: |
| panic("BaseKvmCPU entered tick() in an illegal state (%i)\n", |
| _status); |
| } |
| |
| // Schedule a new tick if we are still running |
| if (_status != Idle && _status != RunningMMIOPending) { |
| if (_kvmRun->exit_reason == KVM_EXIT_INTR && runTimer->expired()) |
| schedule(tickEvent, clockEdge(ticksToCycles( |
| curEventQueue()->nextTick() - curTick() + 1))); |
| else |
| schedule(tickEvent, clockEdge(ticksToCycles(delay))); |
| } |
| } |
| |
| Tick |
| BaseKvmCPU::kvmRunDrain() |
| { |
| // By default, the only thing we need to drain is a pending IO |
| // operation which assumes that we are in the |
| // RunningServiceCompletion or RunningMMIOPending state. |
| assert(_status == RunningServiceCompletion || |
| _status == RunningMMIOPending); |
| |
| // Deliver the data from the pending IO operation and immediately |
| // exit. |
| return kvmRun(0); |
| } |
| |
| uint64_t |
| BaseKvmCPU::getHostCycles() const |
| { |
| return hwCycles.read(); |
| } |
| |
| Tick |
| BaseKvmCPU::kvmRun(Tick ticks) |
| { |
| Tick ticksExecuted; |
| fatal_if(vcpuFD == -1, |
| "Trying to run a KVM CPU in a forked child process. " |
| "This is not supported.\n"); |
| DPRINTF(KvmRun, "KVM: Executing for %i ticks\n", ticks); |
| |
| if (ticks == 0) { |
| // Settings ticks == 0 is a special case which causes an entry |
| // into KVM that finishes pending operations (e.g., IO) and |
| // then immediately exits. |
| DPRINTF(KvmRun, "KVM: Delivering IO without full guest entry\n"); |
| |
| ++stats.numVMHalfEntries; |
| |
| // Send a KVM_KICK_SIGNAL to the vCPU thread (i.e., this |
| // thread). The KVM control signal is masked while executing |
| // in gem5 and gets unmasked temporarily as when entering |
| // KVM. See setSignalMask() and setupSignalHandler(). |
| kick(); |
| |
| // Start the vCPU. KVM will check for signals after completing |
| // pending operations (IO). Since the KVM_KICK_SIGNAL is |
| // pending, this forces an immediate exit to gem5 again. We |
| // don't bother to setup timers since this shouldn't actually |
| // execute any code (other than completing half-executed IO |
| // instructions) in the guest. |
| ioctlRun(); |
| |
| // We always execute at least one cycle to prevent the |
| // BaseKvmCPU::tick() to be rescheduled on the same tick |
| // twice. |
| ticksExecuted = clockPeriod(); |
| } else { |
| // This method is executed as a result of a tick event. That |
| // means that the event queue will be locked when entering the |
| // method. We temporarily unlock the event queue to allow |
| // other threads to steal control of this thread to inject |
| // interrupts. They will typically lock the queue and then |
| // force an exit from KVM by kicking the vCPU. |
| EventQueue::ScopedRelease release(curEventQueue()); |
| |
| if (ticks < runTimer->resolution()) { |
| DPRINTF(KvmRun, "KVM: Adjusting tick count (%i -> %i)\n", |
| ticks, runTimer->resolution()); |
| ticks = runTimer->resolution(); |
| } |
| |
| // Get hardware statistics after synchronizing contexts. The KVM |
| // state update might affect guest cycle counters. |
| uint64_t baseCycles(getHostCycles()); |
| uint64_t baseInstrs(hwInstructions.read()); |
| |
| // Arm the run timer and start the cycle timer if it isn't |
| // controlled by the overflow timer. Starting/stopping the cycle |
| // timer automatically starts the other perf timers as they are in |
| // the same counter group. |
| runTimer->arm(ticks); |
| if (!perfControlledByTimer) |
