| /* |
| * Copyright (c) 2003-2004 The Regents of The University of Michigan |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are |
| * met: redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer; |
| * redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution; |
| * neither the name of the copyright holders nor the names of its |
| * contributors may be used to endorse or promote products derived from |
| * this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| * Authors: Gabe Black |
| * Ali Saidi |
| */ |
| |
| #include "arch/sparc/process.hh" |
| |
| #include "arch/sparc/asi.hh" |
| #include "arch/sparc/handlers.hh" |
| #include "arch/sparc/isa_traits.hh" |
| #include "arch/sparc/registers.hh" |
| #include "arch/sparc/types.hh" |
| #include "base/loader/elf_object.hh" |
| #include "base/loader/object_file.hh" |
| #include "base/logging.hh" |
| #include "cpu/thread_context.hh" |
| #include "debug/Stack.hh" |
| #include "mem/page_table.hh" |
| #include "params/Process.hh" |
| #include "sim/aux_vector.hh" |
| #include "sim/process_impl.hh" |
| #include "sim/syscall_return.hh" |
| #include "sim/system.hh" |
| |
| using namespace std; |
| using namespace SparcISA; |
| |
| static const int FirstArgumentReg = 8; |
| |
| |
| SparcProcess::SparcProcess(ProcessParams *params, ObjectFile *objFile, |
| Addr _StackBias) |
| : Process(params, |
| new EmulationPageTable(params->name, params->pid, PageBytes), |
| objFile), |
| StackBias(_StackBias) |
| { |
| fatal_if(params->useArchPT, "Arch page tables not implemented."); |
| // Initialize these to 0s |
| fillStart = 0; |
| spillStart = 0; |
| } |
| |
| void |
| SparcProcess::handleTrap(int trapNum, ThreadContext *tc, Fault *fault) |
| { |
| PCState pc = tc->pcState(); |
| switch (trapNum) { |
| case 0x01: // Software breakpoint |
| warn("Software breakpoint encountered at pc %#x.\n", pc.pc()); |
| break; |
| case 0x02: // Division by zero |
| warn("Software signaled a division by zero at pc %#x.\n", pc.pc()); |
| break; |
| case 0x03: // Flush window trap |
| flushWindows(tc); |
| break; |
| case 0x04: // Clean windows |
| warn("Ignoring process request for clean register " |
| "windows at pc %#x.\n", pc.pc()); |
| break; |
| case 0x05: // Range check |
| warn("Software signaled a range check at pc %#x.\n", pc.pc()); |
| break; |
| case 0x06: // Fix alignment |
| warn("Ignoring process request for os assisted unaligned accesses " |
| "at pc %#x.\n", pc.pc()); |
| break; |
| case 0x07: // Integer overflow |
| warn("Software signaled an integer overflow at pc %#x.\n", pc.pc()); |
| break; |
| case 0x32: // Get integer condition codes |
| warn("Ignoring process request to get the integer condition codes " |
| "at pc %#x.\n", pc.pc()); |
| break; |
| case 0x33: // Set integer condition codes |
| warn("Ignoring process request to set the integer condition codes " |
| "at pc %#x.\n", pc.pc()); |
| break; |
| default: |
| panic("Unimplemented trap to operating system: trap number %#x.\n", trapNum); |
| } |
| } |
| |
| void |
| SparcProcess::initState() |
| { |
| Process::initState(); |
| |
| ThreadContext *tc = system->getThreadContext(contextIds[0]); |
| // From the SPARC ABI |
| |
| // Setup default FP state |
| tc->setMiscRegNoEffect(MISCREG_FSR, 0); |
| |
| tc->setMiscRegNoEffect(MISCREG_TICK, 0); |
| |
| /* |
| * Register window management registers |
| */ |
| |
| // No windows contain info from other programs |
| // tc->setMiscRegNoEffect(MISCREG_OTHERWIN, 0); |
| tc->setIntReg(NumIntArchRegs + 6, 0); |
| // There are no windows to pop |
| // tc->setMiscRegNoEffect(MISCREG_CANRESTORE, 0); |
| tc->setIntReg(NumIntArchRegs + 4, 0); |
