| # Copyright (c) 2012-2013,2019 ARM Limited |
| # All rights reserved. |
| # |
| # The license below extends only to copyright in the software and shall |
| # not be construed as granting a license to any other intellectual |
| # property including but not limited to intellectual property relating |
| # to a hardware implementation of the functionality of the software |
| # licensed hereunder. You may use the software subject to the license |
| # terms below provided that you ensure that this notice is replicated |
| # unmodified and in its entirety in all distributions of the software, |
| # modified or unmodified, in source code or in binary form. |
| # |
| # Redistribution and use in source and binary forms, with or without |
| # modification, are permitted provided that the following conditions are |
| # met: redistributions of source code must retain the above copyright |
| # notice, this list of conditions and the following disclaimer; |
| # redistributions in binary form must reproduce the above copyright |
| # notice, this list of conditions and the following disclaimer in the |
| # documentation and/or other materials provided with the distribution; |
| # neither the name of the copyright holders nor the names of its |
| # contributors may be used to endorse or promote products derived from |
| # this software without specific prior written permission. |
| # |
| # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| # |
| # Authors: Andreas Hansson |
| # Uri Wiener |
| # Sascha Bischoff |
| |
| ##################################################################### |
| # |
| # System visualization using DOT |
| # |
| # While config.ini and config.json provide an almost complete listing |
| # of a system's components and connectivity, they lack a birds-eye |
| # view. The output generated by do_dot() is a DOT-based figure (as a |
| # pdf and an editable svg file) and its source dot code. Nodes are |
| # components, and edges represent the memory hierarchy: the edges are |
| # directed, from a master to slave. Initially all nodes are |
| # generated, and then all edges are added. do_dot should be called |
| # with the top-most SimObject (namely root but not necessarily), the |
| # output folder and the output dot source filename. From the given |
| # node, both processes (node and edge creation) is performed |
| # recursivly, traversing all children of the given root. |
| # |
| # pydot is required. When missing, no output will be generated. |
| # |
| ##################################################################### |
| |
| from __future__ import print_function |
| from __future__ import absolute_import |
| |
| import m5, os, re |
| from m5.SimObject import isRoot, isSimObjectVector |
| from m5.params import PortRef, isNullPointer |
| from m5.util import warn |
| try: |
| import pydot |
| except: |
| pydot = False |
| |
| def simnode_children(simNode): |
| for child in simNode._children.values(): |
| if isNullPointer(child): |
| continue |
| if isSimObjectVector(child): |
| for obj in child: |
| if not isNullPointer(obj): |
| yield obj |
| else: |
| yield child |
| |
| # need to create all nodes (components) before creating edges (memory channels) |
| def dot_create_nodes(simNode, callgraph): |
| if isRoot(simNode): |
| label = "root" |
| else: |
| label = simNode._name |
| full_path = re.sub('\.', '_', simNode.path()) |
| # add class name under the label |
| label = "\"" + label + " \\n: " + simNode.__class__.__name__ + "\"" |
| |
| # each component is a sub-graph (cluster) |
| cluster = dot_create_cluster(simNode, full_path, label) |
| |
| # create nodes per port |
| for port_name in simNode._ports.keys(): |
| port = simNode._port_refs.get(port_name, None) |
| if port != None: |
| full_port_name = full_path + "_" + port_name |
| port_node = dot_create_node(simNode, full_port_name, port_name) |
| cluster.add_node(port_node) |
| |
| # recurse to children |
| for child in simnode_children(simNode): |
| dot_create_nodes(child, cluster) |
| |
| callgraph.add_subgraph(cluster) |
| |
| # create all edges according to memory hierarchy |
| def dot_create_edges(simNode, callgraph): |
| for port_name in simNode._ports.keys(): |
| port = simNode._port_refs.get(port_name, None) |
| if port != None: |
| full_path = re.sub('\.', '_', simNode.path()) |
| full_port_name = full_path + "_" + port_name |
| port_node = dot_create_node(simNode, full_port_name, port_name) |
| # create edges |
| if isinstance(port, PortRef): |
