blob: afe5f7aa8897768687e6cf8274eebf0aaf2cc46b [file] [log] [blame]
/*
* Copyright (c) 2012, 2014, 2018 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Andreas Hansson
*/
#include "mem/physical.hh"
#include <fcntl.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <sys/user.h>
#include <unistd.h>
#include <zlib.h>
#include <cerrno>
#include <climits>
#include <cstdio>
#include <iostream>
#include <string>
#include "base/trace.hh"
#include "debug/AddrRanges.hh"
#include "debug/Checkpoint.hh"
#include "mem/abstract_mem.hh"
/**
* On Linux, MAP_NORESERVE allow us to simulate a very large memory
* without committing to actually providing the swap space on the
* host. On FreeBSD or OSX the MAP_NORESERVE flag does not exist,
* so simply make it 0.
*/
#if defined(__APPLE__) || defined(__FreeBSD__)
#ifndef MAP_NORESERVE
#define MAP_NORESERVE 0
#endif
#endif
using namespace std;
PhysicalMemory::PhysicalMemory(const string& _name,
const vector<AbstractMemory*>& _memories,
bool mmap_using_noreserve) :
_name(_name), size(0), mmapUsingNoReserve(mmap_using_noreserve)
{
if (mmap_using_noreserve)
warn("Not reserving swap space. May cause SIGSEGV on actual usage\n");
// add the memories from the system to the address map as
// appropriate
for (const auto& m : _memories) {
// only add the memory if it is part of the global address map
if (m->isInAddrMap()) {
memories.push_back(m);
// calculate the total size once and for all
size += m->size();
// add the range to our interval tree and make sure it does not
// intersect an existing range
fatal_if(addrMap.insert(m->getAddrRange(), m) == addrMap.end(),
"Memory address range for %s is overlapping\n",
m->name());
} else {
// this type of memory is used e.g. as reference memory by
// Ruby, and they also needs a backing store, but should
// not be part of the global address map
DPRINTF(AddrRanges,
"Skipping memory %s that is not in global address map\n",
m->name());
// sanity check
fatal_if(m->getAddrRange().interleaved(),
"Memory %s that is not in the global address map cannot "
"be interleaved\n", m->name());
// simply do it independently, also note that this kind of
// memories are allowed to overlap in the logic address
// map
vector<AbstractMemory*> unmapped_mems{m};
createBackingStore(m->getAddrRange(), unmapped_mems,
m->isConfReported(), m->isInAddrMap(),
m->isKvmMap());
}
}
// iterate over the increasing addresses and chunks of contiguous
// space to be mapped to backing store, create it and inform the
// memories
vector<AddrRange> intlv_ranges;
vector<AbstractMemory*> curr_memories;
for (const auto& r : addrMap) {
// simply skip past all memories that are null and hence do
// not need any backing store
if (!r.second->isNull()) {
// if the range is interleaved then save it for now
if (r.first.interleaved()) {
// if we already got interleaved ranges that are not
// part of the same range, then first do a merge
// before we add the new one
if (!intlv_ranges.empty() &&
!intlv_ranges.back().mergesWith(r.first)) {
AddrRange merged_range(intlv_ranges);
AbstractMemory *f = curr_memories.front();
for (const auto& c : curr_memories)
if (f->isConfReported() != c->isConfReported() ||
f->isInAddrMap() != c->isInAddrMap() ||
f->isKvmMap() != c->isKvmMap())
fatal("Inconsistent flags in an interleaved "
"range\n");
createBackingStore(merged_range, curr_memories,
f->isConfReported(), f->isInAddrMap(),
f->isKvmMap());
intlv_ranges.clear();
curr_memories.clear();
}
intlv_ranges.push_back(r.first);
curr_memories.push_back(r.second);
} else {
vector<AbstractMemory*> single_memory{r.second};
createBackingStore(r.first, single_memory,
r.second->isConfReported(),
r.second->isInAddrMap(),
r.second->isKvmMap());
}
}
}
// if there is still interleaved ranges waiting to be merged, go
// ahead and do it
if (!intlv_ranges.empty()) {
AddrRange merged_range(intlv_ranges);
AbstractMemory *f = curr_memories.front();
for (const auto& c : curr_memories)
if (f->isConfReported() != c->isConfReported() ||
f->isInAddrMap() != c->isInAddrMap() ||
f->isKvmMap() != c->isKvmMap())
fatal("Inconsistent flags in an interleaved "
"range\n");
createBackingStore(merged_range, curr_memories,
f->isConfReported(), f->isInAddrMap(),
f->isKvmMap());
}
}
void
PhysicalMemory::createBackingStore(AddrRange range,
const vector<AbstractMemory*>& _memories,
bool conf_table_reported,
