| /*- |
| * Copyright (c) 2006-2011 Joseph Koshy |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| */ |
| |
| #include <assert.h> |
| #include <libelf.h> |
| #include <string.h> |
| |
| #include "_libelf.h" |
| |
| ELFTC_VCSID("$Id: libelf_convert.m4 3174 2015-03-27 17:13:41Z emaste $"); |
| |
| /* WARNING: GENERATED FROM __file__. */ |
| |
| divert(-1) |
| |
| # Generate conversion routines for converting between in-memory and |
| # file representations of Elf data structures. |
| # |
| # These conversions use the type information defined in `elf_types.m4'. |
| |
| include(SRCDIR`/elf_types.m4') |
| |
| # For the purposes of generating conversion code, ELF types may be |
| # classified according to the following characteristics: |
| # |
| # 1. Whether the ELF type can be directly mapped to an integral C |
| # language type. For example, the ELF_T_WORD type maps directly to |
| # a 'uint32_t', but ELF_T_GNUHASH lacks a matching C type. |
| # |
| # 2. Whether the type has word size dependent variants. For example, |
| # ELT_T_EHDR is represented using C types Elf32_Ehdr and El64_Ehdr, |
| # and the ELF_T_ADDR and ELF_T_OFF types have integral C types that |
| # can be 32- or 64- bit wide. |
| # |
| # 3. Whether the ELF types has a fixed representation or not. For |
| # example, the ELF_T_SYM type has a fixed size file representation, |
| # some types like ELF_T_NOTE and ELF_T_GNUHASH use a variable size |
| # representation. |
| # |
| # We use m4 macros to generate conversion code for ELF types that have |
| # a fixed size representation. Conversion functions for the remaining |
| # types are coded by hand. |
| # |
| #* Handling File and Memory Representations |
| # |
| # `In-memory' representations of an Elf data structure use natural |
| # alignments and native byte ordering. This allows pointer arithmetic |
| # and casting to work as expected. On the other hand, the `file' |
| # representation of an ELF data structure could possibly be packed |
| # tighter than its `in-memory' representation, and could be of a |
| # differing byte order. Reading ELF objects that are members of `ar' |
| # archives present an additional complication: `ar' pads file data to |
| # even addresses, so file data structures in an archive member |
| # residing inside an `ar' archive could be at misaligned memory |
| # addresses when brought into memory. |
| # |
| # In summary, casting the `char *' pointers that point to memory |
| # representations (i.e., source pointers for the *_tof() functions and |
| # the destination pointers for the *_tom() functions), is safe, as |
| # these pointers should be correctly aligned for the memory type |
| # already. However, pointers to file representations have to be |
| # treated as being potentially unaligned and no casting can be done. |
| |
| # NOCVT(TYPE) -- Do not generate the cvt[] structure entry for TYPE |
| define(`NOCVT',`define(`NOCVT_'$1,1)') |
| |
| # NOFUNC(TYPE) -- Do not generate a conversion function for TYPE |
| define(`NOFUNC',`define(`NOFUNC_'$1,1)') |
| |
| # IGNORE(TYPE) -- Completely ignore the type. |
| define(`IGNORE',`NOCVT($1)NOFUNC($1)') |
| |
| # Mark ELF types that should not be processed by the M4 macros below. |
| |
| # Types for which we use functions with non-standard names. |
| IGNORE(`BYTE') # Uses a wrapper around memcpy(). |
| IGNORE(`NOTE') # Not a fixed size type. |
| |
| # Types for which we supply hand-coded functions. |
| NOFUNC(`GNUHASH') # A type with complex internal structure. |
| NOFUNC(`VDEF') # See MAKE_VERSION_CONVERTERS below. |
| NOFUNC(`VNEED') # .. |
| |
| # Unimplemented types. |
| IGNORE(`MOVEP') |
| |
| # ELF types that don't exist in a 32-bit world. |
| NOFUNC(`XWORD32') |
| NOFUNC(`SXWORD32') |
| |
