blob: 932deebbf1e37848d37c6d0ee7da73aba63f03dd [file] [log] [blame]
// -*- mode:c++ -*-
// Copyright (c) 2010-2013,2017-2018 ARM Limited
// All rights reserved
//
// The license below extends only to copyright in the software and shall
// not be construed as granting a license to any other intellectual
// property including but not limited to intellectual property relating
// to a hardware implementation of the functionality of the software
// licensed hereunder. You may use the software subject to the license
// terms below provided that you ensure that this notice is replicated
// unmodified and in its entirety in all distributions of the software,
// modified or unmodified, in source code or in binary form.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met: redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer;
// redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution;
// neither the name of the copyright holders nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Authors: Gabe Black
let {{
svcCode = '''
ThreadContext *tc = xc->tcBase();
const auto semihost_imm = Thumb? 0xAB : 0x123456;
if (ArmSystem::haveSemihosting(tc) && imm == semihost_imm) {
R0 = ArmSystem::callSemihosting32(tc, R0, R1);
} else {
fault = std::make_shared<SupervisorCall>(machInst, imm);
}
'''
svcIop = InstObjParams("svc", "Svc", "ImmOp",
{ "code": svcCode,
"predicate_test": predicateTest,
"thumb_semihost": '0xAB',
"arm_semihost": '0x123456' },
["IsSyscall", "IsNonSpeculative",
"IsSerializeAfter"])
header_output = ImmOpDeclare.subst(svcIop)
decoder_output = SemihostConstructor.subst(svcIop)
exec_output = PredOpExecute.subst(svcIop)
hltCode = '''
ThreadContext *tc = xc->tcBase();
const auto semihost_imm = Thumb? 0x3C : 0xF000;
if (ArmSystem::haveSemihosting(tc) && imm == semihost_imm) {
R0 = ArmSystem::callSemihosting32(tc, R0, R1);
} else {
// HLT instructions aren't implemented, so treat them as undefined
// instructions.
fault = std::make_shared<UndefinedInstruction>(
machInst, false, mnemonic);
}
'''
hltIop = InstObjParams("hlt", "Hlt", "ImmOp",
{ "code": hltCode,
"predicate_test": predicateTest,
"thumb_semihost": '0x3C',
"arm_semihost": '0xF000' },
["IsNonSpeculative"])
header_output += ImmOpDeclare.subst(hltIop)
decoder_output += SemihostConstructor.subst(hltIop)
exec_output += PredOpExecute.subst(hltIop)
smcCode = '''
HCR hcr = Hcr;
CPSR cpsr = Cpsr;
SCR scr = Scr;
if ((cpsr.mode != MODE_USER) && FullSystem) {
if (ArmSystem::haveVirtualization(xc->tcBase()) &&
!inSecureState(scr, cpsr) && (cpsr.mode != MODE_HYP) && hcr.tsc) {
fault = std::make_shared<HypervisorTrap>(machInst, 0,
EC_SMC_TO_HYP);
} else {
if (scr.scd) {
fault = disabledFault();
} else {
fault = std::make_shared<SecureMonitorCall>(machInst);
}
}
} else {
fault = disabledFault();
}
'''
smcIop = InstObjParams("smc", "Smc", "PredOp",
{ "code": smcCode,
"predicate_test": predicateTest },
["IsNonSpeculative", "IsSerializeAfter"])
header_output += BasicDeclare.subst(smcIop)
decoder_output += BasicConstructor.subst(smcIop)