| hwCycles.start(); |
| |
| ioctlRun(); |
| |
| runTimer->disarm(); |
| if (!perfControlledByTimer) |
| hwCycles.stop(); |
| |
| // The control signal may have been delivered after we exited |
| // from KVM. It will be pending in that case since it is |
| // masked when we aren't executing in KVM. Discard it to make |
| // sure we don't deliver it immediately next time we try to |
| // enter into KVM. |
| discardPendingSignal(KVM_KICK_SIGNAL); |
| |
| const uint64_t hostCyclesExecuted(getHostCycles() - baseCycles); |
| const uint64_t simCyclesExecuted(hostCyclesExecuted * hostFactor); |
| const uint64_t instsExecuted(hwInstructions.read() - baseInstrs); |
| ticksExecuted = runTimer->ticksFromHostCycles(hostCyclesExecuted); |
| |
| /* Update statistics */ |
| baseStats.numCycles += simCyclesExecuted;; |
| stats.committedInsts += instsExecuted; |
| ctrInsts += instsExecuted; |
| |
| DPRINTF(KvmRun, |
| "KVM: Executed %i instructions in %i cycles " |
| "(%i ticks, sim cycles: %i).\n", |
| instsExecuted, hostCyclesExecuted, ticksExecuted, simCyclesExecuted); |
| } |
| |
| ++stats.numVMExits; |
| |
| return ticksExecuted + flushCoalescedMMIO(); |
| } |
| |
| void |
| BaseKvmCPU::kvmNonMaskableInterrupt() |
| { |
| ++stats.numInterrupts; |
| if (ioctl(KVM_NMI) == -1) |
| panic("KVM: Failed to deliver NMI to virtual CPU\n"); |
| } |
| |
| void |
| BaseKvmCPU::kvmInterrupt(const struct kvm_interrupt &interrupt) |
| { |
| ++stats.numInterrupts; |
| if (ioctl(KVM_INTERRUPT, (void *)&interrupt) == -1) |
| panic("KVM: Failed to deliver interrupt to virtual CPU\n"); |
| } |
| |
| void |
| BaseKvmCPU::getRegisters(struct kvm_regs ®s) const |
| { |
| if (ioctl(KVM_GET_REGS, ®s) == -1) |
| panic("KVM: Failed to get guest registers\n"); |
| } |
| |
| void |
| BaseKvmCPU::setRegisters(const struct kvm_regs ®s) |
| { |
| if (ioctl(KVM_SET_REGS, (void *)®s) == -1) |
| panic("KVM: Failed to set guest registers\n"); |
| } |
| |
| void |
| BaseKvmCPU::getSpecialRegisters(struct kvm_sregs ®s) const |
| { |
| if (ioctl(KVM_GET_SREGS, ®s) == -1) |
| panic("KVM: Failed to get guest special registers\n"); |
| } |
| |
| void |
| BaseKvmCPU::setSpecialRegisters(const struct kvm_sregs ®s) |
| { |
| if (ioctl(KVM_SET_SREGS, (void *)®s) == -1) |
| panic("KVM: Failed to set guest special registers\n"); |
| } |
| |
| void |
| BaseKvmCPU::getFPUState(struct kvm_fpu &state) const |
| { |
| if (ioctl(KVM_GET_FPU, &state) == -1) |
| panic("KVM: Failed to get guest FPU state\n"); |
| } |
| |
| void |
| BaseKvmCPU::setFPUState(const struct kvm_fpu &state) |
| { |
| if (ioctl(KVM_SET_FPU, (void *)&state) == -1) |
| panic("KVM: Failed to set guest FPU state\n"); |
| } |
| |
| |
| void |
| BaseKvmCPU::setOneReg(uint64_t id, const void *addr) |
| { |
| #ifdef KVM_SET_ONE_REG |
| struct kvm_one_reg reg; |
| reg.id = id; |
| reg.addr = (uint64_t)addr; |
| |
| if (ioctl(KVM_SET_ONE_REG, ®) == -1) { |
| panic("KVM: Failed to set register (0x%x) value (errno: %i)\n", |
| id, errno); |
| } |
| #else |
| panic("KVM_SET_ONE_REG is unsupported on this platform.\n"); |
| #endif |
| } |
| |
| void |
| BaseKvmCPU::getOneReg(uint64_t id, void *addr) const |
| { |
| #ifdef KVM_GET_ONE_REG |
| struct kvm_one_reg reg; |
| reg.id = id; |
| reg.addr = (uint64_t)addr; |
| |
| if (ioctl(KVM_GET_ONE_REG, ®) == -1) { |
| panic("KVM: Failed to get register (0x%x) value (errno: %i)\n", |
| id, errno); |
| } |
| #else |
| panic("KVM_GET_ONE_REG is unsupported on this platform.\n"); |
| #endif |
| } |
| |