| // All windows are available to save into |
| // tc->setMiscRegNoEffect(MISCREG_CANSAVE, NWindows - 2); |
| tc->setIntReg(NumIntArchRegs + 3, NWindows - 2); |
| // All windows are "clean" |
| // tc->setMiscRegNoEffect(MISCREG_CLEANWIN, NWindows); |
| tc->setIntReg(NumIntArchRegs + 5, NWindows); |
| // Start with register window 0 |
| tc->setMiscReg(MISCREG_CWP, 0); |
| // Always use spill and fill traps 0 |
| // tc->setMiscRegNoEffect(MISCREG_WSTATE, 0); |
| tc->setIntReg(NumIntArchRegs + 7, 0); |
| // Set the trap level to 0 |
| tc->setMiscRegNoEffect(MISCREG_TL, 0); |
| // Set the ASI register to something fixed |
| tc->setMiscReg(MISCREG_ASI, ASI_PRIMARY); |
| |
| // Set the MMU Primary Context Register to hold the process' pid |
| tc->setMiscReg(MISCREG_MMU_P_CONTEXT, _pid); |
| |
| /* |
| * T1 specific registers |
| */ |
| // Turn on the icache, dcache, dtb translation, and itb translation. |
| tc->setMiscRegNoEffect(MISCREG_MMU_LSU_CTRL, 15); |
| } |
| |
| void |
| Sparc32Process::initState() |
| { |
| SparcProcess::initState(); |
| |
| ThreadContext *tc = system->getThreadContext(contextIds[0]); |
| // The process runs in user mode with 32 bit addresses |
| PSTATE pstate = 0; |
| pstate.ie = 1; |
| pstate.am = 1; |
| tc->setMiscReg(MISCREG_PSTATE, pstate); |
| |
| argsInit(32 / 8, PageBytes); |
| } |
| |
| void |
| Sparc64Process::initState() |
| { |
| SparcProcess::initState(); |
| |
| ThreadContext *tc = system->getThreadContext(contextIds[0]); |
| // The process runs in user mode |
| PSTATE pstate = 0; |
| pstate.ie = 1; |
| tc->setMiscReg(MISCREG_PSTATE, pstate); |
| |
| argsInit(sizeof(RegVal), PageBytes); |
| } |
| |
| template<class IntType> |
| void |
| SparcProcess::argsInit(int pageSize) |
| { |
| int intSize = sizeof(IntType); |
| |
| std::vector<AuxVector<IntType>> auxv; |
| |
| string filename; |
| if (argv.size() < 1) |
| filename = ""; |
| else |
| filename = argv[0]; |
| |
| // Even for a 32 bit process, the ABI says we still need to |
| // maintain double word alignment of the stack pointer. |
| uint64_t align = 16; |
| |
| // Patch the ld_bias for dynamic executables. |
| updateBias(); |
| |
| // load object file into target memory |
| objFile->loadSections(initVirtMem); |
| |
| enum hardwareCaps |
| { |
| M5_HWCAP_SPARC_FLUSH = 1, |
| M5_HWCAP_SPARC_STBAR = 2, |
| M5_HWCAP_SPARC_SWAP = 4, |
| M5_HWCAP_SPARC_MULDIV = 8, |
| M5_HWCAP_SPARC_V9 = 16, |
| // This one should technically only be set |
| // if there is a cheetah or cheetah_plus tlb, |
| // but we'll use it all the time |
| M5_HWCAP_SPARC_ULTRA3 = 32 |
| }; |
| |
| const int64_t hwcap = |
| M5_HWCAP_SPARC_FLUSH | |
| M5_HWCAP_SPARC_STBAR | |
| M5_HWCAP_SPARC_SWAP | |
| M5_HWCAP_SPARC_MULDIV | |
| M5_HWCAP_SPARC_V9 | |
| M5_HWCAP_SPARC_ULTRA3; |
| |
| // Setup the auxilliary vectors. These will already have endian conversion. |
| // Auxilliary vectors are loaded only for elf formatted executables. |
| ElfObject * elfObject = dynamic_cast<ElfObject *>(objFile); |
| if (elfObject) { |
| // Bits which describe the system hardware capabilities |
| auxv.emplace_back(M5_AT_HWCAP, hwcap); |
| // The system page size |
| auxv.emplace_back(M5_AT_PAGESZ, SparcISA::PageBytes); |
| // Defined to be 100 in the kernel source. |
| // Frequency at which times() increments |
| auxv.emplace_back(M5_AT_CLKTCK, 100); |
| // For statically linked executables, this is the virtual address of |
| // the program header tables if they appear in the executable image |
| auxv.emplace_back(M5_AT_PHDR, elfObject->programHeaderTable()); |
| // This is the size of a program header entry from the elf file. |
