| // -*- mode:c++ -*- |
| |
| // Copyright (c) 2011-2014, 2017 ARM Limited |
| // All rights reserved |
| // |
| // The license below extends only to copyright in the software and shall |
| // not be construed as granting a license to any other intellectual |
| // property including but not limited to intellectual property relating |
| // to a hardware implementation of the functionality of the software |
| // licensed hereunder. You may use the software subject to the license |
| // terms below provided that you ensure that this notice is replicated |
| // unmodified and in its entirety in all distributions of the software, |
| // modified or unmodified, in source code or in binary form. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer; |
| // redistributions in binary form must reproduce the above copyright |
| // notice, this list of conditions and the following disclaimer in the |
| // documentation and/or other materials provided with the distribution; |
| // neither the name of the copyright holders nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Authors: Gabe Black |
| |
| let {{ |
| |
| header_output = "" |
| decoder_output = "" |
| exec_output = "" |
| |
| class LoadInst64(LoadStoreInst): |
| execBase = 'Load64' |
| micro = False |
| |
| def __init__(self, mnem, Name, size=4, sign=False, user=False, |
| literal=False, flavor="normal", top=False): |
| super(LoadInst64, self).__init__() |
| |
| self.name = mnem |
| self.Name = Name |
| self.size = size |
| self.sign = sign |
| self.user = user |
| self.literal = literal |
| self.flavor = flavor |
| self.top = top |
| |
| self.memFlags = ["ArmISA::TLB::MustBeOne"] |
| self.instFlags = [] |
| self.codeBlobs = {"postacc_code" : ""} |
| |
| # Add memory request flags where necessary |
| if self.user: |
| self.memFlags.append("ArmISA::TLB::UserMode") |
| |
| if self.flavor == "dprefetch": |
| self.memFlags.append("Request::PREFETCH") |
| self.instFlags = ['IsDataPrefetch'] |
| elif self.flavor == "iprefetch": |
| self.memFlags.append("Request::PREFETCH") |
| self.instFlags = ['IsInstPrefetch'] |
| elif self.flavor == "mprefetch": |
| self.memFlags.append("((((dest>>3)&3)==2)? \ |
| (Request::PF_EXCLUSIVE):(Request::PREFETCH))") |
| self.instFlags = ['IsDataPrefetch'] |
| if self.micro: |
| self.instFlags.append("IsMicroop") |
| |
| if self.flavor in ("acexp", "exp"): |
| # For exclusive pair ops alignment check is based on total size |
| self.memFlags.append("%d" % int(math.log(self.size, 2) + 1)) |
| elif not (self.size == 16 and self.top): |
| # Only the first microop should perform alignment checking. |
| self.memFlags.append("%d" % int(math.log(self.size, 2))) |
| |
| if self.flavor not in ("acquire", "acex", "exclusive", |
| "acexp", "exp"): |
| self.memFlags.append("ArmISA::TLB::AllowUnaligned") |
| |