| # `Primitive' ELF types are those that are an alias for an integral |
| # type. As they have no internal structure, they can be copied using |
| # a `memcpy()', and byteswapped in straightforward way. |
| # |
| # Mark all ELF types that directly map to integral C types. |
| define(`PRIM_ADDR', 1) |
| define(`PRIM_BYTE', 1) |
| define(`PRIM_HALF', 1) |
| define(`PRIM_LWORD', 1) |
| define(`PRIM_OFF', 1) |
| define(`PRIM_SWORD', 1) |
| define(`PRIM_SXWORD', 1) |
| define(`PRIM_WORD', 1) |
| define(`PRIM_XWORD', 1) |
| |
| # Note the primitive types that are size-dependent. |
| define(`SIZEDEP_ADDR', 1) |
| define(`SIZEDEP_OFF', 1) |
| |
| # Generate conversion functions for primitive types. |
| # |
| # Macro use: MAKEPRIMFUNCS(ELFTYPE,CTYPE,TYPESIZE,SYMSIZE) |
| # `$1': Name of the ELF type. |
| # `$2': C structure name suffix. |
| # `$3': ELF class specifier for types, one of [`32', `64']. |
| # `$4': Additional ELF class specifier, one of [`', `32', `64']. |
| # |
| # Generates a pair of conversion functions. |
| define(`MAKEPRIMFUNCS',` |
| static int |
| _libelf_cvt_$1$4_tof(unsigned char *dst, size_t dsz, unsigned char *src, |
| size_t count, int byteswap) |
| { |
| Elf$3_$2 t, *s = (Elf$3_$2 *) (uintptr_t) src; |
| size_t c; |
| |
| (void) dsz; |
| |
| if (!byteswap) { |
| (void) memcpy(dst, src, count * sizeof(*s)); |
| return (1); |
| } |
| |
| for (c = 0; c < count; c++) { |
| t = *s++; |
| SWAP_$1$4(t); |
| WRITE_$1$4(dst,t); |
| } |
| |
| return (1); |
| } |
| |
| static int |
| _libelf_cvt_$1$4_tom(unsigned char *dst, size_t dsz, unsigned char *src, |
| size_t count, int byteswap) |
| { |
| Elf$3_$2 t, *d = (Elf$3_$2 *) (uintptr_t) dst; |
| size_t c; |
| |
| if (dsz < count * sizeof(Elf$3_$2)) |
| return (0); |
| |
| if (!byteswap) { |
| (void) memcpy(dst, src, count * sizeof(*d)); |
| return (1); |
| } |
| |
| for (c = 0; c < count; c++) { |
| READ_$1$4(src,t); |
| SWAP_$1$4(t); |
| *d++ = t; |
| } |
| |
| return (1); |
| } |
| ') |
| |
| # |
| # Handling composite ELF types |
| # |
| |
| # SWAP_FIELD(FIELDNAME,ELFTYPE) -- Generate code to swap one field. |
| define(`SWAP_FIELD', |
| `ifdef(`SIZEDEP_'$2, |
| `SWAP_$2'SZ()`(t.$1); |
| ', |
| `SWAP_$2(t.$1); |
| ')') |
| |
| # SWAP_MEMBERS(STRUCT) -- Iterate over a structure definition. |
| define(`SWAP_MEMBERS', |
| `ifelse($#,1,`/**/', |
| `SWAP_FIELD($1)SWAP_MEMBERS(shift($@))')') |
| |
| # SWAP_STRUCT(CTYPE,SIZE) -- Generate code to swap an ELF structure. |
| define(`SWAP_STRUCT', |
| `pushdef(`SZ',$2)/* Swap an Elf$2_$1 */ |
| SWAP_MEMBERS(Elf$2_$1_DEF)popdef(`SZ')') |
| |
| # WRITE_FIELD(ELFTYPE,FIELDNAME) -- Generate code to write one field. |
| define(`WRITE_FIELD', |
| `ifdef(`SIZEDEP_'$2, |
| `WRITE_$2'SZ()`(dst,t.$1); |
| ', |
| `WRITE_$2(dst,t.$1); |
| ')') |
| |
| # WRITE_MEMBERS(ELFTYPELIST) -- Iterate over a structure definition. |
| define(`WRITE_MEMBERS', |
| `ifelse($#,1,`/**/', |
| `WRITE_FIELD($1)WRITE_MEMBERS(shift($@))')') |
| |
| # WRITE_STRUCT(CTYPE,SIZE) -- Generate code to write out an ELF structure. |
| define(`WRITE_STRUCT', |
| `pushdef(`SZ',$2)/* Write an Elf$2_$1 */ |
| WRITE_MEMBERS(Elf$2_$1_DEF)popdef(`SZ')') |
| |
| # READ_FIELD(ELFTYPE,CTYPE) -- Generate code to read one field. |
| define(`READ_FIELD', |
| `ifdef(`SIZEDEP_'$2, |
| `READ_$2'SZ()`(s,t.$1); |
| ', |
| `READ_$2(s,t.$1); |
| ')') |
| |
| # READ_MEMBERS(ELFTYPELIST) -- Iterate over a structure definition. |
| define(`READ_MEMBERS', |
| `ifelse($#,1,`/**/', |
| `READ_FIELD($1)READ_MEMBERS(shift($@))')') |
| |
| # READ_STRUCT(CTYPE,SIZE) -- Generate code to read an ELF structure. |
| define(`READ_STRUCT', |
| `pushdef(`SZ',$2)/* Read an Elf$2_$1 */ |
| READ_MEMBERS(Elf$2_$1_DEF)popdef(`SZ')') |
| |
| |
