blob: 01a2c9faf5b6f25d7d6ca4c71be326b52c583ff5 [file] [log] [blame]
/*
* Copyright (c) 2007-2008 The Florida State University
* Copyright (c) 2009 The University of Edinburgh
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "arch/power/process.hh"
#include "arch/power/isa_traits.hh"
#include "arch/power/types.hh"
#include "base/loader/elf_object.hh"
#include "base/loader/object_file.hh"
#include "base/logging.hh"
#include "cpu/thread_context.hh"
#include "debug/Stack.hh"
#include "mem/page_table.hh"
#include "params/Process.hh"
#include "sim/aux_vector.hh"
#include "sim/process_impl.hh"
#include "sim/syscall_return.hh"
#include "sim/system.hh"
using namespace std;
using namespace PowerISA;
PowerProcess::PowerProcess(
ProcessParams *params, ::Loader::ObjectFile *objFile)
: Process(params,
new EmulationPageTable(params->name, params->pid, PageBytes),
objFile)
{
fatal_if(params->useArchPT, "Arch page tables not implemented.");
// Set up break point (Top of Heap)
Addr brk_point = image.maxAddr();
brk_point = roundUp(brk_point, PageBytes);
Addr stack_base = 0xbf000000L;
Addr max_stack_size = 8 * 1024 * 1024;
// Set pointer for next thread stack. Reserve 8M for main stack.
Addr next_thread_stack_base = stack_base - max_stack_size;
// Set up region for mmaps. For now, start at bottom of kuseg space.
Addr mmap_end = 0x70000000L;
memState = make_shared<MemState>(this, brk_point, stack_base,
max_stack_size, next_thread_stack_base,
mmap_end);
}
void
PowerProcess::initState()
{
Process::initState();
argsInit(MachineBytes, PageBytes);
}
void
PowerProcess::argsInit(int intSize, int pageSize)
{
std::vector<AuxVector<uint32_t>> auxv;
string filename;
if (argv.size() < 1)
filename = "";
else
filename = argv[0];
//We want 16 byte alignment
uint64_t align = 16;
// load object file into target memory
image.write(*initVirtMem);
interpImage.write(*initVirtMem);
//Setup the auxilliary vectors. These will already have endian conversion.
//Auxilliary vectors are loaded only for elf formatted executables.
auto *elfObject = dynamic_cast<::Loader::ElfObject *>(objFile);
if (elfObject) {
uint32_t features = 0;
//Bits which describe the system hardware capabilities
//XXX Figure out what these should be
auxv.emplace_back(M5_AT_HWCAP, features);
//The system page size
auxv.emplace_back(M5_AT_PAGESZ, PowerISA::PageBytes);
//Frequency at which times() increments
auxv.emplace_back(M5_AT_CLKTCK, 0x64);
// For statically linked executables, this is the virtual address of
// the program header tables if they appear in the executable image
auxv.emplace_back(M5_AT_PHDR, elfObject->programHeaderTable());
// This is the size of a program header entry from the elf file.
auxv.emplace_back(M5_AT_PHENT, elfObject->programHeaderSize());
// This is the number of program headers from the original elf file.
auxv.emplace_back(M5_AT_PHNUM, elfObject->programHeaderCount());
// This is the base address of the ELF interpreter; it should be
// zero for static executables or contain the base address for
// dynamic executables.
auxv.emplace_back(M5_AT_BASE, getBias());
//XXX Figure out what this should be.
auxv.emplace_back(M5_AT_FLAGS, 0);
//The entry point to the program
auxv.emplace_back(M5_AT_ENTRY, objFile->entryPoint());
//Different user and group IDs
auxv.emplace_back(M5_AT_UID, uid());
auxv.emplace_back(M5_AT_EUID, euid());
auxv.emplace_back(M5_AT_GID, gid());
auxv.emplace_back(M5_AT_EGID, egid());
//Whether to enable "secure mode" in the executable
auxv.emplace_back(M5_AT_SECURE, 0);
//The address of 16 "random" bytes
auxv.emplace_back(M5_AT_RANDOM, 0);
//The filename of the program
auxv.emplace_back(M5_AT_EXECFN, 0);
//The string "v51" with unknown meaning
auxv.emplace_back(M5_AT_PLATFORM, 0);
}
//Figure out how big the initial stack nedes to be
// A sentry NULL void pointer at the top of the stack.
int sentry_size = intSize;
string platform = "v51";
int platform_size = platform.size() + 1;
// The aux vectors are put on the stack in two groups. The first group are
// the vectors that are generated as the elf is loaded. The second group
// are the ones that were computed ahead of time and include the platform
// string.