| if self.flavor in ("acquire", "acex", "acexp"): |
| self.instFlags.extend(["IsMemBarrier", |
| "IsWriteBarrier", |
| "IsReadBarrier"]) |
| if self.flavor in ("acex", "exclusive", "exp", "acexp"): |
| self.memFlags.append("Request::LLSC") |
| |
| def buildEACode(self): |
| # Address computation code |
| eaCode = "" |
| if self.flavor == "fp": |
| eaCode += vfp64EnabledCheckCode |
| |
| if self.literal: |
| eaCode += "EA = RawPC" |
| else: |
| eaCode += SPAlignmentCheckCode + "EA = XBase" |
| |
| if self.size == 16: |
| if self.top: |
| eaCode += " + (isBigEndian64(xc->tcBase()) ? 0 : 8)" |
| else: |
| eaCode += " + (isBigEndian64(xc->tcBase()) ? 8 : 0)" |
| if not self.post: |
| eaCode += self.offset |
| eaCode += ";" |
| |
| self.codeBlobs["ea_code"] = eaCode |
| |
| def emitHelper(self, base='Memory64', wbDecl=None): |
| global header_output, decoder_output, exec_output |
| |
| # If this is a microop itself, don't allow anything that would |
| # require further microcoding. |
| if self.micro: |
| assert not wbDecl |
| |
| fa_code = None |
| if not self.micro and self.flavor in ("normal", "widen", "acquire"): |
| fa_code = ''' |
| fault->annotate(ArmFault::SAS, %s); |
| fault->annotate(ArmFault::SSE, %s); |
| fault->annotate(ArmFault::SRT, dest); |
| fault->annotate(ArmFault::SF, %s); |
| fault->annotate(ArmFault::AR, %s); |
| ''' % ("0" if self.size == 1 else |
| "1" if self.size == 2 else |
| "2" if self.size == 4 else "3", |
| "true" if self.sign else "false", |
| "true" if (self.size == 8 or |
| self.flavor == "widen") else "false", |
| "true" if self.flavor == "acquire" else "false") |
| |
| (newHeader, newDecoder, newExec) = \ |
| self.fillTemplates(self.name, self.Name, self.codeBlobs, |
| self.memFlags, self.instFlags, |
| base, wbDecl, faCode=fa_code) |
| |
| header_output += newHeader |
| decoder_output += newDecoder |
| exec_output += newExec |
| |
| class LoadImmInst64(LoadInst64): |
| def __init__(self, *args, **kargs): |
| super(LoadImmInst64, self).__init__(*args, **kargs) |
| self.offset = " + imm" |
| |
| self.wbDecl = "MicroAddXiUop(machInst, base, base, imm);" |
| |
| class LoadRegInst64(LoadInst64): |
| def __init__(self, *args, **kargs): |
| super(LoadRegInst64, self).__init__(*args, **kargs) |
| self.offset = " + extendReg64(XOffset, type, shiftAmt, 64)" |
| |
| self.wbDecl = \ |
| "MicroAddXERegUop(machInst, base, base, " + \ |
| " offset, type, shiftAmt);" |
| |
| class LoadRawRegInst64(LoadInst64): |
| def __init__(self, *args, **kargs): |
| super(LoadRawRegInst64, self).__init__(*args, **kargs) |
| self.offset = "" |
| |
| class LoadSingle64(LoadInst64): |
| def emit(self): |
| self.buildEACode() |
| |
| accEpilogCode = None |
| # Code that actually handles the access |
| if self.flavor in ("dprefetch", "iprefetch", "mprefetch"): |
| accCode = 'uint64_t temp M5_VAR_USED = Mem%s;' |
