blob: 25f6bd7bbb0f0823cc9975add9b0a6f0f5f3f989 [file] [log] [blame]
/*
* Copyright (c) 2017 Jason Lowe-Power
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "learning_gem5/part2/simple_cache.hh"
#include "base/random.hh"
#include "debug/SimpleCache.hh"
#include "sim/system.hh"
SimpleCache::SimpleCache(SimpleCacheParams *params) :
ClockedObject(params),
latency(params->latency),
blockSize(params->system->cacheLineSize()),
capacity(params->size / blockSize),
memPort(params->name + ".mem_side", this),
blocked(false), originalPacket(nullptr), waitingPortId(-1)
{
// Since the CPU side ports are a vector of ports, create an instance of
// the CPUSidePort for each connection. This member of params is
// automatically created depending on the name of the vector port and
// holds the number of connections to this port name
for (int i = 0; i < params->port_cpu_side_connection_count; ++i) {
cpuPorts.emplace_back(name() + csprintf(".cpu_side[%d]", i), i, this);
}
}
Port &
SimpleCache::getPort(const std::string &if_name, PortID idx)
{
// This is the name from the Python SimObject declaration in SimpleCache.py
if (if_name == "mem_side") {
panic_if(idx != InvalidPortID,
"Mem side of simple cache not a vector port");
return memPort;
} else if (if_name == "cpu_side" && idx < cpuPorts.size()) {
// We should have already created all of the ports in the constructor
return cpuPorts[idx];
} else {
// pass it along to our super class
return ClockedObject::getPort(if_name, idx);
}
}
void
SimpleCache::CPUSidePort::sendPacket(PacketPtr pkt)
{
// Note: This flow control is very simple since the cache is blocking.
panic_if(blockedPacket != nullptr, "Should never try to send if blocked!");
// If we can't send the packet across the port, store it for later.
DPRINTF(SimpleCache, "Sending %s to CPU\n", pkt->print());
if (!sendTimingResp(pkt)) {
DPRINTF(SimpleCache, "failed!\n");
blockedPacket = pkt;
}
}
AddrRangeList
SimpleCache::CPUSidePort::getAddrRanges() const
{
return owner->getAddrRanges();
}
void
SimpleCache::CPUSidePort::trySendRetry()
{
if (needRetry && blockedPacket == nullptr) {
// Only send a retry if the port is now completely free
needRetry = false;
DPRINTF(SimpleCache, "Sending retry req.\n");
sendRetryReq();
}
}
void
SimpleCache::CPUSidePort::recvFunctional(PacketPtr pkt)
{
// Just forward to the cache.
return owner->handleFunctional(pkt);
}
bool
SimpleCache::CPUSidePort::recvTimingReq(PacketPtr pkt)
{
DPRINTF(SimpleCache, "Got request %s\n", pkt->print());
if (blockedPacket || needRetry) {
// The cache may not be able to send a reply if this is blocked
DPRINTF(SimpleCache, "Request blocked\n");
needRetry = true;
return false;
}
// Just forward to the cache.
if (!owner->handleRequest(pkt, id)) {
DPRINTF(SimpleCache, "Request failed\n");
// stalling
needRetry = true;
return false;
} else {
DPRINTF(SimpleCache, "Request succeeded\n");
return true;
}
}
void
SimpleCache::CPUSidePort::recvRespRetry()
{
// We should have a blocked packet if this function is called.
assert(blockedPacket != nullptr);
// Grab the blocked packet.
PacketPtr pkt = blockedPacket;
blockedPacket = nullptr;
DPRINTF(SimpleCache, "Retrying response pkt %s\n", pkt->print());
// Try to resend it. It's possible that it fails again.
sendPacket(pkt);
// We may now be able to accept new packets
trySendRetry();
}
void
SimpleCache::MemSidePort::sendPacket(PacketPtr pkt)
{
// Note: This flow control is very simple since the cache is blocking.
panic_if(blockedPacket != nullptr, "Should never try to send if blocked!");
// If we can't send the packet across the port, store it for later.
if (!sendTimingReq(pkt)) {
blockedPacket = pkt;
}
}
bool
SimpleCache::MemSidePort::recvTimingResp(PacketPtr pkt)
{
// Just forward to the cache.
return owner->handleResponse(pkt);
}
void
SimpleCache::MemSidePort::recvReqRetry()
{
// We should have a blocked packet if this function is called.
assert(blockedPacket != nullptr);
// Grab the blocked packet.