| std::string |
| BaseKvmCPU::getAndFormatOneReg(uint64_t id) const |
| { |
| #ifdef KVM_GET_ONE_REG |
| std::ostringstream ss; |
| |
| ss.setf(std::ios::hex, std::ios::basefield); |
| ss.setf(std::ios::showbase); |
| #define HANDLE_INTTYPE(len) \ |
| case KVM_REG_SIZE_U ## len: { \ |
| uint ## len ## _t value; \ |
| getOneReg(id, &value); \ |
| ss << value; \ |
| } break |
| |
| #define HANDLE_ARRAY(len) \ |
| case KVM_REG_SIZE_U ## len: { \ |
| uint8_t value[len / 8]; \ |
| getOneReg(id, value); \ |
| ccprintf(ss, "[0x%x", value[0]); \ |
| for (int i = 1; i < len / 8; ++i) \ |
| ccprintf(ss, ", 0x%x", value[i]); \ |
| ccprintf(ss, "]"); \ |
| } break |
| |
| switch (id & KVM_REG_SIZE_MASK) { |
| HANDLE_INTTYPE(8); |
| HANDLE_INTTYPE(16); |
| HANDLE_INTTYPE(32); |
| HANDLE_INTTYPE(64); |
| HANDLE_ARRAY(128); |
| HANDLE_ARRAY(256); |
| HANDLE_ARRAY(512); |
| HANDLE_ARRAY(1024); |
| default: |
| ss << "??"; |
| } |
| |
| #undef HANDLE_INTTYPE |
| #undef HANDLE_ARRAY |
| |
| return ss.str(); |
| #else |
| panic("KVM_GET_ONE_REG is unsupported on this platform.\n"); |
| #endif |
| } |
| |
| void |
| BaseKvmCPU::syncThreadContext() |
| { |
| if (!kvmStateDirty) |
| return; |
| |
| assert(!threadContextDirty); |
| |
| updateThreadContext(); |
| kvmStateDirty = false; |
| } |
| |
| void |
| BaseKvmCPU::syncKvmState() |
| { |
| if (!threadContextDirty) |
| return; |
| |
| assert(!kvmStateDirty); |
| |
| updateKvmState(); |
| threadContextDirty = false; |
| } |
| |
| Tick |
| BaseKvmCPU::handleKvmExit() |
| { |
| DPRINTF(KvmRun, "handleKvmExit (exit_reason: %i)\n", _kvmRun->exit_reason); |
| assert(_status == RunningService); |
| |
| // Switch into the running state by default. Individual handlers |
| // can override this. |
| _status = Running; |
| switch (_kvmRun->exit_reason) { |
| case KVM_EXIT_UNKNOWN: |
| return handleKvmExitUnknown(); |
| |
| case KVM_EXIT_EXCEPTION: |
| return handleKvmExitException(); |
| |
| case KVM_EXIT_IO: |
| { |
| ++stats.numIO; |
| Tick ticks = handleKvmExitIO(); |
| _status = dataPort.nextIOState(); |
| return ticks; |
| } |
| |
| case KVM_EXIT_HYPERCALL: |
| ++stats.numHypercalls; |
| return handleKvmExitHypercall(); |
| |
| case KVM_EXIT_HLT: |
| /* The guest has halted and is waiting for interrupts */ |
| DPRINTF(Kvm, "handleKvmExitHalt\n"); |
| ++stats.numHalt; |
| |
| // Suspend the thread until the next interrupt arrives |
| thread->suspend(); |
| |
| // This is actually ignored since the thread is suspended. |
| return 0; |
| |
| case KVM_EXIT_MMIO: |
| { |
| /* Service memory mapped IO requests */ |
| DPRINTF(KvmIO, "KVM: Handling MMIO (w: %u, addr: 0x%x, len: %u)\n", |
| _kvmRun->mmio.is_write, |
| _kvmRun->mmio.phys_addr, _kvmRun->mmio.len); |
| |
| ++stats.numMMIO; |
| Tick ticks = doMMIOAccess(_kvmRun->mmio.phys_addr, _kvmRun->mmio.data, |
| _kvmRun->mmio.len, _kvmRun->mmio.is_write); |
| // doMMIOAccess could have triggered a suspend, in which case we don't |
| // want to overwrite the _status. |
| if (_status != Idle) |
| _status = dataPort.nextIOState(); |
| return ticks; |
| } |
| |
| case KVM_EXIT_IRQ_WINDOW_OPEN: |
| return handleKvmExitIRQWindowOpen(); |
| |
| case KVM_EXIT_FAIL_ENTRY: |
| return handleKvmExitFailEntry(); |
| |
| case KVM_EXIT_INTR: |
| /* KVM was interrupted by a signal, restart it in the next |
| * tick. */ |
| return 0; |
| |
| case KVM_EXIT_INTERNAL_ERROR: |
| panic("KVM: Internal error (suberror: %u)\n", |
| _kvmRun->internal.suberror); |
| |
| default: |