| # MAKECOMPFUNCS -- Generate converters for composite ELF structures. |
| # |
| # When converting data to file representation, the source pointer will |
| # be naturally aligned for a data structure's in-memory |
| # representation. When converting data to memory, the destination |
| # pointer will be similarly aligned. |
| # |
| # For in-place conversions, when converting to file representations, |
| # the source buffer is large enough to hold `file' data. When |
| # converting from file to memory, we need to be careful to work |
| # `backwards', to avoid overwriting unconverted data. |
| # |
| # Macro use: |
| # `$1': Name of the ELF type. |
| # `$2': C structure name suffix. |
| # `$3': ELF class specifier, one of [`', `32', `64'] |
| define(`MAKECOMPFUNCS', `ifdef(`NOFUNC_'$1$3,`',` |
| static int |
| _libelf_cvt_$1$3_tof(unsigned char *dst, size_t dsz, unsigned char *src, |
| size_t count, int byteswap) |
| { |
| Elf$3_$2 t, *s; |
| size_t c; |
| |
| (void) dsz; |
| |
| s = (Elf$3_$2 *) (uintptr_t) src; |
| for (c = 0; c < count; c++) { |
| t = *s++; |
| if (byteswap) { |
| SWAP_STRUCT($2,$3) |
| } |
| WRITE_STRUCT($2,$3) |
| } |
| |
| return (1); |
| } |
| |
| static int |
| _libelf_cvt_$1$3_tom(unsigned char *dst, size_t dsz, unsigned char *src, |
| size_t count, int byteswap) |
| { |
| Elf$3_$2 t, *d; |
| unsigned char *s,*s0; |
| size_t fsz; |
| |
| fsz = elf$3_fsize(ELF_T_$1, (size_t) 1, EV_CURRENT); |
| d = ((Elf$3_$2 *) (uintptr_t) dst) + (count - 1); |
| s0 = src + (count - 1) * fsz; |
| |
| if (dsz < count * sizeof(Elf$3_$2)) |
| return (0); |
| |
| while (count--) { |
| s = s0; |
| READ_STRUCT($2,$3) |
| if (byteswap) { |
| SWAP_STRUCT($2,$3) |
| } |
| *d-- = t; s0 -= fsz; |
| } |
| |
| return (1); |
| } |
| ')') |
| |
| # MAKE_TYPE_CONVERTER(ELFTYPE,CTYPE) |
| # |
| # Make type convertor functions from the type definition |
| # of the ELF type: |
| # - Skip convertors marked as `NOFUNC'. |
| # - Invoke `MAKEPRIMFUNCS' or `MAKECOMPFUNCS' as appropriate. |
| define(`MAKE_TYPE_CONVERTER', |
| `ifdef(`NOFUNC_'$1,`', |
| `ifdef(`PRIM_'$1, |
| `ifdef(`SIZEDEP_'$1, |
| `MAKEPRIMFUNCS($1,$2,32,32)dnl |
| MAKEPRIMFUNCS($1,$2,64,64)', |
| `MAKEPRIMFUNCS($1,$2,64)')', |
| `MAKECOMPFUNCS($1,$2,32)dnl |
| MAKECOMPFUNCS($1,$2,64)')')') |
| |
| # MAKE_TYPE_CONVERTERS(ELFTYPELIST) -- Generate conversion functions. |
| define(`MAKE_TYPE_CONVERTERS', |
| `ifelse($#,1,`', |
| `MAKE_TYPE_CONVERTER($1)MAKE_TYPE_CONVERTERS(shift($@))')') |
| |
| |
| # |
| # Macros to generate entries for the table of convertors. |
| # |
| |
| # CONV(ELFTYPE,SIZE,DIRECTION) |
| # |
| # Generate the name of a convertor function. |
| define(`CONV', |
| `ifdef(`NOFUNC_'$1$2, |
| `.$3$2 = NULL', |
| `ifdef(`PRIM_'$1, |
| `ifdef(`SIZEDEP_'$1, |
| `.$3$2 = _libelf_cvt_$1$2_$3', |
| `.$3$2 = _libelf_cvt_$1_$3')', |
| `.$3$2 = _libelf_cvt_$1$2_$3')')') |
| |
| # CONVERTER_NAME(ELFTYPE) |
| # |
| # Generate the contents of one `struct cvt' instance. |
| define(`CONVERTER_NAME', |
| `ifdef(`NOCVT_'$1,`', |
| ` [ELF_T_$1] = { |
| CONV($1,32,tof), |
| CONV($1,32,tom), |
| CONV($1,64,tof), |
| CONV($1,64,tom) |
| }, |
| |
| ')') |
| |
| # CONVERTER_NAMES(ELFTYPELIST) |
| # |
| # Generate the `struct cvt[]' array. |
| define(`CONVERTER_NAMES', |
| `ifelse($#,1,`', |
| `CONVERTER_NAME($1)CONVERTER_NAMES(shift($@))')') |
| |
| # |
| # Handling ELF version sections. |
| # |
| |
| # _FSZ(FIELD,BASETYPE) - return the file size for a field. |
| define(`_FSZ', |
| `ifelse($2,`HALF',2, |
| $2,`WORD',4)') |
| |
| # FSZ(STRUCT) - determine the file size of a structure. |
| define(`FSZ', |
| `ifelse($#,1,0, |
| `eval(_FSZ($1) + FSZ(shift($@)))')') |
| |
| # MAKE_VERSION_CONVERTERS(TYPE,BASE,AUX,PFX) -- Generate conversion |
| # functions for versioning structures. |