bool in_addr_map, bool kvm_map)
{
panic_if(range.interleaved(),
"Cannot create backing store for interleaved range %s\n",
range.to_string());
// perform the actual mmap
DPRINTF(AddrRanges, "Creating backing store for range %s with size %d\n",
range.to_string(), range.size());
int map_flags = MAP_ANON | MAP_PRIVATE;
// to be able to simulate very large memories, the user can opt to
// pass noreserve to mmap
if (mmapUsingNoReserve) {
map_flags |= MAP_NORESERVE;
}
uint8_t* pmem = (uint8_t*) mmap(NULL, range.size(),
PROT_READ | PROT_WRITE,
map_flags, -1, 0);
if (pmem == (uint8_t*) MAP_FAILED) {
perror("mmap");
fatal("Could not mmap %d bytes for range %s!\n", range.size(),
range.to_string());
}
// remember this backing store so we can checkpoint it and unmap
// it appropriately
backingStore.emplace_back(range, pmem,
conf_table_reported, in_addr_map, kvm_map);
// point the memories to their backing store
for (const auto& m : _memories) {
DPRINTF(AddrRanges, "Mapping memory %s to backing store\n",
m->name());
m->setBackingStore(pmem);
}
}
PhysicalMemory::~PhysicalMemory()
{
// unmap the backing store
for (auto& s : backingStore)
munmap((char*)s.pmem, s.range.size());
}
bool
PhysicalMemory::isMemAddr(Addr addr) const
{
return addrMap.contains(addr) != addrMap.end();
}
AddrRangeList
PhysicalMemory::getConfAddrRanges() const
{
// this could be done once in the constructor, but since it is unlikely to
// be called more than once the iteration should not be a problem
AddrRangeList ranges;
vector<AddrRange> intlv_ranges;
for (const auto& r : addrMap) {
if (r.second->isConfReported()) {
// if the range is interleaved then save it for now
if (r.first.interleaved()) {
// if we already got interleaved ranges that are not
// part of the same range, then first do a merge
// before we add the new one
if (!intlv_ranges.empty() &&
!intlv_ranges.back().mergesWith(r.first)) {
ranges.push_back(AddrRange(intlv_ranges));
intlv_ranges.clear();
}
intlv_ranges.push_back(r.first);
} else {
// keep the current range
ranges.push_back(r.first);
}
}
}
// if there is still interleaved ranges waiting to be merged,
// go ahead and do it
if (!intlv_ranges.empty()) {
ranges.push_back(AddrRange(intlv_ranges));
}
return ranges;
}
void
PhysicalMemory::access(PacketPtr pkt)
{
assert(pkt->isRequest());
const auto& m = addrMap.contains(pkt->getAddrRange());
assert(m != addrMap.end());
m->second->access(pkt);
}
void
PhysicalMemory::functionalAccess(PacketPtr pkt)
{
assert(pkt->isRequest());
const auto& m = addrMap.contains(pkt->getAddrRange());
assert(m != addrMap.end());
m->second->functionalAccess(pkt);
}
void
PhysicalMemory::serialize(CheckpointOut &cp) const
{
// serialize all the locked addresses and their context ids
vector<Addr> lal_addr;
vector<ContextID> lal_cid;
for (auto& m : memories) {
const list<LockedAddr>& locked_addrs = m->getLockedAddrList();
for (const auto& l : locked_addrs) {
lal_addr.push_back(l.addr);
lal_cid.push_back(l.contextId);
}
}
SERIALIZE_CONTAINER(lal_addr);
SERIALIZE_CONTAINER(lal_cid);
// serialize the backing stores
unsigned int nbr_of_stores = backingStore.size();
SERIALIZE_SCALAR(nbr_of_stores);
unsigned int store_id = 0;
// store each backing store memory segment in a file
for (auto& s : backingStore) {
ScopedCheckpointSection sec(cp, csprintf("store%d", store_id));
serializeStore(cp, store_id++, s.range, s.pmem);
}
}
void
PhysicalMemory::serializeStore(CheckpointOut &cp, unsigned int store_id,
AddrRange range, uint8_t* pmem) const
{
// we cannot use the address range for the name as the
// memories that are not part of the address map can overlap
string filename = name() + ".store" + to_string(store_id) + ".pmem";
long range_size = range.size();
DPRINTF(Checkpoint, "Serializing physical memory %s with size %d\n",
filename, range_size);
SERIALIZE_SCALAR(store_id);
SERIALIZE_SCALAR(filename);
SERIALIZE_SCALAR(range_size);
// write memory file
string filepath = CheckpointIn::dir() + "/" + filename.c_str();
gzFile compressed_mem = gzopen(filepath.c_str(), "wb");
if (compressed_mem == NULL)
fatal("Can't open physical memory checkpoint file '%s'\n",
filename);
uint64_t pass_size = 0;
// gzwrite fails if (int)len < 0 (gzwrite returns int)
for (uint64_t written = 0; written < range.size();
written += pass_size) {
pass_size = (uint64_t)INT_MAX < (range.size() - written) ?