| dump(); |
| panic("KVM: Unexpected exit (exit_reason: %u)\n", _kvmRun->exit_reason); |
| } |
| } |
| |
| Tick |
| BaseKvmCPU::handleKvmExitIO() |
| { |
| panic("KVM: Unhandled guest IO (dir: %i, size: %i, port: 0x%x, count: %i)\n", |
| _kvmRun->io.direction, _kvmRun->io.size, |
| _kvmRun->io.port, _kvmRun->io.count); |
| } |
| |
| Tick |
| BaseKvmCPU::handleKvmExitHypercall() |
| { |
| panic("KVM: Unhandled hypercall\n"); |
| } |
| |
| Tick |
| BaseKvmCPU::handleKvmExitIRQWindowOpen() |
| { |
| warn("KVM: Unhandled IRQ window.\n"); |
| return 0; |
| } |
| |
| |
| Tick |
| BaseKvmCPU::handleKvmExitUnknown() |
| { |
| dump(); |
| panic("KVM: Unknown error when starting vCPU (hw reason: 0x%llx)\n", |
| _kvmRun->hw.hardware_exit_reason); |
| } |
| |
| Tick |
| BaseKvmCPU::handleKvmExitException() |
| { |
| dump(); |
| panic("KVM: Got exception when starting vCPU " |
| "(exception: %u, error_code: %u)\n", |
| _kvmRun->ex.exception, _kvmRun->ex.error_code); |
| } |
| |
| Tick |
| BaseKvmCPU::handleKvmExitFailEntry() |
| { |
| dump(); |
| panic("KVM: Failed to enter virtualized mode (hw reason: 0x%llx)\n", |
| _kvmRun->fail_entry.hardware_entry_failure_reason); |
| } |
| |
| Tick |
| BaseKvmCPU::doMMIOAccess(Addr paddr, void *data, int size, bool write) |
| { |
| ThreadContext *tc(thread->getTC()); |
| syncThreadContext(); |
| |
| RequestPtr mmio_req = std::make_shared<Request>( |
| paddr, size, Request::UNCACHEABLE, dataRequestorId()); |
| |
| mmio_req->setContext(tc->contextId()); |
| // Some architectures do need to massage physical addresses a bit |
| // before they are inserted into the memory system. This enables |
| // APIC accesses on x86 and m5ops where supported through a MMIO |
| // interface. |
| BaseMMU::Mode access_type(write ? BaseMMU::Write : BaseMMU::Read); |
| Fault fault(tc->getMMUPtr()->finalizePhysical(mmio_req, tc, access_type)); |
| if (fault != NoFault) |
| warn("Finalization of MMIO address failed: %s\n", fault->name()); |
| |
| |
| const MemCmd cmd(write ? MemCmd::WriteReq : MemCmd::ReadReq); |
| PacketPtr pkt = new Packet(mmio_req, cmd); |
| pkt->dataStatic(data); |
| |
| if (mmio_req->isLocalAccess()) { |
| // Since the PC has already been advanced by KVM, set the next |
| // PC to the current PC. KVM doesn't use that value, and that |
| // way any gem5 op or syscall which needs to know what the next |
| // PC is will be able to get a reasonable value. |
| // |
| // We won't be able to rewind the current PC to the "correct" |
| // value without figuring out how big the current instruction |
| // is, and that's probably not worth the effort. |
| tc->setNPC(tc->instAddr()); |
| // We currently assume that there is no need to migrate to a |
| // different event queue when doing local accesses. Currently, they |
| // are only used for m5ops, so it should be a valid assumption. |
| const Cycles ipr_delay = mmio_req->localAccessor(tc, pkt); |
| threadContextDirty = true; |
| delete pkt; |
| return clockPeriod() * ipr_delay; |
| } else { |
| // Temporarily lock and migrate to the device event queue to |
| // prevent races in multi-core mode. |
| EventQueue::ScopedMigration migrate(deviceEventQueue()); |
| |
| return dataPort.submitIO(pkt); |
| } |
| } |
| |
| void |
| BaseKvmCPU::setSignalMask(const sigset_t *mask) |
| { |
| std::unique_ptr<struct kvm_signal_mask, void(*)(void *p)> |
| kvm_mask(nullptr, [](void *p) { operator delete(p); }); |
| |
| if (mask) { |
| kvm_mask.reset((struct kvm_signal_mask *)operator new( |