| auxv.emplace_back(M5_AT_PHENT, elfObject->programHeaderSize()); |
| // This is the number of program headers from the original elf file. |
| auxv.emplace_back(M5_AT_PHNUM, elfObject->programHeaderCount()); |
| // This is the base address of the ELF interpreter; it should be |
| // zero for static executables or contain the base address for |
| // dynamic executables. |
| auxv.emplace_back(M5_AT_BASE, getBias()); |
| // This is hardwired to 0 in the elf loading code in the kernel |
| auxv.emplace_back(M5_AT_FLAGS, 0); |
| // The entry point to the program |
| auxv.emplace_back(M5_AT_ENTRY, objFile->entryPoint()); |
| // Different user and group IDs |
| auxv.emplace_back(M5_AT_UID, uid()); |
| auxv.emplace_back(M5_AT_EUID, euid()); |
| auxv.emplace_back(M5_AT_GID, gid()); |
| auxv.emplace_back(M5_AT_EGID, egid()); |
| // Whether to enable "secure mode" in the executable |
| auxv.emplace_back(M5_AT_SECURE, 0); |
| } |
| |
| // Figure out how big the initial stack needs to be |
| |
| // The unaccounted for 8 byte 0 at the top of the stack |
| int sentry_size = 8; |
| |
| // This is the name of the file which is present on the initial stack |
| // It's purpose is to let the user space linker examine the original file. |
| int file_name_size = filename.size() + 1; |
| |
| int env_data_size = 0; |
| for (int i = 0; i < envp.size(); ++i) { |
| env_data_size += envp[i].size() + 1; |
| } |
| int arg_data_size = 0; |
| for (int i = 0; i < argv.size(); ++i) { |
| arg_data_size += argv[i].size() + 1; |
| } |
| |
| // The info_block. |
| int base_info_block_size = |
| sentry_size + file_name_size + env_data_size + arg_data_size; |
| |
| int info_block_size = roundUp(base_info_block_size, align); |
| |
| int info_block_padding = info_block_size - base_info_block_size; |
| |
| // Each auxilliary vector is two words |
| int aux_array_size = intSize * 2 * (auxv.size() + 1); |
| |
| int envp_array_size = intSize * (envp.size() + 1); |
| int argv_array_size = intSize * (argv.size() + 1); |
| |
| int argc_size = intSize; |
| int window_save_size = intSize * 16; |
| |
| // Figure out the size of the contents of the actual initial frame |
| int frame_size = |
| aux_array_size + |
| envp_array_size + |
| argv_array_size + |
| argc_size + |
| window_save_size; |
| |
| // There needs to be padding after the auxiliary vector data so that the |
| // very bottom of the stack is aligned properly. |
| int aligned_partial_size = roundUp(frame_size, align); |
| int aux_padding = aligned_partial_size - frame_size; |
| |
| int space_needed = |
| info_block_size + |
| aux_padding + |
| frame_size; |
| |
| memState->setStackMin(memState->getStackBase() - space_needed); |
| memState->setStackMin(roundDown(memState->getStackMin(), align)); |
| memState->setStackSize(memState->getStackBase() - memState->getStackMin()); |
| |
| // Allocate space for the stack |
| allocateMem(roundDown(memState->getStackMin(), pageSize), |
| roundUp(memState->getStackSize(), pageSize)); |
| |
| // map out initial stack contents |
| IntType sentry_base = memState->getStackBase() - sentry_size; |
| IntType file_name_base = sentry_base - file_name_size; |
| IntType env_data_base = file_name_base - env_data_size; |
| IntType arg_data_base = env_data_base - arg_data_size; |
| IntType auxv_array_base = arg_data_base - |
| info_block_padding - aux_array_size - aux_padding; |
| IntType envp_array_base = auxv_array_base - envp_array_size; |
| IntType argv_array_base = envp_array_base - argv_array_size; |
| IntType argc_base = argv_array_base - argc_size; |
| #if TRACING_ON |
| IntType window_save_base = argc_base - window_save_size; |