| define(`MAKE_VERSION_CONVERTERS', |
| `MAKE_VERSION_CONVERTER($1,$2,$3,$4,32) |
| MAKE_VERSION_CONVERTER($1,$2,$3,$4,64)') |
| |
| # MAKE_VERSION_CONVERTOR(TYPE,CBASE,CAUX,PFX,SIZE) -- Generate a |
| # conversion function. |
| define(`MAKE_VERSION_CONVERTER',` |
| static int |
| _libelf_cvt_$1$5_tof(unsigned char *dst, size_t dsz, unsigned char *src, |
| size_t count, int byteswap) |
| { |
| Elf$5_$2 t; |
| Elf$5_$3 a; |
| const size_t verfsz = FSZ(Elf$5_$2_DEF); |
| const size_t auxfsz = FSZ(Elf$5_$3_DEF); |
| const size_t vermsz = sizeof(Elf$5_$2); |
| const size_t auxmsz = sizeof(Elf$5_$3); |
| unsigned char * const dstend = dst + dsz; |
| unsigned char * const srcend = src + count; |
| unsigned char *dtmp, *dstaux, *srcaux; |
| Elf$5_Word aux, anext, cnt, vnext; |
| |
| for (dtmp = dst, vnext = ~0U; |
| vnext != 0 && dtmp + verfsz <= dstend && src + vermsz <= srcend; |
| dtmp += vnext, src += vnext) { |
| |
| /* Read in an Elf$5_$2 structure. */ |
| t = *((Elf$5_$2 *) (uintptr_t) src); |
| |
| aux = t.$4_aux; |
| cnt = t.$4_cnt; |
| vnext = t.$4_next; |
| |
| if (byteswap) { |
| SWAP_STRUCT($2, $5) |
| } |
| |
| dst = dtmp; |
| WRITE_STRUCT($2, $5) |
| |
| if (aux < verfsz) |
| return (0); |
| |
| /* Process AUX entries. */ |
| for (anext = ~0U, dstaux = dtmp + aux, srcaux = src + aux; |
| cnt != 0 && anext != 0 && dstaux + auxfsz <= dstend && |
| srcaux + auxmsz <= srcend; |
| dstaux += anext, srcaux += anext, cnt--) { |
| |
| /* Read in an Elf$5_$3 structure. */ |
| a = *((Elf$5_$3 *) (uintptr_t) srcaux); |
| anext = a.$4a_next; |
| |
| if (byteswap) { |
| pushdef(`t',`a')SWAP_STRUCT($3, $5)popdef(`t') |
| } |
| |
| dst = dstaux; |
| pushdef(`t',`a')WRITE_STRUCT($3, $5)popdef(`t') |
| } |
| |
| if (anext || cnt) |
| return (0); |
| } |
| |
| if (vnext) |
| return (0); |
| |
| return (1); |
| } |
| |
| static int |
| _libelf_cvt_$1$5_tom(unsigned char *dst, size_t dsz, unsigned char *src, |
| size_t count, int byteswap) |
| { |
| Elf$5_$2 t, *dp; |
| Elf$5_$3 a, *ap; |
| const size_t verfsz = FSZ(Elf$5_$2_DEF); |
| const size_t auxfsz = FSZ(Elf$5_$3_DEF); |
| const size_t vermsz = sizeof(Elf$5_$2); |
| const size_t auxmsz = sizeof(Elf$5_$3); |
| unsigned char * const dstend = dst + dsz; |
| unsigned char * const srcend = src + count; |
| unsigned char *dstaux, *s, *srcaux, *stmp; |
| Elf$5_Word aux, anext, cnt, vnext; |
| |
| for (stmp = src, vnext = ~0U; |
| vnext != 0 && stmp + verfsz <= srcend && dst + vermsz <= dstend; |
| stmp += vnext, dst += vnext) { |
| |
| /* Read in a $1 structure. */ |
| s = stmp; |
| READ_STRUCT($2, $5) |
| if (byteswap) { |
| SWAP_STRUCT($2, $5) |
| } |
| |
| dp = (Elf$5_$2 *) (uintptr_t) dst; |
| *dp = t; |
| |
| aux = t.$4_aux; |
| cnt = t.$4_cnt; |
| vnext = t.$4_next; |
| |
| if (aux < vermsz) |
| return (0); |
| |
| /* Process AUX entries. */ |
| for (anext = ~0U, dstaux = dst + aux, srcaux = stmp + aux; |
| cnt != 0 && anext != 0 && dstaux + auxmsz <= dstend && |
| srcaux + auxfsz <= srcend; |
| dstaux += anext, srcaux += anext, cnt--) { |
| |
| s = srcaux; |
| pushdef(`t',`a')READ_STRUCT($3, $5)popdef(`t') |
| |
| if (byteswap) { |
| pushdef(`t',`a')SWAP_STRUCT($3, $5)popdef(`t') |
| } |
| |
| anext = a.$4a_next; |
| |
| ap = ((Elf$5_$3 *) (uintptr_t) dstaux); |
| *ap = a; |
| } |
| |
| if (anext || cnt) |
| return (0); |
| } |
| |
| if (vnext) |
| return (0); |
| |
| return (1); |
| }') |
| |
| divert(0) |
| |
| /* |
| * C macros to byte swap integral quantities. |
| */ |
| |
| #define SWAP_BYTE(X) do { (void) (X); } while (0) |
| #define SWAP_IDENT(X) do { (void) (X); } while (0) |
| #define SWAP_HALF(X) do { \ |
| uint16_t _x = (uint16_t) (X); \ |
| uint32_t _t = _x & 0xFFU; \ |
| _t <<= 8U; _x >>= 8U; _t |= _x & 0xFFU; \ |