| if port.peer: |
| dot_add_edge(simNode, callgraph, full_port_name, port) |
| else: |
| for p in port.elements: |
| if p.peer: |
| dot_add_edge(simNode, callgraph, full_port_name, p) |
| |
| # recurse to children |
| for child in simnode_children(simNode): |
| dot_create_edges(child, callgraph) |
| |
| def dot_add_edge(simNode, callgraph, full_port_name, port): |
| peer = port.peer |
| full_peer_path = re.sub('\.', '_', peer.simobj.path()) |
| full_peer_port_name = full_peer_path + "_" + peer.name |
| |
| # Each edge is encountered twice, once for each peer. We only want one |
| # edge, so we'll arbitrarily chose which peer "wins" based on their names. |
| if full_peer_port_name < full_port_name: |
| dir_type = { |
| (False, False) : 'both', |
| (True, False) : 'forward', |
| (False, True) : 'back', |
| (True, True) : 'none' |
| }[ (port.is_source, |
| peer.is_source) ] |
| edge = pydot.Edge(full_port_name, full_peer_port_name, dir=dir_type) |
| callgraph.add_edge(edge) |
| |
| def dot_create_cluster(simNode, full_path, label): |
| # get the parameter values of the node and use them as a tooltip |
| ini_strings = [] |
| for param in sorted(simNode._params.keys()): |
| value = simNode._values.get(param) |
| if value != None: |
| # parameter name = value in HTML friendly format |
| ini_strings.append(str(param) + "=" + |
| simNode._values[param].ini_str()) |
| # join all the parameters with an HTML newline |
| tooltip = " \\".join(ini_strings) |
| |
| return pydot.Cluster( \ |
| full_path, \ |
| shape = "Mrecord", \ |
| label = label, \ |
| tooltip = "\"" + tooltip + "\"", \ |
| style = "\"rounded, filled\"", \ |
| color = "#000000", \ |
| fillcolor = dot_gen_colour(simNode), \ |
| fontname = "Arial", \ |
| fontsize = "14", \ |
| fontcolor = "#000000" \ |
| ) |
| |
| def dot_create_node(simNode, full_path, label): |
| return pydot.Node( \ |
| full_path, \ |
| shape = "Mrecord", \ |
| label = label, \ |
| style = "\"rounded, filled\"", \ |
| color = "#000000", \ |
| fillcolor = dot_gen_colour(simNode, True), \ |
| fontname = "Arial", \ |
| fontsize = "14", \ |
| fontcolor = "#000000" \ |
| ) |
| |
| # an enumerator for different kinds of node types, at the moment we |
| # discern the majority of node types, with the caches being the |
| # notable exception |
| class NodeType: |
| SYS = 0 |
| CPU = 1 |
| XBAR = 2 |
| MEM = 3 |
| DEV = 4 |
| OTHER = 5 |
| |
| # based on the sim object, determine the node type |
| def get_node_type(simNode): |
| if isinstance(simNode, m5.objects.System): |
| return NodeType.SYS |
| # NULL ISA has no BaseCPU or PioDevice, so check if these names |
| # exists before using them |
| elif 'BaseCPU' in dir(m5.objects) and \ |
| isinstance(simNode, m5.objects.BaseCPU): |
| return NodeType.CPU |
| elif 'PioDevice' in dir(m5.objects) and \ |
| isinstance(simNode, m5.objects.PioDevice): |
| return NodeType.DEV |
| elif isinstance(simNode, m5.objects.BaseXBar): |
| return NodeType.XBAR |
| elif isinstance(simNode, m5.objects.AbstractMemory): |
| return NodeType.MEM |
| else: |
| return NodeType.OTHER |
| |
| # based on the node type, determine the colour as an RGB tuple, the |
| # palette is rather arbitrary at this point (some coherent natural |
| # tones), and someone that feels artistic should probably have a look |
| def get_type_colour(nodeType): |
| if nodeType == NodeType.SYS: |
| return (228, 231, 235) |
| elif nodeType == NodeType.CPU: |
| return (187, 198, 217) |
| elif nodeType == NodeType.XBAR: |
| return (111, 121, 140) |
| elif nodeType == NodeType.MEM: |
| return (94, 89, 88) |
| elif nodeType == NodeType.DEV: |
| return (199, 167, 147) |
| elif nodeType == NodeType.OTHER: |
| # use a relatively gray shade |
| return (186, 182, 174) |
| |
| # generate colour for a node, either corresponding to a sim object or a |
| # port |
| def dot_gen_colour(simNode, isPort = False): |
| # determine the type of the current node, and also its parent, if |
| # the node is not the same type as the parent then we use the base |
| # colour for its type |
| node_type = get_node_type(simNode) |
| if simNode._parent: |
| parent_type = get_node_type(simNode._parent) |
| else: |
| parent_type = NodeType.OTHER |
| |
| # if this node is the same type as the parent, then scale the |
| # colour based on the depth such that the deeper levels in the |
| # hierarchy get darker colours |
| if node_type == parent_type: |
| # start out with a depth of zero |
| depth = 0 |
| parent = simNode._parent |
| # find the closes parent that is not the same type |