(uint64_t)INT_MAX : (range.size() - written);
if (gzwrite(compressed_mem, pmem + written,
(unsigned int) pass_size) != (int) pass_size) {
fatal("Write failed on physical memory checkpoint file '%s'\n",
filename);
}
}
// close the compressed stream and check that the exit status
// is zero
if (gzclose(compressed_mem))
fatal("Close failed on physical memory checkpoint file '%s'\n",
filename);
}
void
PhysicalMemory::unserialize(CheckpointIn &cp)
{
// unserialize the locked addresses and map them to the
// appropriate memory controller
vector<Addr> lal_addr;
vector<ContextID> lal_cid;
UNSERIALIZE_CONTAINER(lal_addr);
UNSERIALIZE_CONTAINER(lal_cid);
for (size_t i = 0; i < lal_addr.size(); ++i) {
const auto& m = addrMap.contains(lal_addr[i]);
m->second->addLockedAddr(LockedAddr(lal_addr[i], lal_cid[i]));
}
// unserialize the backing stores
unsigned int nbr_of_stores;
UNSERIALIZE_SCALAR(nbr_of_stores);
for (unsigned int i = 0; i < nbr_of_stores; ++i) {
ScopedCheckpointSection sec(cp, csprintf("store%d", i));
unserializeStore(cp);
}
}
void
PhysicalMemory::unserializeStore(CheckpointIn &cp)
{
const uint32_t chunk_size = 16384;
unsigned int store_id;
UNSERIALIZE_SCALAR(store_id);
string filename;
UNSERIALIZE_SCALAR(filename);
string filepath = cp.cptDir + "/" + filename;
// mmap memoryfile
gzFile compressed_mem = gzopen(filepath.c_str(), "rb");
if (compressed_mem == NULL)
fatal("Can't open physical memory checkpoint file '%s'", filename);
// we've already got the actual backing store mapped
uint8_t* pmem = backingStore[store_id].pmem;
AddrRange range = backingStore[store_id].range;
long range_size;
UNSERIALIZE_SCALAR(range_size);
DPRINTF(Checkpoint, "Unserializing physical memory %s with size %d\n",
filename, range_size);
if (range_size != range.size())
fatal("Memory range size has changed! Saw %lld, expected %lld\n",
range_size, range.size());
uint64_t curr_size = 0;
long* temp_page = new long[chunk_size];
long* pmem_current;
uint32_t bytes_read;
while (curr_size < range.size()) {
bytes_read = gzread(compressed_mem, temp_page, chunk_size);
if (bytes_read == 0)
break;
assert(bytes_read % sizeof(long) == 0);
for (uint32_t x = 0; x < bytes_read / sizeof(long); x++) {
// Only copy bytes that are non-zero, so we don't give
// the VM system hell
if (*(temp_page + x) != 0) {
pmem_current = (long*)(pmem + curr_size + x * sizeof(long));
*pmem_current = *(temp_page + x);
}
}
curr_size += bytes_read;
}
delete[] temp_page;
if (gzclose(compressed_mem))
fatal("Close failed on physical memory checkpoint file '%s'\n",
filename);
}