blob: 07bbdc3b4b868ea7c3eecf877fc5636d879bda63 [file] [log] [blame]
/*
* Copyright (c) 2013 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2002-2005 The Regents of The University of Michigan
* Copyright (c) 2010 Advanced Micro Devices, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Nathan Binkert
* Steve Reinhardt
* Gabe Black
* Geoffrey Blake
*/
#ifndef __BASE_INET_HH__
#define __BASE_INET_HH__
#include <iosfwd>
#include <string>
#include <utility>
#include <vector>
#include "base/types.hh"
#include "dev/etherpkt.hh"
#include "dnet/os.h"
#include "dnet/eth.h"
#include "dnet/ip.h"
#include "dnet/ip6.h"
#include "dnet/addr.h"
#include "dnet/arp.h"
#include "dnet/icmp.h"
#include "dnet/tcp.h"
#include "dnet/udp.h"
#include "dnet/intf.h"
#include "dnet/route.h"
#include "dnet/fw.h"
#include "dnet/blob.h"
#include "dnet/rand.h"
namespace Net {
/*
* Ethernet Stuff
*/
struct EthAddr : protected eth_addr
{
protected:
void parse(const std::string &addr);
public:
EthAddr();
EthAddr(const uint8_t ea[ETH_ADDR_LEN]);
EthAddr(const eth_addr &ea);
EthAddr(const std::string &addr);
const EthAddr &operator=(const eth_addr &ea);
const EthAddr &operator=(const std::string &addr);
int size() const { return sizeof(eth_addr); }
const uint8_t *bytes() const { return &data[0]; }
uint8_t *bytes() { return &data[0]; }
const uint8_t *addr() const { return &data[0]; }
bool unicast() const { return !(data[0] & 0x01); }
bool multicast() const { return !unicast() && !broadcast(); }
bool broadcast() const
{
bool isBroadcast = true;
for (int i = 0; i < ETH_ADDR_LEN; ++i) {
isBroadcast = isBroadcast && data[i] == 0xff;
}
return isBroadcast;
}
std::string string() const;
operator uint64_t() const
{
uint64_t reg = 0;
reg |= ((uint64_t)data[0]) << 40;
reg |= ((uint64_t)data[1]) << 32;
reg |= ((uint64_t)data[2]) << 24;
reg |= ((uint64_t)data[3]) << 16;
reg |= ((uint64_t)data[4]) << 8;
reg |= ((uint64_t)data[5]) << 0;
return reg;
}
};
std::ostream &operator<<(std::ostream &stream, const EthAddr &ea);
bool operator==(const EthAddr &left, const EthAddr &right);
struct EthHdr : public eth_hdr
{
bool isVlan() const { return (ntohs(eth_type) == ETH_TYPE_8021Q); }
uint16_t type() const {
if (!isVlan())
return ntohs(eth_type);
else
// L3 type is now 16 bytes into the hdr with 802.1Q
// instead of 12. dnet/eth.h only supports 802.1
return ntohs(*((uint16_t*)(((uint8_t *)this) + 16)));
}
uint16_t vlanId() const {
if (isVlan())
return ntohs(*((uint16_t*)(((uint8_t *)this) + 14)));
else
return 0x0000;
}
const EthAddr &src() const { return *(EthAddr *)&eth_src; }
const EthAddr &dst() const { return *(EthAddr *)&eth_dst; }
int size() const {
if (!isVlan())
return sizeof(eth_hdr);
else
return (sizeof(eth_hdr)+4);
}
const uint8_t *bytes() const { return (const uint8_t *)this; }
const uint8_t *payload() const { return bytes() + size(); }
uint8_t *bytes() { return (uint8_t *)this; }
uint8_t *payload() { return bytes() + size(); }
};
class EthPtr
{
protected:
friend class IpPtr;
friend class Ip6Ptr;
EthPacketPtr p;
public:
EthPtr() {}
EthPtr(const EthPacketPtr &ptr) : p(ptr) { }
EthHdr *operator->() { return (EthHdr *)p->data; }
EthHdr &operator*() { return *(EthHdr *)p->data; }
operator EthHdr *() { return (EthHdr *)p->data; }
const EthHdr *operator->() const { return (const EthHdr *)p->data; }
const EthHdr &operator*() const { return *(const EthHdr *)p->data; }
operator const EthHdr *() const { return (const EthHdr *)p->data; }
const EthPtr &operator=(const EthPacketPtr &ptr) { p = ptr; return *this; }
const EthPacketPtr packet() const { return p; }
EthPacketPtr packet() { return p; }
bool operator!() const { return !p; }
operator bool() const { return (p != nullptr); }
int off() const { return 0; }
int pstart() const { return off() + ((const EthHdr*)p->data)->size(); }
};
/*
* IP Stuff
*/
struct IpAddress
{
protected:
uint32_t _ip;
public:
IpAddress() : _ip(0)
{}
IpAddress(const uint32_t __ip) : _ip(__ip)
{}
uint32_t ip() const { return _ip; }
std::string string() const;
};
std::ostream &operator<<(std::ostream &stream, const IpAddress &ia);
bool operator==(const IpAddress &left, const IpAddress &right);
struct IpNetmask : public IpAddress
{
protected:
uint8_t _netmask;
public:
IpNetmask() : IpAddress(), _netmask(0)
{}
IpNetmask(const uint32_t __ip, const uint8_t __netmask) :
IpAddress(__ip), _netmask(__netmask)
{}
uint8_t netmask() const { return _netmask; }
std::string string() const;
};
std::ostream &operator<<(std::ostream &stream, const IpNetmask &in);
bool operator==(const IpNetmask &left, const IpNetmask &right);
struct IpWithPort : public IpAddress
{
protected:
uint16_t _port;
public:
IpWithPort() : IpAddress(), _port(0)
{}
IpWithPort(const uint32_t __ip, const uint16_t __port) :
IpAddress(__ip), _port(__port)
{}
uint8_t port() const { return _port; }
std::string string() const;
};
std::ostream &operator<<(std::ostream &stream, const IpWithPort &iwp);
bool operator==(const IpWithPort &left, const IpWithPort &right);
struct IpOpt;
struct IpHdr : public ip_hdr
{
uint8_t version() const { return ip_v; }
uint8_t hlen() const { return ip_hl * 4; }
uint8_t tos() const { return ip_tos; }
uint16_t len() const { return ntohs(ip_len); }
uint16_t id() const { return ntohs(ip_id); }
uint16_t frag_flags() const { return ntohs(ip_off) >> 13; }
uint16_t frag_off() const { return ntohs(ip_off) & 0x1fff; }
uint8_t ttl() const { return ip_ttl; }
uint8_t proto() const { return ip_p; }
uint16_t sum() const { return ip_sum; }
uint32_t src() const { return ntohl(ip_src); }
uint32_t dst() const { return ntohl(ip_dst); }
void sum(uint16_t sum) { ip_sum = sum; }
void id(uint16_t _id) { ip_id = htons(_id); }
void len(uint16_t _len) { ip_len = htons(_len); }
bool options(std::vector<const IpOpt *> &vec) const;
int size() const { return hlen(); }
const uint8_t *bytes() const { return (const uint8_t *)this; }
const uint8_t *payload() const { return bytes() + size(); }
uint8_t *bytes() { return (uint8_t *)this; }
uint8_t *payload() { return bytes() + size(); }
};
class IpPtr
{
protected:
friend class TcpPtr;