exec_output += PredOpExecute.subst(smcIop)
hvcCode = '''
CPSR cpsr = Cpsr;
SCR scr = Scr;
// Filter out the various cases where this instruction isn't defined
if (!FullSystem || !ArmSystem::haveVirtualization(xc->tcBase()) ||
(cpsr.mode == MODE_USER) ||
(ArmSystem::haveSecurity(xc->tcBase()) && (!scr.ns || !scr.hce))) {
fault = disabledFault();
} else {
fault = std::make_shared<HypervisorCall>(machInst, imm);
}
'''
hvcIop = InstObjParams("hvc", "Hvc", "ImmOp",
{ "code": hvcCode,
"predicate_test": predicateTest },
["IsNonSpeculative", "IsSerializeAfter"])
header_output += ImmOpDeclare.subst(hvcIop)
decoder_output += ImmOpConstructor.subst(hvcIop)
exec_output += PredOpExecute.subst(hvcIop)
eretCode = '''
SCTLR sctlr = Sctlr;
CPSR old_cpsr = Cpsr;
old_cpsr.nz = CondCodesNZ;
old_cpsr.c = CondCodesC;
old_cpsr.v = CondCodesV;
old_cpsr.ge = CondCodesGE;
CPSR new_cpsr = cpsrWriteByInstr(old_cpsr, Spsr, Scr, Nsacr, 0xF,
true, sctlr.nmfi, xc->tcBase());
Cpsr = ~CondCodesMask & new_cpsr;
CondCodesNZ = new_cpsr.nz;
CondCodesC = new_cpsr.c;
CondCodesV = new_cpsr.v;
CondCodesGE = new_cpsr.ge;
NextThumb = (new_cpsr).t;
NextJazelle = (new_cpsr).j;
NextItState = (((new_cpsr).it2 << 2) & 0xFC)
| ((new_cpsr).it1 & 0x3);
NPC = (old_cpsr.mode == MODE_HYP) ? ElrHyp : LR;
'''
eretIop = InstObjParams("eret", "Eret", "PredOp",
{ "code": eretCode,
"predicate_test": predicateTest },
["IsNonSpeculative", "IsSerializeAfter",
"IsSquashAfter"])
header_output += BasicDeclare.subst(eretIop)
decoder_output += BasicConstructor.subst(eretIop)
exec_output += PredOpExecute.subst(eretIop)
crcCode = '''
constexpr uint8_t size_bytes = %(sz)d;
constexpr uint32_t poly = %(polynom)s;
uint32_t data = htole(Op2);
auto data_buffer = reinterpret_cast<uint8_t*>(&data);
Dest = crc32<poly>(
data_buffer, /* Message Register */
Op1, /* Initial Value of the CRC */
size_bytes /* Size of the original Message */
);
'''
def crc32Emit(mnem, implCode, castagnoli, size):
global header_output, decoder_output, exec_output
if castagnoli:
# crc32c instructions
poly = "0x1EDC6F41"
else:
# crc32 instructions
poly = "0x04C11DB7"
data = {'sz' : size, 'polynom': poly}
instCode = implCode % data
crcIop = InstObjParams(mnem, mnem.capitalize(), "RegRegRegOp",
{ "code": instCode,
"predicate_test": predicateTest }, [])
header_output += RegRegRegOpDeclare.subst(crcIop)
decoder_output += RegRegRegOpConstructor.subst(crcIop)
exec_output += PredOpExecute.subst(crcIop)
crc32Emit("crc32b", crcCode, False, 1);
crc32Emit("crc32h", crcCode, False, 2);
crc32Emit("crc32w", crcCode, False, 4);
crc32Emit("crc32cb", crcCode, True, 1);
crc32Emit("crc32ch", crcCode, True, 2);
crc32Emit("crc32cw", crcCode, True, 4);
}};
let {{
header_output = decoder_output = exec_output = ""
mrsCpsrCode = '''
CPSR cpsr = Cpsr;
cpsr.nz = CondCodesNZ;
cpsr.c = CondCodesC;
cpsr.v = CondCodesV;
cpsr.ge = CondCodesGE;
Dest = cpsr & (cpsr.mode == MODE_USER ? ApsrMask : CpsrMask);
'''
mrsCpsrIop = InstObjParams("mrs", "MrsCpsr", "MrsOp",
{ "code": mrsCpsrCode,
"predicate_test": condPredicateTest },
