| /* |
| * Copyright (c) 2021 Advanced Micro Devices, Inc. |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright notice, |
| * this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright notice, |
| * this list of conditions and the following disclaimer in the documentation |
| * and/or other materials provided with the distribution. |
| * |
| * 3. Neither the name of the copyright holder nor the names of its |
| * contributors may be used to endorse or promote products derived from this |
| * software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE |
| * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| * POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "dev/amdgpu/amdgpu_device.hh" |
| |
| #include <fstream> |
| |
| #include "debug/AMDGPUDevice.hh" |
| #include "dev/amdgpu/amdgpu_vm.hh" |
| #include "dev/amdgpu/interrupt_handler.hh" |
| #include "dev/amdgpu/pm4_packet_processor.hh" |
| #include "dev/amdgpu/sdma_engine.hh" |
| #include "dev/hsa/hw_scheduler.hh" |
| #include "gpu-compute/gpu_command_processor.hh" |
| #include "gpu-compute/shader.hh" |
| #include "mem/abstract_mem.hh" |
| #include "mem/packet.hh" |
| #include "mem/packet_access.hh" |
| #include "params/AMDGPUDevice.hh" |
| #include "sim/byteswap.hh" |
| #include "sim/sim_exit.hh" |
| |
| namespace gem5 |
| { |
| |
| AMDGPUDevice::AMDGPUDevice(const AMDGPUDeviceParams &p) |
| : PciDevice(p), gpuMemMgr(p.memory_manager), deviceIH(p.device_ih), |
| sdma0(p.sdma0), sdma1(p.sdma1), pm4PktProc(p.pm4_pkt_proc), cp(p.cp), |
| checkpoint_before_mmios(p.checkpoint_before_mmios), |
| init_interrupt_count(0), _lastVMID(0), |
| deviceMem(name() + ".deviceMem", p.memories, false, "", false) |
| { |
| // Loading the rom binary dumped from hardware. |
| std::ifstream romBin; |
| romBin.open(p.rom_binary, std::ios::binary); |
| romBin.read((char *)rom.data(), ROM_SIZE); |
| romBin.close(); |
| |
| // System pointer needs to be explicitly set for device memory since |
| // DRAMCtrl uses it to get (1) cache line size and (2) the mem mode. |
| // Note this means the cache line size is system wide. |
| for (auto& m : p.memories) { |
| m->system(p.system); |
| |
| // Add to system's device memory map. |
| p.system->addDeviceMemory(gpuMemMgr->getRequestorID(), m); |
| } |
| |
| if (config.expansionROM) { |
| romRange = RangeSize(config.expansionROM, ROM_SIZE); |
| } else { |
| romRange = RangeSize(VGA_ROM_DEFAULT, ROM_SIZE); |
| } |
| |
| if (p.trace_file != "") { |
| mmioReader.readMMIOTrace(p.trace_file); |
| } |
| |
| sdma0->setGPUDevice(this); |
| sdma0->setId(0); |
| sdma1->setGPUDevice(this); |
| sdma1->setId(1); |
| deviceIH->setGPUDevice(this); |
| pm4PktProc->setGPUDevice(this); |
| cp->hsaPacketProc().setGPUDevice(this); |
| cp->setGPUDevice(this); |
| } |
| |
| void |
| AMDGPUDevice::readROM(PacketPtr pkt) |
| { |
| Addr rom_offset = pkt->getAddr() & (ROM_SIZE - 1); |
| uint64_t rom_data = 0; |
| |
| memcpy(&rom_data, rom.data() + rom_offset, pkt->getSize()); |
| pkt->setUintX(rom_data, ByteOrder::little); |
| |
| DPRINTF(AMDGPUDevice, "Read from addr %#x on ROM offset %#x data: %#x\n", |
| pkt->getAddr(), rom_offset, rom_data); |