| (X) = (uint16_t) _t; \ |
| } while (0) |
| #define _SWAP_WORD(X, T) do { \ |
| uint32_t _x = (uint32_t) (X); \ |
| uint32_t _t = _x & 0xFF; \ |
| _t <<= 8; _x >>= 8; _t |= _x & 0xFF; \ |
| _t <<= 8; _x >>= 8; _t |= _x & 0xFF; \ |
| _t <<= 8; _x >>= 8; _t |= _x & 0xFF; \ |
| (X) = (T) _t; \ |
| } while (0) |
| #define SWAP_ADDR32(X) _SWAP_WORD(X, Elf32_Addr) |
| #define SWAP_OFF32(X) _SWAP_WORD(X, Elf32_Off) |
| #define SWAP_SWORD(X) _SWAP_WORD(X, Elf32_Sword) |
| #define SWAP_WORD(X) _SWAP_WORD(X, Elf32_Word) |
| #define _SWAP_WORD64(X, T) do { \ |
| uint64_t _x = (uint64_t) (X); \ |
| uint64_t _t = _x & 0xFF; \ |
| _t <<= 8; _x >>= 8; _t |= _x & 0xFF; \ |
| _t <<= 8; _x >>= 8; _t |= _x & 0xFF; \ |
| _t <<= 8; _x >>= 8; _t |= _x & 0xFF; \ |
| _t <<= 8; _x >>= 8; _t |= _x & 0xFF; \ |
| _t <<= 8; _x >>= 8; _t |= _x & 0xFF; \ |
| _t <<= 8; _x >>= 8; _t |= _x & 0xFF; \ |
| _t <<= 8; _x >>= 8; _t |= _x & 0xFF; \ |
| (X) = (T) _t; \ |
| } while (0) |
| #define SWAP_ADDR64(X) _SWAP_WORD64(X, Elf64_Addr) |
| #define SWAP_LWORD(X) _SWAP_WORD64(X, Elf64_Lword) |
| #define SWAP_OFF64(X) _SWAP_WORD64(X, Elf64_Off) |
| #define SWAP_SXWORD(X) _SWAP_WORD64(X, Elf64_Sxword) |
| #define SWAP_XWORD(X) _SWAP_WORD64(X, Elf64_Xword) |
| |
| /* |
| * C macros to write out various integral values. |
| * |
| * Note: |
| * - The destination pointer could be unaligned. |
| * - Values are written out in native byte order. |
| * - The destination pointer is incremented after the write. |
| */ |
| #define WRITE_BYTE(P,X) do { \ |
| unsigned char *const _p = (unsigned char *) (P); \ |
| _p[0] = (unsigned char) (X); \ |
| (P) = _p + 1; \ |
| } while (0) |
| #define WRITE_HALF(P,X) do { \ |
| uint16_t _t = (X); \ |
| unsigned char *const _p = (unsigned char *) (P); \ |
| const unsigned char *const _q = (unsigned char *) &_t; \ |
| _p[0] = _q[0]; \ |
| _p[1] = _q[1]; \ |
| (P) = _p + 2; \ |
| } while (0) |
| #define WRITE_WORD(P,X) do { \ |
| uint32_t _t = (uint32_t) (X); \ |
| unsigned char *const _p = (unsigned char *) (P); \ |
| const unsigned char *const _q = (unsigned char *) &_t; \ |
| _p[0] = _q[0]; \ |
| _p[1] = _q[1]; \ |
| _p[2] = _q[2]; \ |
| _p[3] = _q[3]; \ |
| (P) = _p + 4; \ |
| } while (0) |
| #define WRITE_ADDR32(P,X) WRITE_WORD(P,X) |
| #define WRITE_OFF32(P,X) WRITE_WORD(P,X) |
| #define WRITE_SWORD(P,X) WRITE_WORD(P,X) |
| #define WRITE_WORD64(P,X) do { \ |
| uint64_t _t = (uint64_t) (X); \ |
| unsigned char *const _p = (unsigned char *) (P); \ |
| const unsigned char *const _q = (unsigned char *) &_t; \ |
| _p[0] = _q[0]; \ |
| _p[1] = _q[1]; \ |
| _p[2] = _q[2]; \ |
| _p[3] = _q[3]; \ |
| _p[4] = _q[4]; \ |
| _p[5] = _q[5]; \ |
| _p[6] = _q[6]; \ |
| _p[7] = _q[7]; \ |
| (P) = _p + 8; \ |
| } while (0) |
| #define WRITE_ADDR64(P,X) WRITE_WORD64(P,X) |
| #define WRITE_LWORD(P,X) WRITE_WORD64(P,X) |
| #define WRITE_OFF64(P,X) WRITE_WORD64(P,X) |
| #define WRITE_SXWORD(P,X) WRITE_WORD64(P,X) |
| #define WRITE_XWORD(P,X) WRITE_WORD64(P,X) |
| #define WRITE_IDENT(P,X) do { \ |
| (void) memcpy((P), (X), sizeof((X))); \ |
| (P) = (P) + EI_NIDENT; \ |
| } while (0) |
| |
| /* |
| * C macros to read in various integral values. |
| * |
| * Note: |
| * - The source pointer could be unaligned. |
| * - Values are read in native byte order. |
| * - The source pointer is incremented appropriately. |
| */ |
| |
| #define READ_BYTE(P,X) do { \ |
| const unsigned char *const _p = \ |
| (const unsigned char *) (P); \ |
| (X) = _p[0]; \ |
| (P) = (P) + 1; \ |
| } while (0) |
| #define READ_HALF(P,X) do { \ |
| uint16_t _t; \ |
| unsigned char *const _q = (unsigned char *) &_t; \ |
| const unsigned char *const _p = \ |
| (const unsigned char *) (P); \ |
| _q[0] = _p[0]; \ |
| _q[1] = _p[1]; \ |
| (P) = (P) + 2; \ |