["IsSerializeBefore"])
header_output += MrsDeclare.subst(mrsCpsrIop)
decoder_output += MrsConstructor.subst(mrsCpsrIop)
exec_output += PredOpExecute.subst(mrsCpsrIop)
mrsSpsrCode = "Dest = Spsr"
mrsSpsrIop = InstObjParams("mrs", "MrsSpsr", "MrsOp",
{ "code": mrsSpsrCode,
"predicate_test": predicateTest },
["IsSerializeBefore"])
header_output += MrsDeclare.subst(mrsSpsrIop)
decoder_output += MrsConstructor.subst(mrsSpsrIop)
exec_output += PredOpExecute.subst(mrsSpsrIop)
mrsBankedRegCode = '''
bool isIntReg;
int regIdx;
if (decodeMrsMsrBankedReg(byteMask, r, isIntReg, regIdx, Cpsr, Scr, Nsacr)) {
if (isIntReg) {
Dest = DecodedBankedIntReg;
} else {
Dest = xc->readMiscReg(regIdx);
}
} else {
return std::make_shared<UndefinedInstruction>(machInst, false,
mnemonic);
}
'''
mrsBankedRegIop = InstObjParams("mrs", "MrsBankedReg", "MrsOp",
{ "code": mrsBankedRegCode,
"predicate_test": predicateTest },
["IsSerializeBefore"])
header_output += MrsBankedRegDeclare.subst(mrsBankedRegIop)
decoder_output += MrsBankedRegConstructor.subst(mrsBankedRegIop)
exec_output += PredOpExecute.subst(mrsBankedRegIop)
msrBankedRegCode = '''
bool isIntReg;
int regIdx;
if (decodeMrsMsrBankedReg(byteMask, r, isIntReg, regIdx, Cpsr, Scr, Nsacr)) {
if (isIntReg) {
// This is a bit nasty, you would have thought that
// DecodedBankedIntReg wouldn't be written to unless the
// conditions on the IF statements above are met, however if
// you look at the generated C code you'll find that they are.
// However this is safe as DecodedBankedIntReg (which is used
// in operands.isa to get the index of DecodedBankedIntReg)
// will return INTREG_DUMMY if its not a valid integer
// register, so redirecting the write to somewhere we don't
// care about.
DecodedBankedIntReg = Op1;
} else {
xc->setMiscReg(regIdx, Op1);
}
} else {
return std::make_shared<UndefinedInstruction>(machInst, false,
mnemonic);
}
'''
msrBankedRegIop = InstObjParams("msr", "MsrBankedReg", "MsrRegOp",
{ "code": msrBankedRegCode,
"predicate_test": predicateTest },
["IsSerializeAfter", "IsNonSpeculative"])
header_output += MsrBankedRegDeclare.subst(msrBankedRegIop)
decoder_output += MsrBankedRegConstructor.subst(msrBankedRegIop)
exec_output += PredOpExecute.subst(msrBankedRegIop)
msrCpsrRegCode = '''
SCTLR sctlr = Sctlr;
CPSR old_cpsr = Cpsr;
old_cpsr.nz = CondCodesNZ;
old_cpsr.c = CondCodesC;
old_cpsr.v = CondCodesV;
old_cpsr.ge = CondCodesGE;
CPSR new_cpsr =
cpsrWriteByInstr(old_cpsr, Op1, Scr, Nsacr, byteMask, false,
sctlr.nmfi, xc->tcBase());
Cpsr = ~CondCodesMask & new_cpsr;
CondCodesNZ = new_cpsr.nz;
CondCodesC = new_cpsr.c;
CondCodesV = new_cpsr.v;
CondCodesGE = new_cpsr.ge;
'''
msrCpsrRegIop = InstObjParams("msr", "MsrCpsrReg", "MsrRegOp",
{ "code": msrCpsrRegCode,
"predicate_test": condPredicateTest },
["IsSerializeAfter","IsNonSpeculative"])
header_output += MsrRegDeclare.subst(msrCpsrRegIop)
decoder_output += MsrRegConstructor.subst(msrCpsrRegIop)
exec_output += PredOpExecute.subst(msrCpsrRegIop)
msrSpsrRegCode = "Spsr = spsrWriteByInstr(Spsr, Op1, byteMask, false);"