| } |
| |
| AddrRangeList |
| AMDGPUDevice::getAddrRanges() const |
| { |
| AddrRangeList ranges = PciDevice::getAddrRanges(); |
| AddrRangeList ret_ranges; |
| ret_ranges.push_back(romRange); |
| |
| // If the range starts at zero assume OS hasn't assigned it yet. Do not |
| // return ranges starting with zero as they will surely overlap with |
| // another range causing the I/O crossbar to fatal. |
| for (auto & r : ranges) { |
| if (r.start() != 0) { |
| ret_ranges.push_back(r); |
| } |
| } |
| |
| return ret_ranges; |
| } |
| |
| Tick |
| AMDGPUDevice::readConfig(PacketPtr pkt) |
| { |
| [[maybe_unused]] int offset = pkt->getAddr() & PCI_CONFIG_SIZE; |
| DPRINTF(AMDGPUDevice, "Read Config: from offset: %#x size: %#x " |
| "data: %#x\n", offset, pkt->getSize(), config.data[offset]); |
| |
| Tick delay = PciDevice::readConfig(pkt); |
| |
| // Before sending MMIOs the driver sends three interrupts in a row. |
| // Use this to trigger creating a checkpoint to restore in timing mode. |
| // This is only necessary until we can create a "hole" in the KVM VM |
| // around the VGA ROM region such that KVM exits and sends requests to |
| // this device rather than the KVM VM. |
| if (checkpoint_before_mmios) { |
| if (offset == PCI0_INTERRUPT_PIN) { |
| if (++init_interrupt_count == 3) { |
| DPRINTF(AMDGPUDevice, "Checkpointing before first MMIO\n"); |
| exitSimLoop("checkpoint", 0, curTick() + delay + 1); |
| } |
| } else { |
| init_interrupt_count = 0; |
| } |
| } |
| |
| return delay; |
| } |
| |
| Tick |
| AMDGPUDevice::writeConfig(PacketPtr pkt) |
| { |
| [[maybe_unused]] int offset = pkt->getAddr() & PCI_CONFIG_SIZE; |
| DPRINTF(AMDGPUDevice, "Write Config: from offset: %#x size: %#x " |
| "data: %#x\n", offset, pkt->getSize(), |
| pkt->getUintX(ByteOrder::little)); |
| |
| return PciDevice::writeConfig(pkt); |
| } |
| |
| void |
| AMDGPUDevice::dispatchAccess(PacketPtr pkt, bool read) |
| { |
| DPRINTF(AMDGPUDevice, "%s from addr %#x size: %#x data: %#x\n", |
| read ? "Read" : "Write", pkt->getAddr(), pkt->getSize(), |
| pkt->getUintX(ByteOrder::little)); |
| |
| pkt->makeAtomicResponse(); |
| } |
| |
| void |
| AMDGPUDevice::readFrame(PacketPtr pkt, Addr offset) |
| { |
| DPRINTF(AMDGPUDevice, "Read framebuffer address %#lx\n", offset); |
| |
| /* |
| * Return data for frame reads in priority order: (1) Special addresses |
| * first, ignoring any writes from driver. (2) Any other address from |
| * device backing store / abstract memory class functionally. |
| */ |
| if (offset == 0xa28000) { |
| /* |
| * Handle special counter addresses in framebuffer. These counter |
| * addresses expect the read to return previous value + 1. |
| */ |
| if (regs.find(pkt->getAddr()) == regs.end()) { |
| regs[pkt->getAddr()] = 1; |
| } else { |
| regs[pkt->getAddr()]++; |
| } |
| |
| pkt->setUintX(regs[pkt->getAddr()], ByteOrder::little); |
| } else { |
| /* |
| * Read the value from device memory. This must be done functionally |
| * because this method is called by the PCIDevice::read method which |
| * is a non-timing read. |
| */ |
| RequestPtr req = std::make_shared<Request>(offset, pkt->getSize(), 0, |