| (X) = _t; \ |
| } while (0) |
| #define _READ_WORD(P,X,T) do { \ |
| uint32_t _t; \ |
| unsigned char *const _q = (unsigned char *) &_t; \ |
| const unsigned char *const _p = \ |
| (const unsigned char *) (P); \ |
| _q[0] = _p[0]; \ |
| _q[1] = _p[1]; \ |
| _q[2] = _p[2]; \ |
| _q[3] = _p[3]; \ |
| (P) = (P) + 4; \ |
| (X) = (T) _t; \ |
| } while (0) |
| #define READ_ADDR32(P,X) _READ_WORD(P, X, Elf32_Addr) |
| #define READ_OFF32(P,X) _READ_WORD(P, X, Elf32_Off) |
| #define READ_SWORD(P,X) _READ_WORD(P, X, Elf32_Sword) |
| #define READ_WORD(P,X) _READ_WORD(P, X, Elf32_Word) |
| #define _READ_WORD64(P,X,T) do { \ |
| uint64_t _t; \ |
| unsigned char *const _q = (unsigned char *) &_t; \ |
| const unsigned char *const _p = \ |
| (const unsigned char *) (P); \ |
| _q[0] = _p[0]; \ |
| _q[1] = _p[1]; \ |
| _q[2] = _p[2]; \ |
| _q[3] = _p[3]; \ |
| _q[4] = _p[4]; \ |
| _q[5] = _p[5]; \ |
| _q[6] = _p[6]; \ |
| _q[7] = _p[7]; \ |
| (P) = (P) + 8; \ |
| (X) = (T) _t; \ |
| } while (0) |
| #define READ_ADDR64(P,X) _READ_WORD64(P, X, Elf64_Addr) |
| #define READ_LWORD(P,X) _READ_WORD64(P, X, Elf64_Lword) |
| #define READ_OFF64(P,X) _READ_WORD64(P, X, Elf64_Off) |
| #define READ_SXWORD(P,X) _READ_WORD64(P, X, Elf64_Sxword) |
| #define READ_XWORD(P,X) _READ_WORD64(P, X, Elf64_Xword) |
| #define READ_IDENT(P,X) do { \ |
| (void) memcpy((X), (P), sizeof((X))); \ |
| (P) = (P) + EI_NIDENT; \ |
| } while (0) |
| |
| #define ROUNDUP2(V,N) (V) = ((((V) + (N) - 1)) & ~((N) - 1)) |
| |
| /*[*/ |
| MAKE_TYPE_CONVERTERS(ELF_TYPE_LIST) |
| MAKE_VERSION_CONVERTERS(VDEF,Verdef,Verdaux,vd) |
| MAKE_VERSION_CONVERTERS(VNEED,Verneed,Vernaux,vn) |
| /*]*/ |
| |
| /* |
| * Sections of type ELF_T_BYTE are never byteswapped, consequently a |
| * simple memcpy suffices for both directions of conversion. |
| */ |
| |
| static int |
| _libelf_cvt_BYTE_tox(unsigned char *dst, size_t dsz, unsigned char *src, |
| size_t count, int byteswap) |
| { |
| (void) byteswap; |
| if (dsz < count) |
| return (0); |
| if (dst != src) |
| (void) memcpy(dst, src, count); |
| return (1); |
| } |
| |
| /* |
| * Sections of type ELF_T_GNUHASH start with a header containing 4 32-bit |
| * words. Bloom filter data comes next, followed by hash buckets and the |
| * hash chain. |
| * |
| * Bloom filter words are 64 bit wide on ELFCLASS64 objects and are 32 bit |
| * wide on ELFCLASS32 objects. The other objects in this section are 32 |
| * bits wide. |
| * |
| * Argument `srcsz' denotes the number of bytes to be converted. In the |
| * 32-bit case we need to translate `srcsz' to a count of 32-bit words. |
| */ |
| |
| static int |
| _libelf_cvt_GNUHASH32_tom(unsigned char *dst, size_t dsz, unsigned char *src, |
| size_t srcsz, int byteswap) |
| { |
| return (_libelf_cvt_WORD_tom(dst, dsz, src, srcsz / sizeof(uint32_t), |
| byteswap)); |
| } |
| |
| static int |
| _libelf_cvt_GNUHASH32_tof(unsigned char *dst, size_t dsz, unsigned char *src, |
| size_t srcsz, int byteswap) |
| { |
| return (_libelf_cvt_WORD_tof(dst, dsz, src, srcsz / sizeof(uint32_t), |
| byteswap)); |
| } |
| |
| static int |
| _libelf_cvt_GNUHASH64_tom(unsigned char *dst, size_t dsz, unsigned char *src, |
| size_t srcsz, int byteswap) |
| { |
| size_t sz; |
| uint64_t t64, *bloom64; |
| Elf_GNU_Hash_Header *gh; |
| uint32_t n, nbuckets, nchains, maskwords, shift2, symndx, t32; |
| uint32_t *buckets, *chains; |
| |
| sz = 4 * sizeof(uint32_t); /* File header is 4 words long. */ |
| if (dsz < sizeof(Elf_GNU_Hash_Header) || srcsz < sz) |
| return (0); |
| |
| /* Read in the section header and byteswap if needed. */ |
| READ_WORD(src, nbuckets); |
| READ_WORD(src, symndx); |
| READ_WORD(src, maskwords); |
| READ_WORD(src, shift2); |
| |
| srcsz -= sz; |
| |
| if (byteswap) { |