msrSpsrRegIop = InstObjParams("msr", "MsrSpsrReg", "MsrRegOp",
{ "code": msrSpsrRegCode,
"predicate_test": predicateTest },
["IsSerializeAfter","IsNonSpeculative"])
header_output += MsrRegDeclare.subst(msrSpsrRegIop)
decoder_output += MsrRegConstructor.subst(msrSpsrRegIop)
exec_output += PredOpExecute.subst(msrSpsrRegIop)
msrCpsrImmCode = '''
SCTLR sctlr = Sctlr;
CPSR old_cpsr = Cpsr;
old_cpsr.nz = CondCodesNZ;
old_cpsr.c = CondCodesC;
old_cpsr.v = CondCodesV;
old_cpsr.ge = CondCodesGE;
CPSR new_cpsr =
cpsrWriteByInstr(old_cpsr, imm, Scr, Nsacr, byteMask, false,
sctlr.nmfi, xc->tcBase());
Cpsr = ~CondCodesMask & new_cpsr;
CondCodesNZ = new_cpsr.nz;
CondCodesC = new_cpsr.c;
CondCodesV = new_cpsr.v;
CondCodesGE = new_cpsr.ge;
'''
msrCpsrImmIop = InstObjParams("msr", "MsrCpsrImm", "MsrImmOp",
{ "code": msrCpsrImmCode,
"predicate_test": condPredicateTest },
["IsSerializeAfter","IsNonSpeculative"])
header_output += MsrImmDeclare.subst(msrCpsrImmIop)
decoder_output += MsrImmConstructor.subst(msrCpsrImmIop)
exec_output += PredOpExecute.subst(msrCpsrImmIop)
msrSpsrImmCode = "Spsr = spsrWriteByInstr(Spsr, imm, byteMask, false);"
msrSpsrImmIop = InstObjParams("msr", "MsrSpsrImm", "MsrImmOp",
{ "code": msrSpsrImmCode,
"predicate_test": predicateTest },
["IsSerializeAfter","IsNonSpeculative"])
header_output += MsrImmDeclare.subst(msrSpsrImmIop)
decoder_output += MsrImmConstructor.subst(msrSpsrImmIop)
exec_output += PredOpExecute.subst(msrSpsrImmIop)
revCode = '''
uint32_t val = Op1;
Dest = swap_byte(val);
'''
revIop = InstObjParams("rev", "Rev", "RegRegOp",
{ "code": revCode,
"predicate_test": predicateTest }, [])
header_output += RegRegOpDeclare.subst(revIop)
decoder_output += RegRegOpConstructor.subst(revIop)
exec_output += PredOpExecute.subst(revIop)
rev16Code = '''
uint32_t val = Op1;
Dest = (bits(val, 15, 8) << 0) |
(bits(val, 7, 0) << 8) |
(bits(val, 31, 24) << 16) |
(bits(val, 23, 16) << 24);
'''
rev16Iop = InstObjParams("rev16", "Rev16", "RegRegOp",
{ "code": rev16Code,
"predicate_test": predicateTest }, [])
header_output += RegRegOpDeclare.subst(rev16Iop)
decoder_output += RegRegOpConstructor.subst(rev16Iop)
exec_output += PredOpExecute.subst(rev16Iop)
revshCode = '''
uint16_t val = Op1;
Dest = sext<16>(swap_byte(val));
'''
revshIop = InstObjParams("revsh", "Revsh", "RegRegOp",
{ "code": revshCode,
"predicate_test": predicateTest }, [])
header_output += RegRegOpDeclare.subst(revshIop)
decoder_output += RegRegOpConstructor.subst(revshIop)
exec_output += PredOpExecute.subst(revshIop)
rbitCode = '''
Dest = reverseBits(Op1);
'''
rbitIop = InstObjParams("rbit", "Rbit", "RegRegOp",
{ "code": rbitCode,
"predicate_test": predicateTest }, [])
header_output += RegRegOpDeclare.subst(rbitIop)
decoder_output += RegRegOpConstructor.subst(rbitIop)
exec_output += PredOpExecute.subst(rbitIop)
clzCode = '''
Dest = (Op1 == 0) ? 32 : (31 - findMsbSet(Op1));
'''
clzIop = InstObjParams("clz", "Clz", "RegRegOp",
{ "code": clzCode,
"predicate_test": predicateTest }, [])
header_output += RegRegOpDeclare.subst(clzIop)