| elif self.flavor == "fp": |
| accEpilogCode = ''' |
| ArmISA::ISA::zeroSveVecRegUpperPart(AA64FpDest, |
| ArmStaticInst::getCurSveVecLen<uint64_t>( |
| xc->tcBase())); |
| ''' |
| if self.size in (1, 2, 4): |
| accCode = ''' |
| AA64FpDestP0_uw = cSwap(Mem%s, |
| isBigEndian64(xc->tcBase())); |
| AA64FpDestP1_uw = 0; |
| AA64FpDestP2_uw = 0; |
| AA64FpDestP3_uw = 0; |
| ''' |
| elif self.size == 8: |
| accCode = ''' |
| uint64_t data = cSwap(Mem%s, |
| isBigEndian64(xc->tcBase())); |
| AA64FpDestP0_uw = (uint32_t)data; |
| AA64FpDestP1_uw = (data >> 32); |
| AA64FpDestP2_uw = 0; |
| AA64FpDestP3_uw = 0; |
| ''' |
| elif self.size == 16: |
| accCode = ''' |
| auto data = cSwap(Mem%s, isBigEndian64(xc->tcBase())); |
| AA64FpDestP0_uw = (uint32_t)data[0]; |
| AA64FpDestP1_uw = (data[0] >> 32); |
| AA64FpDestP2_uw = (uint32_t)data[1]; |
| AA64FpDestP3_uw = (data[1] >> 32); |
| ''' |
| elif self.flavor == "widen" or self.size == 8: |
| accCode = "XDest = cSwap(Mem%s, isBigEndian64(xc->tcBase()));" |
| else: |
| accCode = "WDest = cSwap(Mem%s, isBigEndian64(xc->tcBase()));" |
| |
| accCode = accCode % buildMemSuffix(self.sign, self.size) |
| |
| self.codeBlobs["memacc_code"] = accCode |
| if accEpilogCode: |
| self.codeBlobs["memacc_epilog_code"] = accEpilogCode |
| |
| # Push it out to the output files |
| wbDecl = None |
| if self.writeback and not self.micro: |
| wbDecl = self.wbDecl |
| self.emitHelper(self.base, wbDecl) |
| |
| class LoadDouble64(LoadInst64): |
| def emit(self): |
| self.buildEACode() |
| |
| accEpilogCode = None |
| # Code that actually handles the access |
| if self.flavor == "fp": |
| accEpilogCode = ''' |
| ArmISA::ISA::zeroSveVecRegUpperPart(AA64FpDest, |
| ArmStaticInst::getCurSveVecLen<uint64_t>( |
| xc->tcBase())); |
| ArmISA::ISA::zeroSveVecRegUpperPart(AA64FpDest2, |
| ArmStaticInst::getCurSveVecLen<uint64_t>( |
| xc->tcBase())); |
| ''' |
| if self.size == 4: |
| accCode = ''' |
| uint64_t data = cSwap(Mem_ud, isBigEndian64(xc->tcBase())); |
| AA64FpDestP0_uw = isBigEndian64(xc->tcBase()) |
| ? (data >> 32) |
| : (uint32_t)data; |
| AA64FpDestP1_uw = 0; |
| AA64FpDestP2_uw = 0; |
| AA64FpDestP3_uw = 0; |
| AA64FpDest2P0_uw = isBigEndian64(xc->tcBase()) |
| ? (uint32_t)data |
| : (data >> 32); |
| AA64FpDest2P1_uw = 0; |
| AA64FpDest2P2_uw = 0; |
| AA64FpDest2P3_uw = 0; |
| ''' |
| elif self.size == 8: |
| accCode = ''' |
| uint64_t data_a = cSwap(Mem_tud[0], |
| isBigEndian64(xc->tcBase())); |
| uint64_t data_b = cSwap(Mem_tud[1], |
| isBigEndian64(xc->tcBase())); |
| AA64FpDestP0_uw = (uint32_t)data_a; |
| AA64FpDestP1_uw = (uint32_t)(data_a >> 32); |
| AA64FpDestP2_uw = 0; |
| AA64FpDestP3_uw = 0; |
| AA64FpDest2P0_uw = (uint32_t)data_b; |
| AA64FpDest2P1_uw = (uint32_t)(data_b >> 32); |
| AA64FpDest2P2_uw = 0; |
| AA64FpDest2P3_uw = 0; |
| ''' |