| sizeof(struct kvm_signal_mask) + sizeof(*mask))); |
| // The kernel and the user-space headers have different ideas |
| // about the size of sigset_t. This seems like a massive hack, |
| // but is actually what qemu does. |
| assert(sizeof(*mask) >= 8); |
| kvm_mask->len = 8; |
| memcpy(kvm_mask->sigset, mask, kvm_mask->len); |
| } |
| |
| if (ioctl(KVM_SET_SIGNAL_MASK, (void *)kvm_mask.get()) == -1) |
| panic("KVM: Failed to set vCPU signal mask (errno: %i)\n", |
| errno); |
| } |
| |
| int |
| BaseKvmCPU::ioctl(int request, long p1) const |
| { |
| if (vcpuFD == -1) |
| panic("KVM: CPU ioctl called before initialization\n"); |
| |
| return ::ioctl(vcpuFD, request, p1); |
| } |
| |
| Tick |
| BaseKvmCPU::flushCoalescedMMIO() |
| { |
| if (!mmioRing) |
| return 0; |
| |
| DPRINTF(KvmIO, "KVM: Flushing the coalesced MMIO ring buffer\n"); |
| |
| // TODO: We might need to do synchronization when we start to |
| // support multiple CPUs |
| Tick ticks(0); |
| while (mmioRing->first != mmioRing->last) { |
| struct kvm_coalesced_mmio &ent( |
| mmioRing->coalesced_mmio[mmioRing->first]); |
| |
| DPRINTF(KvmIO, "KVM: Handling coalesced MMIO (addr: 0x%x, len: %u)\n", |
| ent.phys_addr, ent.len); |
| |
| ++stats.numCoalescedMMIO; |
| ticks += doMMIOAccess(ent.phys_addr, ent.data, ent.len, true); |
| |
| mmioRing->first = (mmioRing->first + 1) % KVM_COALESCED_MMIO_MAX; |
| } |
| |
| return ticks; |
| } |
| |
| /** |
| * Dummy handler for KVM kick signals. |
| * |
| * @note This function is usually not called since the kernel doesn't |
| * seem to deliver signals when the signal is only unmasked when |
| * running in KVM. This doesn't matter though since we are only |
| * interested in getting KVM to exit, which happens as expected. See |
| * setupSignalHandler() and kvmRun() for details about KVM signal |
| * handling. |
| */ |
| static void |
| onKickSignal(int signo, siginfo_t *si, void *data) |
| { |
| } |
| |
| void |
| BaseKvmCPU::setupSignalHandler() |
| { |
| struct sigaction sa; |
| |
| memset(&sa, 0, sizeof(sa)); |
| sa.sa_sigaction = onKickSignal; |
| sa.sa_flags = SA_SIGINFO | SA_RESTART; |
| if (sigaction(KVM_KICK_SIGNAL, &sa, NULL) == -1) |
| panic("KVM: Failed to setup vCPU timer signal handler\n"); |
| |
| sigset_t sigset; |
| if (pthread_sigmask(SIG_BLOCK, NULL, &sigset) == -1) |
| panic("KVM: Failed get signal mask\n"); |
| |
| // Request KVM to setup the same signal mask as we're currently |
| // running with except for the KVM control signal. We'll sometimes |
| // need to raise the KVM_KICK_SIGNAL to cause immediate exits from |
| // KVM after servicing IO requests. See kvmRun(). |
| sigdelset(&sigset, KVM_KICK_SIGNAL); |
| setSignalMask(&sigset); |
| |
| // Mask our control signals so they aren't delivered unless we're |
| // actually executing inside KVM. |
| sigaddset(&sigset, KVM_KICK_SIGNAL); |
| if (pthread_sigmask(SIG_SETMASK, &sigset, NULL) == -1) |
| panic("KVM: Failed mask the KVM control signals\n"); |
| } |
| |
| bool |
| BaseKvmCPU::discardPendingSignal(int signum) const |
| { |
| int discardedSignal; |
| |
| // Setting the timeout to zero causes sigtimedwait to return |
| // immediately. |
| struct timespec timeout; |
| timeout.tv_sec = 0; |
| timeout.tv_nsec = 0; |
| |
| sigset_t sigset; |
| sigemptyset(&sigset); |
| sigaddset(&sigset, signum); |
| |
| do { |
| discardedSignal = sigtimedwait(&sigset, NULL, &timeout); |
| } while (discardedSignal == -1 && errno == EINTR); |
| |