friend class UdpPtr;
EthPacketPtr p;
bool eth_hdr_vlan;
void set(const EthPacketPtr &ptr)
{
p = 0;
eth_hdr_vlan = false;
if (ptr) {
EthHdr *eth = (EthHdr *)ptr->data;
if (eth->type() == ETH_TYPE_IP)
p = ptr;
if (eth->isVlan())
eth_hdr_vlan = true;
}
}
public:
IpPtr() : p(0), eth_hdr_vlan(false) {}
IpPtr(const EthPacketPtr &ptr) : p(0), eth_hdr_vlan(false) { set(ptr); }
IpPtr(const EthPtr &ptr) : p(0), eth_hdr_vlan(false) { set(ptr.p); }
IpPtr(const IpPtr &ptr) : p(ptr.p), eth_hdr_vlan(ptr.eth_hdr_vlan) { }
IpHdr *get() { return (IpHdr *)(p->data + sizeof(eth_hdr) +
((eth_hdr_vlan) ? 4 : 0)); }
IpHdr *operator->() { return get(); }
IpHdr &operator*() { return *get(); }
const IpHdr *get() const
{ return (const IpHdr *)(p->data + sizeof(eth_hdr) +
((eth_hdr_vlan) ? 4 : 0)); }
const IpHdr *operator->() const { return get(); }
const IpHdr &operator*() const { return *get(); }
const IpPtr &operator=(const EthPacketPtr &ptr) { set(ptr); return *this; }
const IpPtr &operator=(const EthPtr &ptr) { set(ptr.p); return *this; }
const IpPtr &operator=(const IpPtr &ptr) { p = ptr.p; return *this; }
const EthPacketPtr packet() const { return p; }
EthPacketPtr packet() { return p; }
bool operator!() const { return !p; }
operator bool() const { return (p != nullptr); }
int off() const { return (sizeof(eth_hdr) + ((eth_hdr_vlan) ? 4 : 0)); }
int pstart() const { return (off() + get()->size()); }
};
uint16_t cksum(const IpPtr &ptr);
struct IpOpt : public ip_opt
{
uint8_t type() const { return opt_type; }
uint8_t typeNumber() const { return IP_OPT_NUMBER(opt_type); }
uint8_t typeClass() const { return IP_OPT_CLASS(opt_type); }
uint8_t typeCopied() const { return IP_OPT_COPIED(opt_type); }
uint8_t len() const { return IP_OPT_TYPEONLY(type()) ? 1 : opt_len; }
bool isNumber(int num) const { return typeNumber() == IP_OPT_NUMBER(num); }
bool isClass(int cls) const { return typeClass() == IP_OPT_CLASS(cls); }
bool isCopied(int cpy) const { return typeCopied() == IP_OPT_COPIED(cpy); }
const uint8_t *data() const { return opt_data.data8; }
void sec(ip_opt_data_sec &sec) const;
void lsrr(ip_opt_data_rr &rr) const;
void ssrr(ip_opt_data_rr &rr) const;
void ts(ip_opt_data_ts &ts) const;
uint16_t satid() const { return ntohs(opt_data.satid); }
uint16_t mtup() const { return ntohs(opt_data.mtu); }
uint16_t mtur() const { return ntohs(opt_data.mtu); }
void tr(ip_opt_data_tr &tr) const;
const uint32_t *addext() const { return &opt_data.addext[0]; }
uint16_t rtralt() const { return ntohs(opt_data.rtralt); }
void sdb(std::vector<uint32_t> &vec) const;
};
/*
* Ip6 Classes
*/
struct Ip6Opt;
struct Ip6Hdr : public ip6_hdr
{
uint8_t version() const { return ip6_vfc; }
uint32_t flow() const { return ntohl(ip6_flow); }
uint16_t plen() const { return ntohs(ip6_plen); }
uint16_t hlen() const { return IP6_HDR_LEN; }
uint8_t nxt() const { return ip6_nxt; }
uint8_t hlim() const { return ip6_hlim; }
const uint8_t* src() const { return ip6_src.data; }
const uint8_t* dst() const { return ip6_dst.data; }
int extensionLength() const;