| else: |
| if self.sign: |
| if self.size == 4: |
| accCode = ''' |
| uint64_t data = cSwap(Mem_ud, |
| isBigEndian64(xc->tcBase())); |
| XDest = isBigEndian64(xc->tcBase()) |
| ? sext<32>(data >> 32) |
| : sext<32>((uint32_t)data); |
| XDest2 = isBigEndian64(xc->tcBase()) |
| ? sext<32>((uint32_t)data) |
| : sext<32>(data >> 32); |
| ''' |
| elif self.size == 8: |
| accCode = ''' |
| XDest = cSwap(Mem_tud[0], |
| isBigEndian64(xc->tcBase())); |
| XDest2 = cSwap(Mem_tud[1], |
| isBigEndian64(xc->tcBase())); |
| ''' |
| else: |
| if self.size == 4: |
| accCode = ''' |
| uint64_t data = cSwap(Mem_ud, |
| isBigEndian64(xc->tcBase())); |
| XDest = isBigEndian64(xc->tcBase()) |
| ? (data >> 32) |
| : (uint32_t)data; |
| XDest2 = isBigEndian64(xc->tcBase()) |
| ? (uint32_t)data |
| : (data >> 32); |
| ''' |
| elif self.size == 8: |
| accCode = ''' |
| XDest = cSwap(Mem_tud[0], |
| isBigEndian64(xc->tcBase())); |
| XDest2 = cSwap(Mem_tud[1], |
| isBigEndian64(xc->tcBase())); |
| ''' |
| self.codeBlobs["memacc_code"] = accCode |
| if accEpilogCode: |
| self.codeBlobs["memacc_epilog_code"] = accEpilogCode |
| |
| # Push it out to the output files |
| wbDecl = None |
| if self.writeback and not self.micro: |
| wbDecl = self.wbDecl |
| self.emitHelper(self.base, wbDecl) |
| |
| class LoadImm64(LoadImmInst64, LoadSingle64): |
| decConstBase = 'LoadStoreImm64' |
| base = 'ArmISA::MemoryImm64' |
| writeback = False |
| post = False |
| |
| class LoadPre64(LoadImmInst64, LoadSingle64): |
| decConstBase = 'LoadStoreImm64' |
| base = 'ArmISA::MemoryPreIndex64' |
| writeback = True |
| post = False |
| |
| class LoadPost64(LoadImmInst64, LoadSingle64): |
| decConstBase = 'LoadStoreImm64' |
| base = 'ArmISA::MemoryPostIndex64' |
| writeback = True |
| post = True |
| |
| class LoadReg64(LoadRegInst64, LoadSingle64): |
| decConstBase = 'LoadStoreReg64' |
| base = 'ArmISA::MemoryReg64' |
| writeback = False |
| post = False |
| |
| class LoadRaw64(LoadRawRegInst64, LoadSingle64): |
| decConstBase = 'LoadStoreRaw64' |
| base = 'ArmISA::MemoryRaw64' |
| writeback = False |
| post = False |
| |
| class LoadEx64(LoadRawRegInst64, LoadSingle64): |
| decConstBase = 'LoadStoreEx64' |
| base = 'ArmISA::MemoryEx64' |
| writeback = False |
| post = False |
| |
| class LoadLit64(LoadImmInst64, LoadSingle64): |
| decConstBase = 'LoadStoreLit64' |
| base = 'ArmISA::MemoryLiteral64' |
| writeback = False |
| post = False |
| |
| def buildLoads64(mnem, NameBase, size, sign, flavor="normal"): |
| LoadImm64(mnem, NameBase + "_IMM", size, sign, flavor=flavor).emit() |
| LoadPre64(mnem, NameBase + "_PRE", size, sign, flavor=flavor).emit() |
| LoadPost64(mnem, NameBase + "_POST", size, sign, flavor=flavor).emit() |
| LoadReg64(mnem, NameBase + "_REG", size, sign, flavor=flavor).emit() |
| |
| buildLoads64("ldrb", "LDRB64", 1, False) |