int aux_data_size = filename.size() + 1;
const int numRandomBytes = 16;
aux_data_size += numRandomBytes;
int env_data_size = 0;
for (int i = 0; i < envp.size(); ++i) {
env_data_size += envp[i].size() + 1;
}
int arg_data_size = 0;
for (int i = 0; i < argv.size(); ++i) {
arg_data_size += argv[i].size() + 1;
}
int info_block_size =
sentry_size + env_data_size + arg_data_size +
aux_data_size + platform_size;
//Each auxilliary vector is two 4 byte words
int aux_array_size = intSize * 2 * (auxv.size() + 1);
int envp_array_size = intSize * (envp.size() + 1);
int argv_array_size = intSize * (argv.size() + 1);
int argc_size = intSize;
//Figure out the size of the contents of the actual initial frame
int frame_size =
info_block_size +
aux_array_size +
envp_array_size +
argv_array_size +
argc_size;
//There needs to be padding after the auxiliary vector data so that the
//very bottom of the stack is aligned properly.
int partial_size = frame_size;
int aligned_partial_size = roundUp(partial_size, align);
int aux_padding = aligned_partial_size - partial_size;
int space_needed = frame_size + aux_padding;
Addr stack_min = memState->getStackBase() - space_needed;
stack_min = roundDown(stack_min, align);
memState->setStackSize(memState->getStackBase() - stack_min);
// map memory
memState->mapRegion(roundDown(stack_min, pageSize),
roundUp(memState->getStackSize(), pageSize), "stack");
// map out initial stack contents
uint32_t sentry_base = memState->getStackBase() - sentry_size;
uint32_t aux_data_base = sentry_base - aux_data_size;
uint32_t env_data_base = aux_data_base - env_data_size;
uint32_t arg_data_base = env_data_base - arg_data_size;
uint32_t platform_base = arg_data_base - platform_size;
uint32_t auxv_array_base = platform_base - aux_array_size - aux_padding;
uint32_t envp_array_base = auxv_array_base - envp_array_size;
uint32_t argv_array_base = envp_array_base - argv_array_size;
uint32_t argc_base = argv_array_base - argc_size;
DPRINTF(Stack, "The addresses of items on the initial stack:\n");
DPRINTF(Stack, "0x%x - aux data\n", aux_data_base);
DPRINTF(Stack, "0x%x - env data\n", env_data_base);
DPRINTF(Stack, "0x%x - arg data\n", arg_data_base);
DPRINTF(Stack, "0x%x - platform base\n", platform_base);
DPRINTF(Stack, "0x%x - auxv array\n", auxv_array_base);
DPRINTF(Stack, "0x%x - envp array\n", envp_array_base);
DPRINTF(Stack, "0x%x - argv array\n", argv_array_base);
DPRINTF(Stack, "0x%x - argc \n", argc_base);
DPRINTF(Stack, "0x%x - stack min\n", stack_min);
// write contents to stack
// figure out argc
uint32_t argc = argv.size();
uint32_t guestArgc = htobe(argc);
//Write out the sentry void *
uint32_t sentry_NULL = 0;
initVirtMem->writeBlob(sentry_base, &sentry_NULL, sentry_size);
//Fix up the aux vectors which point to other data
for (int i = auxv.size() - 1; i >= 0; i--) {
if (auxv[i].type == M5_AT_PLATFORM) {
auxv[i].val = platform_base;
initVirtMem->writeString(platform_base, platform.c_str());
} else if (auxv[i].type == M5_AT_EXECFN) {
auxv[i].val = aux_data_base + numRandomBytes;
initVirtMem->writeString(aux_data_base, filename.c_str());
} else if (auxv[i].type == M5_AT_RANDOM) {
auxv[i].val = aux_data_base;
}
}
//Copy the aux stuff
Addr auxv_array_end = auxv_array_base;
for (const auto &aux: auxv) {
initVirtMem->write(auxv_array_end, aux, GuestByteOrder);
auxv_array_end += sizeof(aux);
}
//Write out the terminating zeroed auxilliary vector
const AuxVector<uint64_t> zero(0, 0);
initVirtMem->write(auxv_array_end, zero);
auxv_array_end += sizeof(zero);
copyStringArray(envp, envp_array_base, env_data_base,
BigEndianByteOrder, *initVirtMem);
copyStringArray(argv, argv_array_base, arg_data_base,
BigEndianByteOrder, *initVirtMem);
initVirtMem->writeBlob(argc_base, &guestArgc, intSize);
ThreadContext *tc = system->getThreadContext(contextIds[0]);
//Set the stack pointer register
tc->setIntReg(StackPointerReg, stack_min);
tc->pcState(getStartPC());
//Align the "stack_min" to a page boundary.
memState->setStackMin(roundDown(stack_min, pageSize));
}
const std::vector<int> PowerProcess::SyscallABI::ArgumentRegs = {
3, 4, 5, 6, 7, 8
};