| SWAP_WORD(nbuckets); |
| SWAP_WORD(symndx); |
| SWAP_WORD(maskwords); |
| SWAP_WORD(shift2); |
| } |
| |
| /* Check source buffer and destination buffer sizes. */ |
| sz = nbuckets * sizeof(uint32_t) + maskwords * sizeof(uint64_t); |
| if (srcsz < sz || dsz < sz + sizeof(Elf_GNU_Hash_Header)) |
| return (0); |
| |
| gh = (Elf_GNU_Hash_Header *) (uintptr_t) dst; |
| gh->gh_nbuckets = nbuckets; |
| gh->gh_symndx = symndx; |
| gh->gh_maskwords = maskwords; |
| gh->gh_shift2 = shift2; |
| |
| dsz -= sizeof(Elf_GNU_Hash_Header); |
| dst += sizeof(Elf_GNU_Hash_Header); |
| |
| bloom64 = (uint64_t *) (uintptr_t) dst; |
| |
| /* Copy bloom filter data. */ |
| for (n = 0; n < maskwords; n++) { |
| READ_XWORD(src, t64); |
| if (byteswap) |
| SWAP_XWORD(t64); |
| bloom64[n] = t64; |
| } |
| |
| /* The hash buckets follows the bloom filter. */ |
| dst += maskwords * sizeof(uint64_t); |
| buckets = (uint32_t *) (uintptr_t) dst; |
| |
| for (n = 0; n < nbuckets; n++) { |
| READ_WORD(src, t32); |
| if (byteswap) |
| SWAP_WORD(t32); |
| buckets[n] = t32; |
| } |
| |
| dst += nbuckets * sizeof(uint32_t); |
| |
| /* The hash chain follows the hash buckets. */ |
| dsz -= sz; |
| srcsz -= sz; |
| |
| if (dsz < srcsz) /* Destination lacks space. */ |
| return (0); |
| |
| nchains = srcsz / sizeof(uint32_t); |
| chains = (uint32_t *) (uintptr_t) dst; |
| |
| for (n = 0; n < nchains; n++) { |
| READ_WORD(src, t32); |
| if (byteswap) |
| SWAP_WORD(t32); |
| *chains++ = t32; |
| } |
| |
| return (1); |
| } |
| |
| static int |
| _libelf_cvt_GNUHASH64_tof(unsigned char *dst, size_t dsz, unsigned char *src, |
| size_t srcsz, int byteswap) |
| { |
| uint32_t *s32; |
| size_t sz, hdrsz; |
| uint64_t *s64, t64; |
| Elf_GNU_Hash_Header *gh; |
| uint32_t maskwords, n, nbuckets, nchains, t0, t1, t2, t3, t32; |
| |
| hdrsz = 4 * sizeof(uint32_t); /* Header is 4x32 bits. */ |
| if (dsz < hdrsz || srcsz < sizeof(Elf_GNU_Hash_Header)) |
| return (0); |
| |
| gh = (Elf_GNU_Hash_Header *) (uintptr_t) src; |
| |
| t0 = nbuckets = gh->gh_nbuckets; |
| t1 = gh->gh_symndx; |
| t2 = maskwords = gh->gh_maskwords; |
| t3 = gh->gh_shift2; |
| |
| src += sizeof(Elf_GNU_Hash_Header); |
| srcsz -= sizeof(Elf_GNU_Hash_Header); |
| dsz -= hdrsz; |
| |
| sz = gh->gh_nbuckets * sizeof(uint32_t) + gh->gh_maskwords * |
| sizeof(uint64_t); |
| |
| if (srcsz < sz || dsz < sz) |
| return (0); |
| |
| /* Write out the header. */ |
| if (byteswap) { |
| SWAP_WORD(t0); |
| SWAP_WORD(t1); |
| SWAP_WORD(t2); |
| SWAP_WORD(t3); |
| } |
| |
| WRITE_WORD(dst, t0); |
| WRITE_WORD(dst, t1); |
| WRITE_WORD(dst, t2); |
| WRITE_WORD(dst, t3); |
| |
| /* Copy the bloom filter and the hash table. */ |
| s64 = (uint64_t *) (uintptr_t) src; |
| for (n = 0; n < maskwords; n++) { |
| t64 = *s64++; |
| if (byteswap) |
| SWAP_XWORD(t64); |
| WRITE_WORD64(dst, t64); |
| } |
| |
| s32 = (uint32_t *) s64; |
| for (n = 0; n < nbuckets; n++) { |
| t32 = *s32++; |
| if (byteswap) |
| SWAP_WORD(t32); |
| WRITE_WORD(dst, t32); |
| } |
| |
| srcsz -= sz; |
| dsz -= sz; |
| |
| /* Copy out the hash chains. */ |
| if (dsz < srcsz) |
| return (0); |
| |
| nchains = srcsz / sizeof(uint32_t); |
| for (n = 0; n < nchains; n++) { |
| t32 = *s32++; |
| if (byteswap) |
| SWAP_WORD(t32); |
| WRITE_WORD(dst, t32); |
| } |
| |
| return (1); |
| } |
| |
| /* |
| * Elf_Note structures comprise a fixed size header followed by variable |
| * length strings. The fixed size header needs to be byte swapped, but |
| * not the strings. |
| * |
| * Argument `count' denotes the total number of bytes to be converted. |
| * The destination buffer needs to be at least `count' bytes in size. |
| */ |
| static int |
| _libelf_cvt_NOTE_tom(unsigned char *dst, size_t dsz, unsigned char *src, |