| #endif |
| |
| DPRINTF(Stack, "The addresses of items on the initial stack:\n"); |
| DPRINTF(Stack, "%#x - sentry NULL\n", sentry_base); |
| DPRINTF(Stack, "filename = %s\n", filename); |
| DPRINTF(Stack, "%#x - file name\n", file_name_base); |
| DPRINTF(Stack, "%#x - env data\n", env_data_base); |
| DPRINTF(Stack, "%#x - arg data\n", arg_data_base); |
| DPRINTF(Stack, "%#x - auxv array\n", auxv_array_base); |
| DPRINTF(Stack, "%#x - envp array\n", envp_array_base); |
| DPRINTF(Stack, "%#x - argv array\n", argv_array_base); |
| DPRINTF(Stack, "%#x - argc \n", argc_base); |
| DPRINTF(Stack, "%#x - window save\n", window_save_base); |
| DPRINTF(Stack, "%#x - stack min\n", memState->getStackMin()); |
| |
| assert(window_save_base == memState->getStackMin()); |
| |
| // write contents to stack |
| |
| // figure out argc |
| IntType argc = argv.size(); |
| IntType guestArgc = SparcISA::htog(argc); |
| |
| // Write out the sentry void * |
| uint64_t sentry_NULL = 0; |
| initVirtMem.writeBlob(sentry_base, &sentry_NULL, sentry_size); |
| |
| // Write the file name |
| initVirtMem.writeString(file_name_base, filename.c_str()); |
| |
| // Copy the aux stuff |
| Addr auxv_array_end = auxv_array_base; |
| for (const auto &aux: auxv) { |
| initVirtMem.write(auxv_array_end, aux, GuestByteOrder); |
| auxv_array_end += sizeof(aux); |
| } |
| |
| // Write out the terminating zeroed auxilliary vector |
| const AuxVector<IntType> zero(0, 0); |
| initVirtMem.write(auxv_array_end, zero); |
| auxv_array_end += sizeof(zero); |
| |
| copyStringArray(envp, envp_array_base, env_data_base, initVirtMem); |
| copyStringArray(argv, argv_array_base, arg_data_base, initVirtMem); |
| |
| initVirtMem.writeBlob(argc_base, &guestArgc, intSize); |
| |
| // Set up space for the trap handlers into the processes address space. |
| // Since the stack grows down and there is reserved address space abov |
| // it, we can put stuff above it and stay out of the way. |
| fillStart = memState->getStackBase(); |
| spillStart = fillStart + sizeof(MachInst) * numFillInsts; |
| |
| ThreadContext *tc = system->getThreadContext(contextIds[0]); |
| // Set up the thread context to start running the process |
| // assert(NumArgumentRegs >= 2); |
| // tc->setIntReg(ArgumentReg[0], argc); |
| // tc->setIntReg(ArgumentReg[1], argv_array_base); |
| tc->setIntReg(StackPointerReg, memState->getStackMin() - StackBias); |
| |
| // %g1 is a pointer to a function that should be run at exit. Since we |
| // don't have anything like that, it should be set to 0. |
| tc->setIntReg(1, 0); |
| |
| tc->pcState(getStartPC()); |
| |
| // Align the "stack_min" to a page boundary. |
| memState->setStackMin(roundDown(memState->getStackMin(), pageSize)); |
| } |
| |
| void |
| Sparc64Process::argsInit(int intSize, int pageSize) |
| { |
| SparcProcess::argsInit<uint64_t>(pageSize); |
| |
| // Stuff the trap handlers into the process address space |
| initVirtMem.writeBlob(fillStart, |
| fillHandler64, sizeof(MachInst) * numFillInsts); |
| initVirtMem.writeBlob(spillStart, |
| spillHandler64, sizeof(MachInst) * numSpillInsts); |
| } |
| |
| void |
| Sparc32Process::argsInit(int intSize, int pageSize) |
| { |
| SparcProcess::argsInit<uint32_t>(pageSize); |
| |
| // Stuff the trap handlers into the process address space |
| initVirtMem.writeBlob(fillStart, |
| fillHandler32, sizeof(MachInst) * numFillInsts); |
| initVirtMem.writeBlob(spillStart, |
| spillHandler32, sizeof(MachInst) * numSpillInsts); |
| } |
| |
| void Sparc32Process::flushWindows(ThreadContext *tc) |
| { |
| RegVal Cansave = tc->readIntReg(NumIntArchRegs + 3); |