| vramRequestorId()); |
| PacketPtr readPkt = Packet::createRead(req); |
| uint8_t *dataPtr = new uint8_t[pkt->getSize()]; |
| readPkt->dataDynamic(dataPtr); |
| |
| auto system = cp->shader()->gpuCmdProc.system(); |
| system->getDeviceMemory(readPkt)->access(readPkt); |
| |
| pkt->setUintX(readPkt->getUintX(ByteOrder::little), ByteOrder::little); |
| } |
| } |
| |
| void |
| AMDGPUDevice::readDoorbell(PacketPtr pkt, Addr offset) |
| { |
| DPRINTF(AMDGPUDevice, "Read doorbell %#lx\n", offset); |
| mmioReader.readFromTrace(pkt, DOORBELL_BAR, offset); |
| } |
| |
| void |
| AMDGPUDevice::readMMIO(PacketPtr pkt, Addr offset) |
| { |
| Addr aperture = gpuvm.getMmioAperture(offset); |
| Addr aperture_offset = offset - aperture; |
| |
| // By default read from MMIO trace. Overwrite the packet for a select |
| // few more dynamic MMIOs. |
| DPRINTF(AMDGPUDevice, "Read MMIO %#lx\n", offset); |
| mmioReader.readFromTrace(pkt, MMIO_BAR, offset); |
| |
| switch (aperture) { |
| case NBIO_BASE: |
| switch (aperture_offset) { |
| // This is a PCIe status register. At some point during driver init |
| // the driver checks that interrupts are enabled. This is only |
| // checked once, so if the MMIO trace does not exactly line up with |
| // what the driver is doing in gem5, this may still have the first |
| // bit zero causing driver to fail. Therefore, we always set this |
| // bit to one as there is no harm to do so. |
| case 0x3c: // mmPCIE_DATA2 << 2 |
| uint32_t value = pkt->getLE<uint32_t>() | 0x1; |
| DPRINTF(AMDGPUDevice, "Marking interrupts enabled: %#lx\n", value); |
| pkt->setLE<uint32_t>(value); |
| break; |
| } break; |
| case GRBM_BASE: |
| gpuvm.readMMIO(pkt, aperture_offset >> GRBM_OFFSET_SHIFT); |
| break; |
| case MMHUB_BASE: |
| gpuvm.readMMIO(pkt, aperture_offset >> MMHUB_OFFSET_SHIFT); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| void |
| AMDGPUDevice::writeFrame(PacketPtr pkt, Addr offset) |
| { |
| DPRINTF(AMDGPUDevice, "Wrote framebuffer address %#lx\n", offset); |
| |
| Addr aperture = gpuvm.getFrameAperture(offset); |
| Addr aperture_offset = offset - aperture; |
| |
| // Record the value |
| if (aperture == gpuvm.gartBase()) { |
| gpuvm.gartTable[aperture_offset] = pkt->getUintX(ByteOrder::little); |
| DPRINTF(AMDGPUDevice, "GART translation %p -> %p\n", aperture_offset, |
| gpuvm.gartTable[aperture_offset]); |
| } |
| } |
| |
| void |
| AMDGPUDevice::writeDoorbell(PacketPtr pkt, Addr offset) |
| { |
| DPRINTF(AMDGPUDevice, "Wrote doorbell %#lx\n", offset); |
| |
| if (doorbells.find(offset) != doorbells.end()) { |
| QueueType q_type = doorbells[offset]; |
| DPRINTF(AMDGPUDevice, "Doorbell offset %p queue: %d\n", |
| offset, q_type); |
| switch (q_type) { |
| case Compute: |
| pm4PktProc->process(pm4PktProc->getQueue(offset), |
| pkt->getLE<uint64_t>()); |
| break; |
| case Gfx: |
| pm4PktProc->process(pm4PktProc->getQueue(offset, true), |
| pkt->getLE<uint64_t>()); |
| break; |
| case SDMAGfx: { |
| SDMAEngine *sdmaEng = getSDMAEngine(offset); |
| sdmaEng->processGfx(pkt->getLE<uint64_t>()); |
| } break; |
| case SDMAPage: { |
| SDMAEngine *sdmaEng = getSDMAEngine(offset); |
