| # Copyright (c) 2017 ARM Limited |
| # All rights reserved |
| # |
| # The license below extends only to copyright in the software and shall |
| # not be construed as granting a license to any other intellectual |
| # property including but not limited to intellectual property relating |
| # to a hardware implementation of the functionality of the software |
| # licensed hereunder. You may use the software subject to the license |
| # terms below provided that you ensure that this notice is replicated |
| # unmodified and in its entirety in all distributions of the software, |
| # modified or unmodified, in source code or in binary form. |
| # |
| # Redistribution and use in source and binary forms, with or without |
| # modification, are permitted provided that the following conditions are |
| # met: redistributions of source code must retain the above copyright |
| # notice, this list of conditions and the following disclaimer; |
| # redistributions in binary form must reproduce the above copyright |
| # notice, this list of conditions and the following disclaimer in the |
| # documentation and/or other materials provided with the distribution; |
| # neither the name of the copyright holders nor the names of its |
| # contributors may be used to endorse or promote products derived from |
| # this software without specific prior written permission. |
| # |
| # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| import matplotlib |
| |
| matplotlib.use("Agg") |
| import matplotlib.pyplot as plt |
| from matplotlib.font_manager import FontProperties |
| import numpy as np |
| import os |
| |
| # global results dict |
| results = {} |
| idleResults = {} |
| |
| # global vars for bank utilisation and seq_bytes values swept in the experiment |
| bankUtilValues = [] |
| seqBytesValues = [] |
| delayValues = [] |
| |
| # settings for 3 values of bank util and 3 values of seq_bytes |
| stackHeight = 6.0 |
| stackWidth = 18.0 |
| barWidth = 0.5 |
| plotFontSize = 18 |
| |
| States = ["IDLE", "ACT", "REF", "ACT_PDN", "PRE_PDN", "SREF"] |
| |
| EnergyStates = [ |
| "ACT_E", |
| "PRE_E", |
| "READ_E", |
| "REF_E", |
| "ACT_BACK_E", |
| "PRE_BACK_E", |
| "ACT_PDN_E", |
| "PRE_PDN_E", |
| "SREF_E", |
| ] |
| |
| StackColors = { |
| "IDLE": "black", # time spent in states |
| "ACT": "lightskyblue", |
| "REF": "limegreen", |
| "ACT_PDN": "crimson", |
| "PRE_PDN": "orange", |
| "SREF": "gold", |
| "ACT_E": "lightskyblue", # energy of states |
| "PRE_E": "black", |
| "READ_E": "white", |
| "REF_E": "limegreen", |
| "ACT_BACK_E": "lightgray", |
| "PRE_BACK_E": "gray", |
| "ACT_PDN_E": "crimson", |
| "PRE_PDN_E": "orange", |
| "SREF_E": "gold", |
| } |
| |
| StatToKey = { |
| "system.mem_ctrls_0.actEnergy": "ACT_E", |
| "system.mem_ctrls_0.preEnergy": "PRE_E", |
| "system.mem_ctrls_0.readEnergy": "READ_E", |
| "system.mem_ctrls_0.refreshEnergy": "REF_E", |
| "system.mem_ctrls_0.actBackEnergy": "ACT_BACK_E", |
| "system.mem_ctrls_0.preBackEnergy": "PRE_BACK_E", |
| "system.mem_ctrls_0.actPowerDownEnergy": "ACT_PDN_E", |
| "system.mem_ctrls_0.prePowerDownEnergy": "PRE_PDN_E", |
| "system.mem_ctrls_0.selfRefreshEnergy": "SREF_E", |
| } |
| # Skipping write energy, the example script issues 100% reads by default |
| # 'system.mem_ctrls_0.writeEnergy' : "WRITE" |
| |
| |
| def plotLowPStates( |
| plot_dir, stats_fname, bank_util_list, seqbytes_list, delay_list |
| ): |
| """ |
| plotLowPStates generates plots by parsing statistics output by the DRAM |
| sweep simulation described in the the configs/dram/low_power_sweep.py |