const Ip6Opt* getExt(uint8_t ext) const;
const Ip6Opt* fragmentExt() const { return getExt(IP_PROTO_FRAGMENT); }
const Ip6Opt* rtTypeExt() const { return getExt(IP_PROTO_ROUTING); }
const Ip6Opt* dstOptExt() const { return getExt(IP_PROTO_DSTOPTS); }
uint8_t proto() const;
void plen(uint16_t _plen) { ip6_plen = htons(_plen); }
int size() const { return IP6_HDR_LEN + extensionLength(); }
const uint8_t *bytes() const { return (const uint8_t *)this; }
const uint8_t *payload() const { return bytes() + IP6_HDR_LEN
+ extensionLength(); }
uint8_t *bytes() { return (uint8_t *)this; }
uint8_t *payload() { return bytes() + IP6_HDR_LEN
+ extensionLength(); }
};
class Ip6Ptr
{
protected:
friend class TcpPtr;
friend class UdpPtr;
EthPacketPtr p;
bool eth_hdr_vlan;
void set(const EthPacketPtr &ptr)
{
p = 0;
eth_hdr_vlan = false;
if (ptr) {
EthHdr *eth = (EthHdr *)ptr->data;
if (eth->type() == ETH_TYPE_IPV6)
p = ptr;
if (eth->isVlan())
eth_hdr_vlan = true;
}
}
public:
Ip6Ptr() : p(0), eth_hdr_vlan(false) {}
Ip6Ptr(const EthPacketPtr &ptr) : p(0), eth_hdr_vlan(false) { set(ptr); }
Ip6Ptr(const EthPtr &ptr) : p(0), eth_hdr_vlan(false) { set(ptr.p); }
Ip6Ptr(const Ip6Ptr &ptr) : p(ptr.p), eth_hdr_vlan(ptr.eth_hdr_vlan) { }
Ip6Hdr *get() { return (Ip6Hdr *)(p->data + sizeof(eth_hdr)
+ ((eth_hdr_vlan) ? 4 : 0)); }
Ip6Hdr *operator->() { return get(); }
Ip6Hdr &operator*() { return *get(); }
const Ip6Hdr *get() const
{ return (const Ip6Hdr *)(p->data + sizeof(eth_hdr)
+ ((eth_hdr_vlan) ? 4 : 0)); }
const Ip6Hdr *operator->() const { return get(); }
const Ip6Hdr &operator*() const { return *get(); }
const Ip6Ptr &operator=(const EthPacketPtr &ptr)
{ set(ptr); return *this; }
const Ip6Ptr &operator=(const EthPtr &ptr)
{ set(ptr.p); return *this; }
const Ip6Ptr &operator=(const Ip6Ptr &ptr)
{ p = ptr.p; return *this; }
const EthPacketPtr packet() const { return p; }
EthPacketPtr packet() { return p; }
bool operator!() const { return !p; }
operator bool() const { return (p != nullptr); }
int off() const { return sizeof(eth_hdr) + ((eth_hdr_vlan) ? 4 : 0); }
int pstart() const { return off() + get()->size(); }
};
// Dnet supplied ipv6 opt header is incomplete and
// newer NIC card filters expect a more robust
// ipv6 header option declaration.
struct ip6_opt_fragment {
uint16_t offlg;
uint32_t ident;
};
struct ip6_opt_routing_type2 {
uint8_t type;
uint8_t segleft;
uint32_t reserved;
ip6_addr_t addr;
};
#define HOME_ADDRESS_OPTION 0xC9
struct ip6_opt_dstopts {
uint8_t type;
uint8_t length;
ip6_addr_t addr;
} __attribute__((packed));
struct ip6_opt_hdr
{
uint8_t ext_nxt;
uint8_t ext_len;
union {
struct ip6_opt_fragment fragment;
struct ip6_opt_routing_type2 rtType2;
struct ip6_opt_dstopts dstOpts;
} ext_data;
} __attribute__((packed));
struct Ip6Opt : public ip6_opt_hdr
{
uint8_t nxt() const { return ext_nxt; }
uint8_t extlen() const { return ext_len; }
uint8_t len() const { return extlen() + 8; }
// Supporting the types of header extensions likely to be encountered:
// fragment, routing type 2 and dstopts.