decoder_output += RegRegOpConstructor.subst(clzIop)
exec_output += PredOpExecute.subst(clzIop)
ssatCode = '''
int32_t operand = shift_rm_imm(Op1, shiftAmt, shiftType, 0);
int32_t res;
if (satInt(res, operand, imm))
CpsrQ = 1 << 27;
Dest = res;
'''
ssatIop = InstObjParams("ssat", "Ssat", "RegImmRegShiftOp",
{ "code": ssatCode,
"predicate_test": pickPredicate(ssatCode) }, [])
header_output += RegImmRegShiftOpDeclare.subst(ssatIop)
decoder_output += RegImmRegShiftOpConstructor.subst(ssatIop)
exec_output += PredOpExecute.subst(ssatIop)
usatCode = '''
int32_t operand = shift_rm_imm(Op1, shiftAmt, shiftType, 0);
int32_t res;
if (uSatInt(res, operand, imm))
CpsrQ = 1 << 27;
Dest = res;
'''
usatIop = InstObjParams("usat", "Usat", "RegImmRegShiftOp",
{ "code": usatCode,
"predicate_test": pickPredicate(usatCode) }, [])
header_output += RegImmRegShiftOpDeclare.subst(usatIop)
decoder_output += RegImmRegShiftOpConstructor.subst(usatIop)
exec_output += PredOpExecute.subst(usatIop)
ssat16Code = '''
int32_t res;
uint32_t resTemp = 0;
int32_t argLow = sext<16>(bits(Op1, 15, 0));
int32_t argHigh = sext<16>(bits(Op1, 31, 16));
if (satInt(res, argLow, imm))
CpsrQ = 1 << 27;
replaceBits(resTemp, 15, 0, res);
if (satInt(res, argHigh, imm))
CpsrQ = 1 << 27;
replaceBits(resTemp, 31, 16, res);
Dest = resTemp;
'''
ssat16Iop = InstObjParams("ssat16", "Ssat16", "RegImmRegOp",
{ "code": ssat16Code,
"predicate_test": pickPredicate(ssat16Code) }, [])
header_output += RegImmRegOpDeclare.subst(ssat16Iop)
decoder_output += RegImmRegOpConstructor.subst(ssat16Iop)
exec_output += PredOpExecute.subst(ssat16Iop)
usat16Code = '''
int32_t res;
uint32_t resTemp = 0;
int32_t argLow = sext<16>(bits(Op1, 15, 0));
int32_t argHigh = sext<16>(bits(Op1, 31, 16));
if (uSatInt(res, argLow, imm))
CpsrQ = 1 << 27;
replaceBits(resTemp, 15, 0, res);
if (uSatInt(res, argHigh, imm))
CpsrQ = 1 << 27;
replaceBits(resTemp, 31, 16, res);
Dest = resTemp;
'''
usat16Iop = InstObjParams("usat16", "Usat16", "RegImmRegOp",
{ "code": usat16Code,
"predicate_test": pickPredicate(usat16Code) }, [])
header_output += RegImmRegOpDeclare.subst(usat16Iop)
decoder_output += RegImmRegOpConstructor.subst(usat16Iop)
exec_output += PredOpExecute.subst(usat16Iop)
sxtbIop = InstObjParams("sxtb", "Sxtb", "RegImmRegOp",
{ "code":
"Dest = sext<8>((uint8_t)(Op1_ud >> imm));",
"predicate_test": predicateTest }, [])
header_output += RegImmRegOpDeclare.subst(sxtbIop)
decoder_output += RegImmRegOpConstructor.subst(sxtbIop)
exec_output += PredOpExecute.subst(sxtbIop)
sxtabIop = InstObjParams("sxtab", "Sxtab", "RegRegRegImmOp",
{ "code":
'''
Dest = sext<8>((uint8_t)(Op2_ud >> imm)) +
Op1;
''',
"predicate_test": predicateTest }, [])
header_output += RegRegRegImmOpDeclare.subst(sxtabIop)
decoder_output += RegRegRegImmOpConstructor.subst(sxtabIop)
exec_output += PredOpExecute.subst(sxtabIop)
sxtb16Code = '''
uint32_t resTemp = 0;
replaceBits(resTemp, 15, 0, sext<8>(bits(Op1, imm + 7, imm)));
replaceBits(resTemp, 31, 16,
sext<8>(bits(Op1, (imm + 23) % 32, (imm + 16) % 32)));