| while parent and get_node_type(parent) == parent_type: |
| depth = depth + 1 |
| parent = parent._parent |
| node_colour = get_type_colour(parent_type) |
| # slightly arbitrary, but assume that the depth is less than |
| # five levels |
| r, g, b = map(lambda x: x * max(1 - depth / 7.0, 0.3), node_colour) |
| else: |
| node_colour = get_type_colour(node_type) |
| r, g, b = node_colour |
| |
| # if we are colouring a port, then make it a slightly darker shade |
| # than the node that encapsulates it, once again use a magic constant |
| if isPort: |
| r, g, b = map(lambda x: 0.8 * x, (r, g, b)) |
| |
| return dot_rgb_to_html(r, g, b) |
| |
| def dot_rgb_to_html(r, g, b): |
| return "#%.2x%.2x%.2x" % (r, g, b) |
| |
| # We need to create all of the clock domains. We abuse the alpha channel to get |
| # the correct domain colouring. |
| def dot_add_clk_domain(c_dom, v_dom): |
| label = "\"" + str(c_dom) + "\ :\ " + str(v_dom) + "\"" |
| label = re.sub('\.', '_', str(label)) |
| full_path = re.sub('\.', '_', str(c_dom)) |
| return pydot.Cluster( \ |
| full_path, \ |
| shape = "Mrecord", \ |
| label = label, \ |
| style = "\"rounded, filled, dashed\"", \ |
| color = "#000000", \ |
| fillcolor = "#AFC8AF8F", \ |
| fontname = "Arial", \ |
| fontsize = "14", \ |
| fontcolor = "#000000" \ |
| ) |
| |
| def dot_create_dvfs_nodes(simNode, callgraph, domain=None): |
| if isRoot(simNode): |
| label = "root" |
| else: |
| label = simNode._name |
| full_path = re.sub('\.', '_', simNode.path()) |
| # add class name under the label |
| label = "\"" + label + " \\n: " + simNode.__class__.__name__ + "\"" |
| |
| # each component is a sub-graph (cluster) |
| cluster = dot_create_cluster(simNode, full_path, label) |
| |
| # create nodes per port |
| for port_name in simNode._ports.keys(): |
| port = simNode._port_refs.get(port_name, None) |
| if port != None: |
| full_port_name = full_path + "_" + port_name |
| port_node = dot_create_node(simNode, full_port_name, port_name) |
| cluster.add_node(port_node) |
| |
| # Dictionary of DVFS domains |
| dvfs_domains = {} |
| |
| # recurse to children |
| for child in simnode_children(simNode): |
| try: |
| c_dom = child.__getattr__('clk_domain') |
| v_dom = c_dom.__getattr__('voltage_domain') |
| except AttributeError: |
| # Just re-use the domain from above |
| c_dom = domain |
| v_dom = c_dom.__getattr__('voltage_domain') |
| pass |
| |
| if c_dom == domain or c_dom == None: |
| dot_create_dvfs_nodes(child, cluster, domain) |
| else: |
| if c_dom not in dvfs_domains: |
| dvfs_cluster = dot_add_clk_domain(c_dom, v_dom) |
| dvfs_domains[c_dom] = dvfs_cluster |
| else: |
| dvfs_cluster = dvfs_domains[c_dom] |
| dot_create_dvfs_nodes(child, dvfs_cluster, c_dom) |
| |
| for key in dvfs_domains: |
| cluster.add_subgraph(dvfs_domains[key]) |
| |
| callgraph.add_subgraph(cluster) |
| |
| def do_dot(root, outdir, dotFilename): |
| if not pydot: |
| return |
| # * use ranksep > 1.0 for for vertical separation between nodes |
| # especially useful if you need to annotate edges using e.g. visio |
| # which accepts svg format |
| # * no need for hoizontal separation as nothing moves horizonally |
| callgraph = pydot.Dot(graph_type='digraph', ranksep='1.3') |
| dot_create_nodes(root, callgraph) |
| dot_create_edges(root, callgraph) |
| dot_filename = os.path.join(outdir, dotFilename) |
| callgraph.write(dot_filename) |
| try: |
| # dot crashes if the figure is extremely wide. |
| # So avoid terminating simulation unnecessarily |
| callgraph.write_svg(dot_filename + ".svg") |
| callgraph.write_pdf(dot_filename + ".pdf") |
| except: |
| warn("failed to generate dot output from %s", dot_filename) |
| |
| def do_dvfs_dot(root, outdir, dotFilename): |
| if not pydot: |
| return |
| |
| # There is a chance that we are unable to resolve the clock or |
| # voltage domains. If so, we fail silently. |
| try: |
| dvfsgraph = pydot.Dot(graph_type='digraph', ranksep='1.3') |
| dot_create_dvfs_nodes(root, dvfsgraph) |
| dot_create_edges(root, dvfsgraph) |
| dot_filename = os.path.join(outdir, dotFilename) |
| dvfsgraph.write(dot_filename) |
| except: |
| warn("Failed to generate dot graph for DVFS domains") |
| return |
| |
| try: |
| # dot crashes if the figure is extremely wide. |
| # So avoid terminating simulation unnecessarily |
| dvfsgraph.write_svg(dot_filename + ".svg") |
| dvfsgraph.write_pdf(dot_filename + ".pdf") |
| except: |
| warn("failed to generate dot output from %s", dot_filename) |