| buildLoads64("ldrsb", "LDRSBW64", 1, True) |
| buildLoads64("ldrsb", "LDRSBX64", 1, True, flavor="widen") |
| buildLoads64("ldrh", "LDRH64", 2, False) |
| buildLoads64("ldrsh", "LDRSHW64", 2, True) |
| buildLoads64("ldrsh", "LDRSHX64", 2, True, flavor="widen") |
| buildLoads64("ldrsw", "LDRSW64", 4, True, flavor="widen") |
| buildLoads64("ldr", "LDRW64", 4, False) |
| buildLoads64("ldr", "LDRX64", 8, False) |
| buildLoads64("ldr", "LDRBFP64", 1, False, flavor="fp") |
| buildLoads64("ldr", "LDRHFP64", 2, False, flavor="fp") |
| buildLoads64("ldr", "LDRSFP64", 4, False, flavor="fp") |
| buildLoads64("ldr", "LDRDFP64", 8, False, flavor="fp") |
| |
| LoadImm64("prfm", "PRFM64_IMM", 8, flavor="mprefetch").emit() |
| LoadReg64("prfm", "PRFM64_REG", 8, flavor="mprefetch").emit() |
| LoadLit64("prfm", "PRFM64_LIT", 8, literal=True, |
| flavor="mprefetch").emit() |
| LoadImm64("prfum", "PRFUM64_IMM", 8, flavor="mprefetch").emit() |
| |
| LoadImm64("ldurb", "LDURB64_IMM", 1, False).emit() |
| LoadImm64("ldursb", "LDURSBW64_IMM", 1, True).emit() |
| LoadImm64("ldursb", "LDURSBX64_IMM", 1, True, flavor="widen").emit() |
| LoadImm64("ldurh", "LDURH64_IMM", 2, False).emit() |
| LoadImm64("ldursh", "LDURSHW64_IMM", 2, True).emit() |
| LoadImm64("ldursh", "LDURSHX64_IMM", 2, True, flavor="widen").emit() |
| LoadImm64("ldursw", "LDURSW64_IMM", 4, True, flavor="widen").emit() |
| LoadImm64("ldur", "LDURW64_IMM", 4, False).emit() |
| LoadImm64("ldur", "LDURX64_IMM", 8, False).emit() |
| LoadImm64("ldur", "LDURBFP64_IMM", 1, flavor="fp").emit() |
| LoadImm64("ldur", "LDURHFP64_IMM", 2, flavor="fp").emit() |
| LoadImm64("ldur", "LDURSFP64_IMM", 4, flavor="fp").emit() |
| LoadImm64("ldur", "LDURDFP64_IMM", 8, flavor="fp").emit() |
| |
| LoadImm64("ldtrb", "LDTRB64_IMM", 1, False, True).emit() |
| LoadImm64("ldtrsb", "LDTRSBW64_IMM", 1, True, True).emit() |
| LoadImm64("ldtrsb", "LDTRSBX64_IMM", 1, True, True, flavor="widen").emit() |
| LoadImm64("ldtrh", "LDTRH64_IMM", 2, False, True).emit() |
| LoadImm64("ldtrsh", "LDTRSHW64_IMM", 2, True, True).emit() |
| LoadImm64("ldtrsh", "LDTRSHX64_IMM", 2, True, True, flavor="widen").emit() |
| LoadImm64("ldtrsw", "LDTRSW64_IMM", 4, True, flavor="widen").emit() |
| LoadImm64("ldtr", "LDTRW64_IMM", 4, False, True).emit() |
| LoadImm64("ldtr", "LDTRX64_IMM", 8, False, True).emit() |
| |
| LoadLit64("ldrsw", "LDRSWL64_LIT", 4, True, \ |
| literal=True, flavor="widen").emit() |
| LoadLit64("ldr", "LDRWL64_LIT", 4, False, literal=True).emit() |
| LoadLit64("ldr", "LDRXL64_LIT", 8, False, literal=True).emit() |
| LoadLit64("ldr", "LDRSFP64_LIT", 4, literal=True, flavor="fp").emit() |
| LoadLit64("ldr", "LDRDFP64_LIT", 8, literal=True, flavor="fp").emit() |
| |
| LoadRaw64("ldar", "LDARX64", 8, flavor="acquire").emit() |
| LoadRaw64("ldar", "LDARW64", 4, flavor="acquire").emit() |