Dest = resTemp;
'''
sxtb16Iop = InstObjParams("sxtb16", "Sxtb16", "RegImmRegOp",
{ "code": sxtb16Code,
"predicate_test": predicateTest }, [])
header_output += RegImmRegOpDeclare.subst(sxtb16Iop)
decoder_output += RegImmRegOpConstructor.subst(sxtb16Iop)
exec_output += PredOpExecute.subst(sxtb16Iop)
sxtab16Code = '''
uint32_t resTemp = 0;
replaceBits(resTemp, 15, 0, sext<8>(bits(Op2, imm + 7, imm)) +
bits(Op1, 15, 0));
replaceBits(resTemp, 31, 16,
sext<8>(bits(Op2, (imm + 23) % 32, (imm + 16) % 32)) +
bits(Op1, 31, 16));
Dest = resTemp;
'''
sxtab16Iop = InstObjParams("sxtab16", "Sxtab16", "RegRegRegImmOp",
{ "code": sxtab16Code,
"predicate_test": predicateTest }, [])
header_output += RegRegRegImmOpDeclare.subst(sxtab16Iop)
decoder_output += RegRegRegImmOpConstructor.subst(sxtab16Iop)
exec_output += PredOpExecute.subst(sxtab16Iop)
sxthCode = '''
uint64_t rotated = (uint32_t)Op1;
rotated = (rotated | (rotated << 32)) >> imm;
Dest = sext<16>((uint16_t)rotated);
'''
sxthIop = InstObjParams("sxth", "Sxth", "RegImmRegOp",
{ "code": sxthCode,
"predicate_test": predicateTest }, [])
header_output += RegImmRegOpDeclare.subst(sxthIop)
decoder_output += RegImmRegOpConstructor.subst(sxthIop)
exec_output += PredOpExecute.subst(sxthIop)
sxtahCode = '''
uint64_t rotated = (uint32_t)Op2;
rotated = (rotated | (rotated << 32)) >> imm;
Dest = sext<16>((uint16_t)rotated) + Op1;
'''
sxtahIop = InstObjParams("sxtah", "Sxtah", "RegRegRegImmOp",
{ "code": sxtahCode,
"predicate_test": predicateTest }, [])
header_output += RegRegRegImmOpDeclare.subst(sxtahIop)
decoder_output += RegRegRegImmOpConstructor.subst(sxtahIop)
exec_output += PredOpExecute.subst(sxtahIop)
uxtbIop = InstObjParams("uxtb", "Uxtb", "RegImmRegOp",
{ "code": "Dest = (uint8_t)(Op1_ud >> imm);",
"predicate_test": predicateTest }, [])
header_output += RegImmRegOpDeclare.subst(uxtbIop)
decoder_output += RegImmRegOpConstructor.subst(uxtbIop)
exec_output += PredOpExecute.subst(uxtbIop)
uxtabIop = InstObjParams("uxtab", "Uxtab", "RegRegRegImmOp",
{ "code":
"Dest = (uint8_t)(Op2_ud >> imm) + Op1;",
"predicate_test": predicateTest }, [])
header_output += RegRegRegImmOpDeclare.subst(uxtabIop)
decoder_output += RegRegRegImmOpConstructor.subst(uxtabIop)
exec_output += PredOpExecute.subst(uxtabIop)
uxtb16Code = '''
uint32_t resTemp = 0;
replaceBits(resTemp, 15, 0, (uint8_t)(bits(Op1, imm + 7, imm)));
replaceBits(resTemp, 31, 16,
(uint8_t)(bits(Op1, (imm + 23) % 32, (imm + 16) % 32)));
Dest = resTemp;
'''
uxtb16Iop = InstObjParams("uxtb16", "Uxtb16", "RegImmRegOp",
{ "code": uxtb16Code,
"predicate_test": predicateTest }, [])
header_output += RegImmRegOpDeclare.subst(uxtb16Iop)
decoder_output += RegImmRegOpConstructor.subst(uxtb16Iop)
exec_output += PredOpExecute.subst(uxtb16Iop)
uxtab16Code = '''
uint32_t resTemp = 0;
replaceBits(resTemp, 15, 0, (uint8_t)(bits(Op2, imm + 7, imm)) +
bits(Op1, 15, 0));
replaceBits(resTemp, 31, 16,
(uint8_t)(bits(Op2, (imm + 23) % 32, (imm + 16) % 32)) +
bits(Op1, 31, 16));
Dest = resTemp;
'''
uxtab16Iop = InstObjParams("uxtab16", "Uxtab16", "RegRegRegImmOp",