| script. |
| |
| The function outputs eps format images for the following plots |
| (1) time spent in the DRAM Power states as a stacked bar chart |
| (2) energy consumed by the DRAM Power states as a stacked bar chart |
| (3) idle plot for the last stats dump corresponding to an idle period |
| |
| For all plots, the time and energy values of the first rank (i.e. rank0) |
| are plotted because the way the script is written means stats across ranks |
| are similar. |
| |
| @param plot_dir: the dir to output the plots |
| @param stats_fname: the stats file name of the low power sweep sim |
| @param bank_util_list: list of bank utilisation values (e.g. [1, 4, 8]) |
| @param seqbytes_list: list of seq_bytes values (e.g. [64, 456, 512]) |
| @param delay_list: list of itt max multipliers (e.g. [1, 20, 200]) |
| |
| """ |
| stats_file = open(stats_fname, "r") |
| |
| global bankUtilValues |
| bankUtilValues = bank_util_list |
| |
| global seqBytesValues |
| seqBytesValues = seqbytes_list |
| |
| global delayValues |
| delayValues = delay_list |
| initResults() |
| |
| # throw away the first two lines of the stats file |
| stats_file.readline() |
| stats_file.readline() # the 'Begin' line |
| |
| ####################################### |
| # Parse stats file and gather results |
| ######################################## |
| |
| for delay in delayValues: |
| for bank_util in bankUtilValues: |
| for seq_bytes in seqBytesValues: |
| |
| for line in stats_file: |
| if "Begin" in line: |
| break |
| |
| if len(line.strip()) == 0: |
| continue |
| |
| #### state time values #### |
| if "system.mem_ctrls_0.memoryStateTime" in line: |
| # remove leading and trailing white spaces |
| line = line.strip() |
| # Example format: |
| # 'system.mem_ctrls_0.memoryStateTime::ACT 1000000' |
| statistic, stime = line.split()[0:2] |
| # Now grab the state, i.e. 'ACT' |
| state = statistic.split("::")[1] |
| # store the value of the stat in the results dict |
| results[delay][bank_util][seq_bytes][state] = int( |
| stime |
| ) |
| #### state energy values #### |
| elif line.strip().split()[0] in list(StatToKey.keys()): |
| # Example format: |
| # system.mem_ctrls_0.actEnergy 35392980 |
| statistic, e_val = line.strip().split()[0:2] |
| senergy = int(float(e_val)) |
| state = StatToKey[statistic] |
| # store the value of the stat in the results dict |
| results[delay][bank_util][seq_bytes][state] = senergy |
| |
| # To add last traffic gen idle period stats to the results dict |
| for line in stats_file: |
| if "system.mem_ctrls_0.memoryStateTime" in line: |
| line = line.strip() # remove leading and trailing white spaces |
| # Example format: |
| # 'system.mem_ctrls_0.memoryStateTime::ACT 1000000' |
| statistic, stime = line.split()[0:2] |
| # Now grab the state energy, .e.g 'ACT' |
| state = statistic.split("::")[1] |
| idleResults[state] = int(stime) |
| if state == "ACT_PDN": |
| break |
| |
| ######################################## |
| # Call plot functions |
| ######################################## |
| # one plot per delay value |
| for delay in delayValues: |
| plot_path = plot_dir + delay + "-" |
| |
| plotStackedStates( |
| delay, |
| States, |
| "IDLE", |
| stateTimePlotName(plot_path), |
| "Time (ps) spent in a power state", |
| ) |
| plotStackedStates( |
| delay, |
| EnergyStates, |
| "ACT_E", |
| stateEnergyPlotName(plot_path), |
| "Energy (pJ) of a power state", |
| ) |
| plotIdle(plot_dir) |
| |
| |
| def plotIdle(plot_dir): |
| """ |