// Routing type 2
uint8_t rtType2Type() const { return ext_data.rtType2.type; }
uint8_t rtType2SegLft() const { return ext_data.rtType2.segleft; }
const uint8_t* rtType2Addr() const { return ext_data.rtType2.addr.data; }
// Fragment
uint16_t fragmentOfflg() const { return ntohs(ext_data.fragment.offlg); }
uint32_t fragmentIdent() const { return ntohl(ext_data.fragment.ident); }
// Dst Options/Home Address Option
uint8_t dstOptType() const { return ext_data.dstOpts.type; }
uint8_t dstOptLength() const { return ext_data.dstOpts.length; }
const uint8_t* dstOptAddr() const { return ext_data.dstOpts.addr.data; }
};
/*
* TCP Stuff
*/
struct TcpOpt;
struct TcpHdr : public tcp_hdr
{
uint16_t sport() const { return ntohs(th_sport); }
uint16_t dport() const { return ntohs(th_dport); }
uint32_t seq() const { return ntohl(th_seq); }
uint32_t ack() const { return ntohl(th_ack); }
uint8_t off() const { return th_off*4; }
uint8_t flags() const { return th_flags & 0x3f; }
uint16_t win() const { return ntohs(th_win); }
uint16_t sum() const { return th_sum; }
uint16_t urp() const { return ntohs(th_urp); }
void sum(uint16_t sum) { th_sum = sum; }
void seq(uint32_t _seq) { th_seq = htonl(_seq); }
void flags(uint8_t _flags) { th_flags = _flags; }
bool options(std::vector<const TcpOpt *> &vec) const;
int size() const { return off(); }
const uint8_t *bytes() const { return (const uint8_t *)this; }
const uint8_t *payload() const { return bytes() + size(); }
uint8_t *bytes() { return (uint8_t *)this; }
uint8_t *payload() { return bytes() + size(); }
};
class TcpPtr
{
protected:
EthPacketPtr p;
int _off;
void set(const EthPacketPtr &ptr, int offset) { p = ptr; _off = offset; }
void set(const IpPtr &ptr)
{
if (ptr && ptr->proto() == IP_PROTO_TCP)
set(ptr.p, ptr.pstart());
else
set(0, 0);
}
void set(const Ip6Ptr &ptr)
{
if (ptr && ptr->proto() == IP_PROTO_TCP)
set(ptr.p, ptr.pstart());
else
set(0, 0);
}
public:
TcpPtr() : p(0), _off(0) {}
TcpPtr(const IpPtr &ptr) : p(0), _off(0) { set(ptr); }
TcpPtr(const Ip6Ptr &ptr) : p(0), _off(0) { set(ptr); }
TcpPtr(const TcpPtr &ptr) : p(ptr.p), _off(ptr._off) {}
TcpHdr *get() { return (TcpHdr *)(p->data + _off); }
TcpHdr *operator->() { return get(); }
TcpHdr &operator*() { return *get(); }
const TcpHdr *get() const { return (const TcpHdr *)(p->data + _off); }
const TcpHdr *operator->() const { return get(); }
const TcpHdr &operator*() const { return *get(); }
const TcpPtr &operator=(const IpPtr &i)
{ set(i); return *this; }
const TcpPtr &operator=(const TcpPtr &t)
{ set(t.p, t._off); return *this; }
const EthPacketPtr packet() const { return p; }
EthPacketPtr packet() { return p; }
bool operator!() const { return !p; }
operator bool() const { return (p != nullptr); }
int off() const { return _off; }
int pstart() const { return off() + get()->size(); }
};
uint16_t cksum(const TcpPtr &ptr);
struct TcpOpt : public tcp_opt
{
uint8_t type() const { return opt_type; }