| sdmaEng->processPage(pkt->getLE<uint64_t>()); |
| } break; |
| case ComputeAQL: { |
| cp->hsaPacketProc().hwScheduler()->write(offset, |
| pkt->getLE<uint64_t>() + 1); |
| pm4PktProc->updateReadIndex(offset, pkt->getLE<uint64_t>() + 1); |
| } break; |
| case InterruptHandler: |
| deviceIH->updateRptr(pkt->getLE<uint32_t>()); |
| break; |
| case RLC: { |
| SDMAEngine *sdmaEng = getSDMAEngine(offset); |
| sdmaEng->processRLC(offset, pkt->getLE<uint64_t>()); |
| } break; |
| default: |
| panic("Write to unkown queue type!"); |
| } |
| } else { |
| warn("Unknown doorbell offset: %lx\n", offset); |
| } |
| } |
| |
| void |
| AMDGPUDevice::writeMMIO(PacketPtr pkt, Addr offset) |
| { |
| Addr aperture = gpuvm.getMmioAperture(offset); |
| Addr aperture_offset = offset - aperture; |
| |
| DPRINTF(AMDGPUDevice, "Wrote MMIO %#lx\n", offset); |
| |
| switch (aperture) { |
| /* Write a register to the first System DMA. */ |
| case SDMA0_BASE: |
| sdma0->writeMMIO(pkt, aperture_offset >> SDMA_OFFSET_SHIFT); |
| break; |
| /* Write a register to the second System DMA. */ |
| case SDMA1_BASE: |
| sdma1->writeMMIO(pkt, aperture_offset >> SDMA_OFFSET_SHIFT); |
| break; |
| /* Write a general register to the graphics register bus manager. */ |
| case GRBM_BASE: |
| gpuvm.writeMMIO(pkt, aperture_offset >> GRBM_OFFSET_SHIFT); |
| pm4PktProc->writeMMIO(pkt, aperture_offset >> GRBM_OFFSET_SHIFT); |
| break; |
| /* Write a register to the interrupt handler. */ |
| case IH_BASE: |
| deviceIH->writeMMIO(pkt, aperture_offset >> IH_OFFSET_SHIFT); |
| break; |
| default: |
| DPRINTF(AMDGPUDevice, "Unknown MMIO aperture for %#x\n", offset); |
| break; |
| } |
| } |
| |
| Tick |
| AMDGPUDevice::read(PacketPtr pkt) |
| { |
| if (isROM(pkt->getAddr())) { |
| readROM(pkt); |
| } else { |
| int barnum = -1; |
| Addr offset = 0; |
| getBAR(pkt->getAddr(), barnum, offset); |
| |
| switch (barnum) { |
| case FRAMEBUFFER_BAR: |
| readFrame(pkt, offset); |
| break; |
| case DOORBELL_BAR: |
| readDoorbell(pkt, offset); |
| break; |
| case MMIO_BAR: |
| readMMIO(pkt, offset); |
| break; |
| default: |
| panic("Request with address out of mapped range!"); |
| } |
| } |
| |
| dispatchAccess(pkt, true); |
| return pioDelay; |
| } |
| |
| Tick |
| AMDGPUDevice::write(PacketPtr pkt) |
| { |
| int barnum = -1; |
| Addr offset = 0; |
| getBAR(pkt->getAddr(), barnum, offset); |
| |
| switch (barnum) { |
| case FRAMEBUFFER_BAR: |
| gpuMemMgr->writeRequest(offset, pkt->getPtr<uint8_t>(), |
| pkt->getSize(), 0, nullptr); |
| writeFrame(pkt, offset); |
| break; |
| case DOORBELL_BAR: |
| writeDoorbell(pkt, offset); |
| break; |
| case MMIO_BAR: |
| writeMMIO(pkt, offset); |
| break; |
| default: |
| panic("Request with address out of mapped range!"); |
| } |
| |
| // Record only if there is non-zero value, or a value to be overwritten. |
| // Reads return 0 by default. |
| uint64_t data = pkt->getUintX(ByteOrder::little); |
| |
| DPRINTF(AMDGPUDevice, "PCI Write to %#lx data %#lx\n", |
| pkt->getAddr(), data); |
| |
| if (data || regs.find(pkt->getAddr()) != regs.end()) |
| regs[pkt->getAddr()] = data; |
| |
| dispatchAccess(pkt, false); |
| |