| Create a bar chart for the time spent in power states during the idle phase |
| |
| @param plot_dir: the dir to output the plots |
| """ |
| fig, ax = plt.subplots() |
| width = 0.35 |
| ind = np.arange(len(States)) |
| l1 = ax.bar(ind, [idleResults[x] for x in States], width) |
| |
| ax.xaxis.set_ticks(ind + width / 2) |
| ax.xaxis.set_ticklabels(States) |
| ax.set_ylabel("Time (ps) spent in a power state") |
| fig.suptitle("Idle 50 us") |
| |
| print("saving plot:", idlePlotName(plot_dir)) |
| plt.savefig(idlePlotName(plot_dir), format="eps") |
| plt.close(fig) |
| |
| |
| def plotStackedStates(delay, states_list, bottom_state, plot_name, ylabel_str): |
| """ |
| Create a stacked bar chart for the list that is passed in as arg, which |
| is either time spent or energy consumed in power states. |
| |
| @param delay: one plot is output per delay value |
| @param states_list: list of either time or energy state names |
| @param bottom_state: the bottom-most component of the stacked bar |
| @param plot_name: the file name of the image to write the plot to |
| @param ylabel_str: Y-axis label depending on plotting time or energy |
| """ |
| fig, ax = plt.subplots(1, len(bankUtilValues), sharey=True) |
| fig.set_figheight(stackHeight) |
| fig.set_figwidth(stackWidth) |
| width = barWidth |
| plt.rcParams.update({"font.size": plotFontSize}) |
| |
| # Get the number of seq_bytes values |
| N = len(seqBytesValues) |
| ind = np.arange(N) |
| |
| for sub_idx, bank_util in enumerate(bankUtilValues): |
| |
| l_states = {} |
| p_states = {} |
| |
| # Must have a bottom of the stack first |
| state = bottom_state |
| |
| l_states[state] = [ |
| results[delay][bank_util][x][state] for x in seqBytesValues |
| ] |
| p_states[state] = ax[sub_idx].bar( |
| ind, l_states[state], width, color=StackColors[state] |
| ) |
| |
| time_sum = l_states[state] |
| for state in states_list[1:]: |
| l_states[state] = [ |
| results[delay][bank_util][x][state] for x in seqBytesValues |
| ] |
| # Now add on top of the bottom = sum of values up until now |
| p_states[state] = ax[sub_idx].bar( |
| ind, |
| l_states[state], |
| width, |
| color=StackColors[state], |
| bottom=time_sum, |
| ) |
| # Now add the bit of the stack that we just ploted to the bottom |
| # resulting in a new bottom for the next iteration |
| time_sum = [ |
| prev_sum + new_s |
| for prev_sum, new_s in zip(time_sum, l_states[state]) |
| ] |
| |
| ax[sub_idx].set_title("Bank util %s" % bank_util) |
| ax[sub_idx].xaxis.set_ticks(ind + width / 2.0) |
| ax[sub_idx].xaxis.set_ticklabels(seqBytesValues, rotation=45) |
| ax[sub_idx].set_xlabel("Seq. bytes") |
| if bank_util == bankUtilValues[0]: |
| ax[sub_idx].set_ylabel(ylabel_str) |
| |
| myFontSize = "small" |
| fontP = FontProperties() |
| fontP.set_size(myFontSize) |
| fig.legend([p_states[x] for x in states_list], states_list, prop=fontP) |
| |
| plt.savefig(plot_name, format="eps", bbox_inches="tight") |
| print("saving plot:", plot_name) |
| plt.close(fig) |
| |
| |
| # These plat name functions are also called in the main script |
| def idlePlotName(plot_dir): |
| return plot_dir + "idle.eps" |
| |
| |
| def stateTimePlotName(plot_dir): |
| return plot_dir + "state-time.eps" |
| |
| |
| def stateEnergyPlotName(plot_dir): |
| return plot_dir + "state-energy.eps" |
| |
| |
| def initResults(): |
| for delay in delayValues: |
| results[delay] = {} |
| for bank_util in bankUtilValues: |
| results[delay][bank_util] = {} |
| for seq_bytes in seqBytesValues: |
| results[delay][bank_util][seq_bytes] = {} |