{ "code": uxtab16Code,
"predicate_test": predicateTest }, [])
header_output += RegRegRegImmOpDeclare.subst(uxtab16Iop)
decoder_output += RegRegRegImmOpConstructor.subst(uxtab16Iop)
exec_output += PredOpExecute.subst(uxtab16Iop)
uxthCode = '''
uint64_t rotated = (uint32_t)Op1;
rotated = (rotated | (rotated << 32)) >> imm;
Dest = (uint16_t)rotated;
'''
uxthIop = InstObjParams("uxth", "Uxth", "RegImmRegOp",
{ "code": uxthCode,
"predicate_test": predicateTest }, [])
header_output += RegImmRegOpDeclare.subst(uxthIop)
decoder_output += RegImmRegOpConstructor.subst(uxthIop)
exec_output += PredOpExecute.subst(uxthIop)
uxtahCode = '''
uint64_t rotated = (uint32_t)Op2;
rotated = (rotated | (rotated << 32)) >> imm;
Dest = (uint16_t)rotated + Op1;
'''
uxtahIop = InstObjParams("uxtah", "Uxtah", "RegRegRegImmOp",
{ "code": uxtahCode,
"predicate_test": predicateTest }, [])
header_output += RegRegRegImmOpDeclare.subst(uxtahIop)
decoder_output += RegRegRegImmOpConstructor.subst(uxtahIop)
exec_output += PredOpExecute.subst(uxtahIop)
selCode = '''
uint32_t resTemp = 0;
for (unsigned i = 0; i < 4; i++) {
int low = i * 8;
int high = low + 7;
replaceBits(resTemp, high, low,
bits(CondCodesGE, i) ?
bits(Op1, high, low) : bits(Op2, high, low));
}
Dest = resTemp;
'''
selIop = InstObjParams("sel", "Sel", "RegRegRegOp",
{ "code": selCode,
"predicate_test": predicateTest }, [])
header_output += RegRegRegOpDeclare.subst(selIop)
decoder_output += RegRegRegOpConstructor.subst(selIop)
exec_output += PredOpExecute.subst(selIop)
usad8Code = '''
uint32_t resTemp = 0;
for (unsigned i = 0; i < 4; i++) {
int low = i * 8;
int high = low + 7;
int32_t diff = bits(Op1, high, low) -
bits(Op2, high, low);
resTemp += ((diff < 0) ? -diff : diff);
}
Dest = resTemp;
'''
usad8Iop = InstObjParams("usad8", "Usad8", "RegRegRegOp",
{ "code": usad8Code,
"predicate_test": predicateTest }, [])
header_output += RegRegRegOpDeclare.subst(usad8Iop)
decoder_output += RegRegRegOpConstructor.subst(usad8Iop)
exec_output += PredOpExecute.subst(usad8Iop)
usada8Code = '''
uint32_t resTemp = 0;
for (unsigned i = 0; i < 4; i++) {
int low = i * 8;
int high = low + 7;
int32_t diff = bits(Op1, high, low) -
bits(Op2, high, low);
resTemp += ((diff < 0) ? -diff : diff);
}
Dest = Op3 + resTemp;
'''
usada8Iop = InstObjParams("usada8", "Usada8", "RegRegRegRegOp",
{ "code": usada8Code,
"predicate_test": predicateTest }, [])
header_output += RegRegRegRegOpDeclare.subst(usada8Iop)
decoder_output += RegRegRegRegOpConstructor.subst(usada8Iop)
exec_output += PredOpExecute.subst(usada8Iop)
bkptCode = '''
uint16_t imm16;
if (!machInst.thumb)
imm16 = ((bits(machInst, 19, 8) << 4) | bits(machInst, 3, 0));
else
imm16 = bits(machInst, 7, 0);
return softwareBreakpoint32(xc, imm16);
'''
bkptIop = InstObjParams("bkpt", "BkptInst", "PredOp", bkptCode)
header_output += BasicDeclare.subst(bkptIop)
decoder_output += BasicConstructor.subst(bkptIop)
exec_output += BasicExecute.subst(bkptIop)
nopIop = InstObjParams("nop", "NopInst", "ArmStaticInst", "", ['IsNop'])