PacketPtr pkt = blockedPacket;
blockedPacket = nullptr;
// Try to resend it. It's possible that it fails again.
sendPacket(pkt);
}
void
SimpleCache::MemSidePort::recvRangeChange()
{
owner->sendRangeChange();
}
bool
SimpleCache::handleRequest(PacketPtr pkt, int port_id)
{
if (blocked) {
// There is currently an outstanding request so we can't respond. Stall
return false;
}
DPRINTF(SimpleCache, "Got request for addr %#x\n", pkt->getAddr());
// This cache is now blocked waiting for the response to this packet.
blocked = true;
// Store the port for when we get the response
assert(waitingPortId == -1);
waitingPortId = port_id;
// Schedule an event after cache access latency to actually access
schedule(new EventFunctionWrapper([this, pkt]{ accessTiming(pkt); },
name() + ".accessEvent", true),
clockEdge(latency));
return true;
}
bool
SimpleCache::handleResponse(PacketPtr pkt)
{
assert(blocked);
DPRINTF(SimpleCache, "Got response for addr %#x\n", pkt->getAddr());
// For now assume that inserts are off of the critical path and don't count
// for any added latency.
insert(pkt);
missLatency.sample(curTick() - missTime);
// If we had to upgrade the request packet to a full cache line, now we
// can use that packet to construct the response.
if (originalPacket != nullptr) {
DPRINTF(SimpleCache, "Copying data from new packet to old\n");
// We had to upgrade a previous packet. We can functionally deal with
// the cache access now. It better be a hit.
bool hit M5_VAR_USED = accessFunctional(originalPacket);
panic_if(!hit, "Should always hit after inserting");
originalPacket->makeResponse();
delete pkt; // We may need to delay this, I'm not sure.
pkt = originalPacket;
originalPacket = nullptr;
} // else, pkt contains the data it needs
sendResponse(pkt);
return true;
}
void SimpleCache::sendResponse(PacketPtr pkt)
{
assert(blocked);
DPRINTF(SimpleCache, "Sending resp for addr %#x\n", pkt->getAddr());
int port = waitingPortId;
// The packet is now done. We're about to put it in the port, no need for
// this object to continue to stall.
// We need to free the resource before sending the packet in case the CPU
// tries to send another request immediately (e.g., in the same callchain).
blocked = false;
waitingPortId = -1;
// Simply forward to the memory port
cpuPorts[port].sendPacket(pkt);
// For each of the cpu ports, if it needs to send a retry, it should do it
// now since this memory object may be unblocked now.
for (auto& port : cpuPorts) {
port.trySendRetry();
}
}
void
SimpleCache::handleFunctional(PacketPtr pkt)
{
if (accessFunctional(pkt)) {
pkt->makeResponse();
} else {
memPort.sendFunctional(pkt);
}
}
void
SimpleCache::accessTiming(PacketPtr pkt)
{
bool hit = accessFunctional(pkt);
DPRINTF(SimpleCache, "%s for packet: %s\n", hit ? "Hit" : "Miss",
pkt->print());
if (hit) {
// Respond to the CPU side
hits++; // update stats
DDUMP(SimpleCache, pkt->getConstPtr<uint8_t>(), pkt->getSize());
pkt->makeResponse();
sendResponse(pkt);
} else {
misses++; // update stats
missTime = curTick();
// Forward to the memory side.
// We can't directly forward the packet unless it is exactly the size
// of the cache line, and aligned. Check for that here.
Addr addr = pkt->getAddr();
Addr block_addr = pkt->getBlockAddr(blockSize);
unsigned size = pkt->getSize();
if (addr == block_addr && size == blockSize) {
// Aligned and block size. We can just forward.
DPRINTF(SimpleCache, "forwarding packet\n");
memPort.sendPacket(pkt);
} else {
DPRINTF(SimpleCache, "Upgrading packet to block size\n");
panic_if(addr - block_addr + size > blockSize,
"Cannot handle accesses that span multiple cache lines");
// Unaligned access to one cache block
assert(pkt->needsResponse());
MemCmd cmd;
if (pkt->isWrite() || pkt->isRead()) {
// Read the data from memory to write into the block.