| size_t count, int byteswap) |
| { |
| uint32_t namesz, descsz, type; |
| Elf_Note *en; |
| size_t sz, hdrsz; |
| |
| if (dsz < count) /* Destination buffer is too small. */ |
| return (0); |
| |
| hdrsz = 3 * sizeof(uint32_t); |
| if (count < hdrsz) /* Source too small. */ |
| return (0); |
| |
| if (!byteswap) { |
| (void) memcpy(dst, src, count); |
| return (1); |
| } |
| |
| /* Process all notes in the section. */ |
| while (count > hdrsz) { |
| /* Read the note header. */ |
| READ_WORD(src, namesz); |
| READ_WORD(src, descsz); |
| READ_WORD(src, type); |
| |
| /* Translate. */ |
| SWAP_WORD(namesz); |
| SWAP_WORD(descsz); |
| SWAP_WORD(type); |
| |
| /* Copy out the translated note header. */ |
| en = (Elf_Note *) (uintptr_t) dst; |
| en->n_namesz = namesz; |
| en->n_descsz = descsz; |
| en->n_type = type; |
| |
| dsz -= sizeof(Elf_Note); |
| dst += sizeof(Elf_Note); |
| count -= hdrsz; |
| |
| ROUNDUP2(namesz, 4U); |
| ROUNDUP2(descsz, 4U); |
| |
| sz = namesz + descsz; |
| |
| if (count < sz || dsz < sz) /* Buffers are too small. */ |
| return (0); |
| |
| (void) memcpy(dst, src, sz); |
| |
| src += sz; |
| dst += sz; |
| |
| count -= sz; |
| dsz -= sz; |
| } |
| |
| return (1); |
| } |
| |
| static int |
| _libelf_cvt_NOTE_tof(unsigned char *dst, size_t dsz, unsigned char *src, |
| size_t count, int byteswap) |
| { |
| uint32_t namesz, descsz, type; |
| Elf_Note *en; |
| size_t sz; |
| |
| if (dsz < count) |
| return (0); |
| |
| if (!byteswap) { |
| (void) memcpy(dst, src, count); |
| return (1); |
| } |
| |
| while (count > sizeof(Elf_Note)) { |
| |
| en = (Elf_Note *) (uintptr_t) src; |
| namesz = en->n_namesz; |
| descsz = en->n_descsz; |
| type = en->n_type; |
| |
| sz = namesz; |
| ROUNDUP2(sz, 4U); |
| sz += descsz; |
| ROUNDUP2(sz, 4U); |
| |
| SWAP_WORD(namesz); |
| SWAP_WORD(descsz); |
| SWAP_WORD(type); |
| |
| WRITE_WORD(dst, namesz); |
| WRITE_WORD(dst, descsz); |
| WRITE_WORD(dst, type); |
| |
| src += sizeof(Elf_Note); |
| |
| if (count < sz) |
| sz = count; |
| |
| (void) memcpy(dst, src, sz); |
| |
| src += sz; |
| dst += sz; |
| count -= sz; |
| } |
| |
| return (1); |
| } |
| |
| struct converters { |
| int (*tof32)(unsigned char *dst, size_t dsz, unsigned char *src, |
| size_t cnt, int byteswap); |
| int (*tom32)(unsigned char *dst, size_t dsz, unsigned char *src, |
| size_t cnt, int byteswap); |
| int (*tof64)(unsigned char *dst, size_t dsz, unsigned char *src, |
| size_t cnt, int byteswap); |
| int (*tom64)(unsigned char *dst, size_t dsz, unsigned char *src, |
| size_t cnt, int byteswap); |
| }; |
| |
| |
| static struct converters cvt[ELF_T_NUM] = { |
| /*[*/ |
| CONVERTER_NAMES(ELF_TYPE_LIST) |
| /*]*/ |
| |
| /* |
| * Types that need hand-coded converters follow. |
| */ |
| |
| [ELF_T_BYTE] = { |
| .tof32 = _libelf_cvt_BYTE_tox, |
| .tom32 = _libelf_cvt_BYTE_tox, |
| .tof64 = _libelf_cvt_BYTE_tox, |
| .tom64 = _libelf_cvt_BYTE_tox |
| }, |
| |
| [ELF_T_NOTE] = { |
| .tof32 = _libelf_cvt_NOTE_tof, |
| .tom32 = _libelf_cvt_NOTE_tom, |
| .tof64 = _libelf_cvt_NOTE_tof, |
| .tom64 = _libelf_cvt_NOTE_tom |
| } |
| }; |
| |
| int (*_libelf_get_translator(Elf_Type t, int direction, int elfclass)) |
| (unsigned char *_dst, size_t dsz, unsigned char *_src, size_t _cnt, |
| int _byteswap) |
| { |
| assert(elfclass == ELFCLASS32 || elfclass == ELFCLASS64); |
| assert(direction == ELF_TOFILE || direction == ELF_TOMEMORY); |
| |
| if (t >= ELF_T_NUM || |
| (elfclass != ELFCLASS32 && elfclass != ELFCLASS64) || |
| (direction != ELF_TOFILE && direction != ELF_TOMEMORY)) |
| return (NULL); |
| |
| return ((elfclass == ELFCLASS32) ? |
| (direction == ELF_TOFILE ? cvt[t].tof32 : cvt[t].tom32) : |
| (direction == ELF_TOFILE ? cvt[t].tof64 : cvt[t].tom64)); |
| } |