| return pioDelay; |
| } |
| |
| uint32_t |
| AMDGPUDevice::getRegVal(uint32_t addr) |
| { |
| return regs[addr]; |
| } |
| void |
| AMDGPUDevice::setRegVal(uint32_t addr, uint32_t value) |
| { |
| DPRINTF(AMDGPUDevice, "Setting register 0x%lx to %x\n", |
| addr, value); |
| regs[addr] = value; |
| } |
| |
| void |
| AMDGPUDevice::setDoorbellType(uint32_t offset, QueueType qt) |
| { |
| DPRINTF(AMDGPUDevice, "Setting doorbell type for %x\n", offset); |
| doorbells[offset] = qt; |
| } |
| |
| void |
| AMDGPUDevice::setSDMAEngine(Addr offset, SDMAEngine *eng) |
| { |
| sdmaEngs[offset] = eng; |
| } |
| |
| SDMAEngine* |
| AMDGPUDevice::getSDMAById(int id) |
| { |
| /** |
| * PM4 packets selected SDMAs using an integer ID. This method simply maps |
| * the integer ID to a pointer to the SDMA and checks for invalid IDs. |
| */ |
| switch (id) { |
| case 0: |
| return sdma0; |
| break; |
| case 1: |
| return sdma1; |
| break; |
| default: |
| panic("No SDMA with id %d\n", id); |
| break; |
| } |
| |
| return nullptr; |
| } |
| |
| SDMAEngine* |
| AMDGPUDevice::getSDMAEngine(Addr offset) |
| { |
| return sdmaEngs[offset]; |
| } |
| |
| void |
| AMDGPUDevice::intrPost() |
| { |
| PciDevice::intrPost(); |
| } |
| |
| void |
| AMDGPUDevice::serialize(CheckpointOut &cp) const |
| { |
| // Serialize the PciDevice base class |
| PciDevice::serialize(cp); |
| |
| uint64_t regs_size = regs.size(); |
| uint64_t doorbells_size = doorbells.size(); |
| uint64_t sdma_engs_size = sdmaEngs.size(); |
| |
| SERIALIZE_SCALAR(regs_size); |
| SERIALIZE_SCALAR(doorbells_size); |
| SERIALIZE_SCALAR(sdma_engs_size); |
| |
| // Make a c-style array of the regs to serialize |
| uint32_t reg_addrs[regs_size]; |
| uint64_t reg_values[regs_size]; |
| uint32_t doorbells_offset[doorbells_size]; |
| QueueType doorbells_queues[doorbells_size]; |
| uint32_t sdma_engs_offset[sdma_engs_size]; |
| int sdma_engs[sdma_engs_size]; |
| |
| int idx = 0; |
| for (auto & it : regs) { |
| reg_addrs[idx] = it.first; |
| reg_values[idx] = it.second; |
| ++idx; |
| } |
| |
| idx = 0; |
| for (auto & it : doorbells) { |
| doorbells_offset[idx] = it.first; |
| doorbells_queues[idx] = it.second; |
| ++idx; |
| } |
| |
| idx = 0; |
| for (auto & it : sdmaEngs) { |
| sdma_engs_offset[idx] = it.first; |
| sdma_engs[idx] = it.second == sdma0 ? 0 : 1; |
| ++idx; |
| } |
| |
| SERIALIZE_ARRAY(reg_addrs, sizeof(reg_addrs)/sizeof(reg_addrs[0])); |
| SERIALIZE_ARRAY(reg_values, sizeof(reg_values)/sizeof(reg_values[0])); |
| SERIALIZE_ARRAY(doorbells_offset, sizeof(doorbells_offset)/ |
| sizeof(doorbells_offset[0])); |
| SERIALIZE_ARRAY(doorbells_queues, sizeof(doorbells_queues)/ |
| sizeof(doorbells_queues[0])); |
| SERIALIZE_ARRAY(sdma_engs_offset, sizeof(sdma_engs_offset)/ |
| sizeof(sdma_engs_offset[0])); |
| SERIALIZE_ARRAY(sdma_engs, sizeof(sdma_engs)/sizeof(sdma_engs[0])); |
| |
| // Serialize the device memory |
| deviceMem.serializeSection(cp, "deviceMem"); |
| gpuvm.serializeSection(cp, "GPUVM"); |
| } |
| |
| void |
| AMDGPUDevice::unserialize(CheckpointIn &cp) |
| { |
| // Unserialize the PciDevice base class |
| PciDevice::unserialize(cp); |
| |