// We'll write the data in the cache (i.e., a writeback cache)
cmd = MemCmd::ReadReq;
} else {
panic("Unknown packet type in upgrade size");
}
// Create a new packet that is blockSize
PacketPtr new_pkt = new Packet(pkt->req, cmd, blockSize);
new_pkt->allocate();
// Should now be block aligned
assert(new_pkt->getAddr() == new_pkt->getBlockAddr(blockSize));
// Save the old packet
originalPacket = pkt;
DPRINTF(SimpleCache, "forwarding packet\n");
memPort.sendPacket(new_pkt);
}
}
}
bool
SimpleCache::accessFunctional(PacketPtr pkt)
{
Addr block_addr = pkt->getBlockAddr(blockSize);
auto it = cacheStore.find(block_addr);
if (it != cacheStore.end()) {
if (pkt->isWrite()) {
// Write the data into the block in the cache
pkt->writeDataToBlock(it->second, blockSize);
} else if (pkt->isRead()) {
// Read the data out of the cache block into the packet
pkt->setDataFromBlock(it->second, blockSize);
} else {
panic("Unknown packet type!");
}
return true;
}
return false;
}
void
SimpleCache::insert(PacketPtr pkt)
{
// The packet should be aligned.
assert(pkt->getAddr() == pkt->getBlockAddr(blockSize));
// The address should not be in the cache
assert(cacheStore.find(pkt->getAddr()) == cacheStore.end());
// The pkt should be a response
assert(pkt->isResponse());
if (cacheStore.size() >= capacity) {
// Select random thing to evict. This is a little convoluted since we
// are using a std::unordered_map. See http://bit.ly/2hrnLP2
int bucket, bucket_size;
do {
bucket = random_mt.random(0, (int)cacheStore.bucket_count() - 1);
} while ( (bucket_size = cacheStore.bucket_size(bucket)) == 0 );
auto block = std::next(cacheStore.begin(bucket),
random_mt.random(0, bucket_size - 1));
DPRINTF(SimpleCache, "Removing addr %#x\n", block->first);
// Write back the data.
// Create a new request-packet pair
RequestPtr req = std::make_shared<Request>(
block->first, blockSize, 0, 0);
PacketPtr new_pkt = new Packet(req, MemCmd::WritebackDirty, blockSize);
new_pkt->dataDynamic(block->second); // This will be deleted later
DPRINTF(SimpleCache, "Writing packet back %s\n", pkt->print());
// Send the write to memory
memPort.sendPacket(new_pkt);
// Delete this entry
cacheStore.erase(block->first);
}
DPRINTF(SimpleCache, "Inserting %s\n", pkt->print());
DDUMP(SimpleCache, pkt->getConstPtr<uint8_t>(), blockSize);
// Allocate space for the cache block data
uint8_t *data = new uint8_t[blockSize];
// Insert the data and address into the cache store
cacheStore[pkt->getAddr()] = data;
// Write the data into the cache
pkt->writeDataToBlock(data, blockSize);
}
AddrRangeList
SimpleCache::getAddrRanges() const
{
DPRINTF(SimpleCache, "Sending new ranges\n");
// Just use the same ranges as whatever is on the memory side.
return memPort.getAddrRanges();
}
void
SimpleCache::sendRangeChange() const
{
for (auto& port : cpuPorts) {
port.sendRangeChange();
}
}
void
SimpleCache::regStats()
{
// If you don't do this you get errors about uninitialized stats.
ClockedObject::regStats();
hits.name(name() + ".hits")
.desc("Number of hits")
;
misses.name(name() + ".misses")
.desc("Number of misses")
;
missLatency.name(name() + ".missLatency")
.desc("Ticks for misses to the cache")
.init(16) // number of buckets
;
hitRatio.name(name() + ".hitRatio")
.desc("The ratio of hits to the total accesses to the cache")
;
hitRatio = hits / (hits + misses);
}
SimpleCache*
SimpleCacheParams::create()
{
return new SimpleCache(this);
}