| LoadRaw64("ldarh", "LDARH64", 2, flavor="acquire").emit() |
| LoadRaw64("ldarb", "LDARB64", 1, flavor="acquire").emit() |
| |
| LoadEx64("ldaxr", "LDAXRX64", 8, flavor="acex").emit() |
| LoadEx64("ldaxr", "LDAXRW64", 4, flavor="acex").emit() |
| LoadEx64("ldaxrh", "LDAXRH64", 2, flavor="acex").emit() |
| LoadEx64("ldaxrb", "LDAXRB64", 1, flavor="acex").emit() |
| |
| LoadEx64("ldxr", "LDXRX64", 8, flavor="exclusive").emit() |
| LoadEx64("ldxr", "LDXRW64", 4, flavor="exclusive").emit() |
| LoadEx64("ldxrh", "LDXRH64", 2, flavor="exclusive").emit() |
| LoadEx64("ldxrb", "LDXRB64", 1, flavor="exclusive").emit() |
| |
| LoadRaw64("ldapr", "LDAPRX64", 8, flavor="acquire").emit() |
| LoadRaw64("ldapr", "LDAPRW64", 4, flavor="acquire").emit() |
| LoadRaw64("ldaprh", "LDAPRH64", 2, flavor="acquire").emit() |
| LoadRaw64("ldaprb", "LDAPRB64", 1, flavor="acquire").emit() |
| |
| class LoadImmU64(LoadImm64): |
| decConstBase = 'LoadStoreImmU64' |
| micro = True |
| |
| class LoadImmDU64(LoadImmInst64, LoadDouble64): |
| decConstBase = 'LoadStoreImmDU64' |
| base = 'ArmISA::MemoryDImm64' |
| micro = True |
| post = False |
| writeback = False |
| |
| class LoadImmDouble64(LoadImmInst64, LoadDouble64): |
| decConstBase = 'LoadStoreImmDU64' |
| base = 'ArmISA::MemoryDImm64' |
| micro = False |
| post = False |
| writeback = False |
| |
| class LoadRegU64(LoadReg64): |
| decConstBase = 'LoadStoreRegU64' |
| micro = True |
| |
| class LoadLitU64(LoadLit64): |
| decConstBase = 'LoadStoreLitU64' |
| micro = True |
| |
| LoadImmDU64("ldp_uop", "MicroLdPairUop", 8).emit() |
| LoadImmDU64("ldp_fp8_uop", "MicroLdPairFp8Uop", 8, flavor="fp").emit() |
| LoadImmU64("ldfp16_uop", "MicroLdFp16Uop", 16, flavor="fp").emit() |
| LoadReg64("ldfp16reg_uop", "MicroLdFp16RegUop", 16, flavor="fp").emit() |
| |
| LoadImmDouble64("ldaxp", "LDAXPW64", 4, flavor="acexp").emit() |
| LoadImmDouble64("ldaxp", "LDAXPX64", 8, flavor="acexp").emit() |
| LoadImmDouble64("ldxp", "LDXPW64", 4, flavor="exp").emit() |
| LoadImmDouble64("ldxp", "LDXPX64", 8, flavor="exp").emit() |
| |
| LoadImmU64("ldrxi_uop", "MicroLdrXImmUop", 8).emit() |
| LoadRegU64("ldrxr_uop", "MicroLdrXRegUop", 8).emit() |
| LoadLitU64("ldrxl_uop", "MicroLdrXLitUop", 8, literal=True).emit() |
| LoadImmU64("ldrfpxi_uop", "MicroLdrFpXImmUop", 8, flavor="fp").emit() |
| LoadRegU64("ldrfpxr_uop", "MicroLdrFpXRegUop", 8, flavor="fp").emit() |
| LoadLitU64("ldrfpxl_uop", "MicroLdrFpXLitUop", 8, literal=True, |
| flavor="fp").emit() |
| LoadLitU64("ldfp16_lit__uop", "MicroLdFp16LitUop", |
| 16, literal=True, flavor="fp").emit() |
| LoadImmDU64("ldrduxi_uop", "MicroLdrDUXImmUop", 4, sign=False).emit() |
| LoadImmDU64("ldrdsxi_uop", "MicroLdrDSXImmUop", 4, sign=True).emit() |
| LoadImmDU64("ldrdfpxi_uop", "MicroLdrDFpXImmUop", 4, flavor="fp").emit() |
| }}; |