| uint64_t regs_size = 0; |
| uint64_t doorbells_size = 0; |
| uint64_t sdma_engs_size = 0; |
| |
| UNSERIALIZE_SCALAR(regs_size); |
| UNSERIALIZE_SCALAR(doorbells_size); |
| UNSERIALIZE_SCALAR(sdma_engs_size); |
| |
| if (regs_size > 0) { |
| uint32_t reg_addrs[regs_size]; |
| uint64_t reg_values[regs_size]; |
| |
| UNSERIALIZE_ARRAY(reg_addrs, sizeof(reg_addrs)/sizeof(reg_addrs[0])); |
| UNSERIALIZE_ARRAY(reg_values, |
| sizeof(reg_values)/sizeof(reg_values[0])); |
| |
| for (int idx = 0; idx < regs_size; ++idx) { |
| regs.insert(std::make_pair(reg_addrs[idx], reg_values[idx])); |
| } |
| } |
| |
| if (doorbells_size > 0) { |
| uint32_t doorbells_offset[doorbells_size]; |
| QueueType doorbells_queues[doorbells_size]; |
| |
| UNSERIALIZE_ARRAY(doorbells_offset, sizeof(doorbells_offset)/ |
| sizeof(doorbells_offset[0])); |
| UNSERIALIZE_ARRAY(doorbells_queues, sizeof(doorbells_queues)/ |
| sizeof(doorbells_queues[0])); |
| |
| for (int idx = 0; idx < doorbells_size; ++idx) { |
| regs.insert(std::make_pair(doorbells_offset[idx], |
| doorbells_queues[idx])); |
| doorbells[doorbells_offset[idx]] = doorbells_queues[idx]; |
| } |
| } |
| |
| if (sdma_engs_size > 0) { |
| uint32_t sdma_engs_offset[sdma_engs_size]; |
| int sdma_engs[sdma_engs_size]; |
| |
| UNSERIALIZE_ARRAY(sdma_engs_offset, sizeof(sdma_engs_offset)/ |
| sizeof(sdma_engs_offset[0])); |
| UNSERIALIZE_ARRAY(sdma_engs, sizeof(sdma_engs)/sizeof(sdma_engs[0])); |
| |
| for (int idx = 0; idx < sdma_engs_size; ++idx) { |
| SDMAEngine *sdma = sdma_engs[idx] == 0 ? sdma0 : sdma1; |
| sdmaEngs.insert(std::make_pair(sdma_engs_offset[idx], sdma)); |
| } |
| } |
| |
| // Unserialize the device memory |
| deviceMem.unserializeSection(cp, "deviceMem"); |
| gpuvm.unserializeSection(cp, "GPUVM"); |
| } |
| |
| uint16_t |
| AMDGPUDevice::allocateVMID(uint16_t pasid) |
| { |
| for (uint16_t vmid = 1; vmid < AMDGPU_VM_COUNT; vmid++) { |
| auto result = usedVMIDs.find(vmid); |
| if (result == usedVMIDs.end()) { |
| idMap.insert(std::make_pair(pasid, vmid)); |
| usedVMIDs[vmid] = {}; |
| _lastVMID = vmid; |
| return vmid; |
| } |
| } |
| panic("All VMIDs have been assigned"); |
| } |
| |
| void |
| AMDGPUDevice::deallocateVmid(uint16_t vmid) |
| { |
| usedVMIDs.erase(vmid); |
| } |
| |
| void |
| AMDGPUDevice::deallocatePasid(uint16_t pasid) |
| { |
| auto result = idMap.find(pasid); |
| assert(result != idMap.end()); |
| if (result == idMap.end()) return; |
| uint16_t vmid = result->second; |
| |
| idMap.erase(result); |
| usedVMIDs.erase(vmid); |
| } |
| |
| void |
| AMDGPUDevice::deallocateAllQueues() |
| { |
| idMap.erase(idMap.begin(), idMap.end()); |
| usedVMIDs.erase(usedVMIDs.begin(), usedVMIDs.end()); |
| |
| sdma0->deallocateRLCQueues(); |
| sdma1->deallocateRLCQueues(); |
| } |
| |
| void |
| AMDGPUDevice::mapDoorbellToVMID(Addr doorbell, uint16_t vmid) |
| { |
| doorbellVMIDMap[doorbell] = vmid; |
| } |
| |
| std::unordered_map<uint16_t, std::set<int>>& |
| AMDGPUDevice::getUsedVMIDs() |
| { |
| return usedVMIDs; |
| } |
| |
| void |
| AMDGPUDevice::insertQId(uint16_t vmid, int id) |
| { |
| usedVMIDs[vmid].insert(id); |
| } |
| |
| } // namespace gem5 |