| if (discardedSignal == signum) |
| return true; |
| else if (discardedSignal == -1 && errno == EAGAIN) |
| return false; |
| else |
| panic("Unexpected return value from sigtimedwait: %i (errno: %i)\n", |
| discardedSignal, errno); |
| } |
| |
| void |
| BaseKvmCPU::setupCounters() |
| { |
| DPRINTF(Kvm, "Attaching cycle counter...\n"); |
| PerfKvmCounterConfig cfgCycles(PERF_TYPE_HARDWARE, |
| PERF_COUNT_HW_CPU_CYCLES); |
| cfgCycles.disabled(true) |
| .pinned(true); |
| |
| // Try to exclude the host. We set both exclude_hv and |
| // exclude_host since different architectures use slightly |
| // different APIs in the kernel. |
| cfgCycles.exclude_hv(true) |
| .exclude_host(true); |
| |
| if (perfControlledByTimer) { |
| // We need to configure the cycles counter to send overflows |
| // since we are going to use it to trigger timer signals that |
| // trap back into m5 from KVM. In practice, this means that we |
| // need to set some non-zero sample period that gets |
| // overridden when the timer is armed. |
| cfgCycles.wakeupEvents(1) |
| .samplePeriod(42); |
| } |
| |
| // We might be re-attaching counters due threads being |
| // re-initialised after fork. |
| if (hwCycles.attached()) |
| hwCycles.detach(); |
| |
| hwCycles.attach(cfgCycles, |
| 0); // TID (0 => currentThread) |
| |
| setupInstCounter(); |
| } |
| |
| bool |
| BaseKvmCPU::tryDrain() |
| { |
| if (drainState() != DrainState::Draining) |
| return false; |
| |
| if (!archIsDrained()) { |
| DPRINTF(Drain, "tryDrain: Architecture code is not ready.\n"); |
| return false; |
| } |
| |
| if (_status == Idle || _status == Running) { |
| DPRINTF(Drain, |
| "tryDrain: CPU transitioned into the Idle state, drain done\n"); |
| signalDrainDone(); |
| return true; |
| } else { |
| DPRINTF(Drain, "tryDrain: CPU not ready.\n"); |
| return false; |
| } |
| } |
| |
| void |
| BaseKvmCPU::ioctlRun() |
| { |
| if (ioctl(KVM_RUN) == -1) { |
| if (errno != EINTR) |
| panic("KVM: Failed to start virtual CPU (errno: %i)\n", |
| errno); |
| } |
| } |
| |
| void |
| BaseKvmCPU::setupInstStop() |
| { |
| if (thread->comInstEventQueue.empty()) { |
| setupInstCounter(0); |
| } else { |
| Tick next = thread->comInstEventQueue.nextTick(); |
| assert(next > ctrInsts); |
| setupInstCounter(next - ctrInsts); |
| } |
| } |
| |
| void |
| BaseKvmCPU::setupInstCounter(uint64_t period) |
| { |
| // No need to do anything if we aren't attaching for the first |
| // time or the period isn't changing. |
| if (period == activeInstPeriod && hwInstructions.attached()) |
| return; |
| |
| PerfKvmCounterConfig cfgInstructions(PERF_TYPE_HARDWARE, |
| PERF_COUNT_HW_INSTRUCTIONS); |
| |
| // Try to exclude the host. We set both exclude_hv and |
| // exclude_host since different architectures use slightly |
| // different APIs in the kernel. |
| cfgInstructions.exclude_hv(true) |
| .exclude_host(true); |
| |
| if (period) { |
| // Setup a sampling counter if that has been requested. |
| cfgInstructions.wakeupEvents(1) |
| .samplePeriod(period); |
| } |
| |
| // We need to detach and re-attach the counter to reliably change |
| // sampling settings. See PerfKvmCounter::period() for details. |
| if (hwInstructions.attached()) |
| hwInstructions.detach(); |
| assert(hwCycles.attached()); |
| hwInstructions.attach(cfgInstructions, |
| 0, // TID (0 => currentThread) |
| hwCycles); |
| |
| if (period) |
| hwInstructions.enableSignals(KVM_KICK_SIGNAL); |
| |
| activeInstPeriod = period; |
| } |
| |
| } // namespace gem5 |