| RegVal Canrestore = tc->readIntReg(NumIntArchRegs + 4); |
| RegVal Otherwin = tc->readIntReg(NumIntArchRegs + 6); |
| RegVal CWP = tc->readMiscReg(MISCREG_CWP); |
| RegVal origCWP = CWP; |
| CWP = (CWP + Cansave + 2) % NWindows; |
| while (NWindows - 2 - Cansave != 0) { |
| if (Otherwin) { |
| panic("Otherwin non-zero.\n"); |
| } else { |
| tc->setMiscReg(MISCREG_CWP, CWP); |
| // Do the stores |
| RegVal sp = tc->readIntReg(StackPointerReg); |
| for (int index = 16; index < 32; index++) { |
| uint32_t regVal = tc->readIntReg(index); |
| regVal = htog(regVal); |
| if (!tc->getMemProxy().tryWriteBlob( |
| sp + (index - 16) * 4, (uint8_t *)®Val, 4)) { |
| warn("Failed to save register to the stack when " |
| "flushing windows.\n"); |
| } |
| } |
| Canrestore--; |
| Cansave++; |
| CWP = (CWP + 1) % NWindows; |
| } |
| } |
| tc->setIntReg(NumIntArchRegs + 3, Cansave); |
| tc->setIntReg(NumIntArchRegs + 4, Canrestore); |
| tc->setMiscReg(MISCREG_CWP, origCWP); |
| } |
| |
| void |
| Sparc64Process::flushWindows(ThreadContext *tc) |
| { |
| RegVal Cansave = tc->readIntReg(NumIntArchRegs + 3); |
| RegVal Canrestore = tc->readIntReg(NumIntArchRegs + 4); |
| RegVal Otherwin = tc->readIntReg(NumIntArchRegs + 6); |
| RegVal CWP = tc->readMiscReg(MISCREG_CWP); |
| RegVal origCWP = CWP; |
| CWP = (CWP + Cansave + 2) % NWindows; |
| while (NWindows - 2 - Cansave != 0) { |
| if (Otherwin) { |
| panic("Otherwin non-zero.\n"); |
| } else { |
| tc->setMiscReg(MISCREG_CWP, CWP); |
| // Do the stores |
| RegVal sp = tc->readIntReg(StackPointerReg); |
| for (int index = 16; index < 32; index++) { |
| RegVal regVal = tc->readIntReg(index); |
| regVal = htog(regVal); |
| if (!tc->getMemProxy().tryWriteBlob( |
| sp + 2047 + (index - 16) * 8, (uint8_t *)®Val, 8)) { |
| warn("Failed to save register to the stack when " |
| "flushing windows.\n"); |
| } |
| } |
| Canrestore--; |
| Cansave++; |
| CWP = (CWP + 1) % NWindows; |
| } |
| } |
| tc->setIntReg(NumIntArchRegs + 3, Cansave); |
| tc->setIntReg(NumIntArchRegs + 4, Canrestore); |
| tc->setMiscReg(MISCREG_CWP, origCWP); |
| } |
| |
| RegVal |
| Sparc32Process::getSyscallArg(ThreadContext *tc, int &i) |
| { |
| assert(i < 6); |
| return bits(tc->readIntReg(FirstArgumentReg + i++), 31, 0); |
| } |
| |
| void |
| Sparc32Process::setSyscallArg(ThreadContext *tc, int i, RegVal val) |
| { |
| assert(i < 6); |
| tc->setIntReg(FirstArgumentReg + i, bits(val, 31, 0)); |
| } |
| |
| RegVal |
| Sparc64Process::getSyscallArg(ThreadContext *tc, int &i) |
| { |
| assert(i < 6); |
| return tc->readIntReg(FirstArgumentReg + i++); |
| } |
| |
| void |
| Sparc64Process::setSyscallArg(ThreadContext *tc, int i, RegVal val) |
| { |
| assert(i < 6); |
| tc->setIntReg(FirstArgumentReg + i, val); |
| } |
| |
| void |
| SparcProcess::setSyscallReturn(ThreadContext *tc, SyscallReturn sysret) |
| { |
| // check for error condition. SPARC syscall convention is to |
| // indicate success/failure in reg the carry bit of the ccr |
| // and put the return value itself in the standard return value reg (). |
| PSTATE pstate = tc->readMiscRegNoEffect(MISCREG_PSTATE); |
| if (sysret.successful()) { |
| // no error, clear XCC.C |
| tc->setIntReg(NumIntArchRegs + 2, |
| tc->readIntReg(NumIntArchRegs + 2) & 0xEE); |
| RegVal val = sysret.returnValue(); |
| if (pstate.am) |
| val = bits(val, 31, 0); |
| tc->setIntReg(ReturnValueReg, val); |
| } else { |
| // got an error, set XCC.C |
| tc->setIntReg(NumIntArchRegs + 2, |
| tc->readIntReg(NumIntArchRegs + 2) | 0x11); |
| RegVal val = sysret.errnoValue(); |
| if (pstate.am) |
| val = bits(val, 31, 0); |
| tc->setIntReg(ReturnValueReg, val); |
| } |
| } |