uint8_t len() const { return TCP_OPT_TYPEONLY(type()) ? 1 : opt_len; }
bool isopt(int opt) const { return type() == opt; }
const uint8_t *data() const { return opt_data.data8; }
uint16_t mss() const { return ntohs(opt_data.mss); }
uint8_t wscale() const { return opt_data.wscale; }
uint32_t echo() const { return ntohl(opt_data.echo); }
uint32_t tsval() const { return ntohl(opt_data.timestamp[0]); }
uint32_t tsecr() const { return ntohl(opt_data.timestamp[1]); }
uint32_t cc() const { return ntohl(opt_data.cc); }
uint8_t cksum() const{ return opt_data.cksum; }
const uint8_t *md5() const { return opt_data.md5; }
int size() const { return len(); }
const uint8_t *bytes() const { return (const uint8_t *)this; }
const uint8_t *payload() const { return bytes() + size(); }
uint8_t *bytes() { return (uint8_t *)this; }
uint8_t *payload() { return bytes() + size(); }
};
/*
* UDP Stuff
*/
struct UdpHdr : public udp_hdr
{
uint16_t sport() const { return ntohs(uh_sport); }
uint16_t dport() const { return ntohs(uh_dport); }
uint16_t len() const { return ntohs(uh_ulen); }
uint16_t sum() const { return uh_sum; }
void sum(uint16_t sum) { uh_sum = sum; }
void len(uint16_t _len) { uh_ulen = htons(_len); }
int size() const { return sizeof(udp_hdr); }
const uint8_t *bytes() const { return (const uint8_t *)this; }
const uint8_t *payload() const { return bytes() + size(); }
uint8_t *bytes() { return (uint8_t *)this; }
uint8_t *payload() { return bytes() + size(); }
};
class UdpPtr
{
protected:
EthPacketPtr p;
int _off;
void set(const EthPacketPtr &ptr, int offset) { p = ptr; _off = offset; }
void set(const IpPtr &ptr)
{
if (ptr && ptr->proto() == IP_PROTO_UDP)
set(ptr.p, ptr.pstart());
else
set(0, 0);
}
void set(const Ip6Ptr &ptr)
{
if (ptr && ptr->proto() == IP_PROTO_UDP)
set(ptr.p, ptr.pstart());
else
set(0, 0);
}
public:
UdpPtr() : p(0), _off(0) {}
UdpPtr(const IpPtr &ptr) : p(0), _off(0) { set(ptr); }
UdpPtr(const Ip6Ptr &ptr) : p(0), _off(0) { set(ptr); }
UdpPtr(const UdpPtr &ptr) : p(ptr.p), _off(ptr._off) {}
UdpHdr *get() { return (UdpHdr *)(p->data + _off); }
UdpHdr *operator->() { return get(); }
UdpHdr &operator*() { return *get(); }
const UdpHdr *get() const { return (const UdpHdr *)(p->data + _off); }
const UdpHdr *operator->() const { return get(); }
const UdpHdr &operator*() const { return *get(); }
const UdpPtr &operator=(const IpPtr &i) { set(i); return *this; }
const UdpPtr &operator=(const UdpPtr &t)
{ set(t.p, t._off); return *this; }
const EthPacketPtr packet() const { return p; }
EthPacketPtr packet() { return p; }
bool operator!() const { return !p; }
operator bool() const { return (p != nullptr); }
int off() const { return _off; }
int pstart() const { return off() + get()->size(); }
};
uint16_t __tu_cksum6(const Ip6Ptr &ip6);
uint16_t __tu_cksum(const IpPtr &ip);
uint16_t cksum(const UdpPtr &ptr);
int hsplit(const EthPacketPtr &ptr);
} // namespace Net
#endif // __BASE_INET_HH__