header_output += BasicDeclare.subst(nopIop)
decoder_output += BasicConstructor64.subst(nopIop)
exec_output += BasicExecute.subst(nopIop)
yieldIop = InstObjParams("yield", "YieldInst", "PredOp", \
{ "code" : "", "predicate_test" : predicateTest })
header_output += BasicDeclare.subst(yieldIop)
decoder_output += BasicConstructor.subst(yieldIop)
exec_output += PredOpExecute.subst(yieldIop)
wfeCode = '''
CPSR cpsr = Cpsr;
SCR scr = Scr64;
// WFE Sleeps if SevMailbox==0 and no unmasked interrupts are pending,
ThreadContext *tc = xc->tcBase();
if (SevMailbox == 1) {
SevMailbox = 0;
PseudoInst::quiesceSkip(tc);
} else if (tc->getCpuPtr()->getInterruptController(
tc->threadId())->checkInterrupts(tc)) {
PseudoInst::quiesceSkip(tc);
} else {
fault = trapWFx(tc, cpsr, scr, true);
if (fault == NoFault) {
PseudoInst::quiesce(tc);
} else {
PseudoInst::quiesceSkip(tc);
}
}
'''
wfePredFixUpCode = '''
// WFE is predicated false, reset SevMailbox to reduce spurious sleeps
// and SEV interrupts
SevMailbox = 1;
'''
wfeIop = InstObjParams("wfe", "WfeInst", "PredOp", \
{ "code" : wfeCode,
"pred_fixup" : wfePredFixUpCode,
"predicate_test" : predicateTest },
["IsNonSpeculative", "IsQuiesce",
"IsSerializeAfter", "IsUnverifiable"])
header_output += BasicDeclare.subst(wfeIop)
decoder_output += BasicConstructor.subst(wfeIop)
exec_output += QuiescePredOpExecuteWithFixup.subst(wfeIop)
wfiCode = '''
HCR hcr = Hcr;
CPSR cpsr = Cpsr;
SCR scr = Scr64;
// WFI doesn't sleep if interrupts are pending (masked or not)
ThreadContext *tc = xc->tcBase();
if (tc->getCpuPtr()->getInterruptController(
tc->threadId())->checkWfiWake(hcr, cpsr, scr)) {
PseudoInst::quiesceSkip(tc);
} else {
fault = trapWFx(tc, cpsr, scr, false);
if (fault == NoFault) {
PseudoInst::quiesce(tc);
} else {
PseudoInst::quiesceSkip(tc);
}
}
tc->getCpuPtr()->clearInterrupt(tc->threadId(), INT_ABT, 0);
'''
wfiIop = InstObjParams("wfi", "WfiInst", "PredOp", \
{ "code" : wfiCode, "predicate_test" : predicateTest },
["IsNonSpeculative", "IsQuiesce",
"IsSerializeAfter", "IsUnverifiable"])
header_output += BasicDeclare.subst(wfiIop)
decoder_output += BasicConstructor.subst(wfiIop)
exec_output += QuiescePredOpExecute.subst(wfiIop)
sevCode = '''
SevMailbox = 1;
System *sys = xc->tcBase()->getSystemPtr();
for (int x = 0; x < sys->numContexts(); x++) {
ThreadContext *oc = sys->getThreadContext(x);
if (oc == xc->tcBase())
continue;
// Wake CPU with interrupt if they were sleeping
if (oc->readMiscReg(MISCREG_SEV_MAILBOX) == 0) {
// Post Interrupt and wake cpu if needed
oc->getCpuPtr()->postInterrupt(oc->threadId(), INT_SEV, 0);
}
}
'''
sevIop = InstObjParams("sev", "SevInst", "PredOp", \
{ "code" : sevCode, "predicate_test" : predicateTest },
["IsNonSpeculative", "IsSquashAfter", "IsUnverifiable"])
header_output += BasicDeclare.subst(sevIop)
decoder_output += BasicConstructor.subst(sevIop)
exec_output += PredOpExecute.subst(sevIop)
sevlCode = '''
SevMailbox = 1;
'''
sevlIop = InstObjParams("sevl", "SevlInst", "PredOp", \
{ "code" : sevlCode, "predicate_test" : predicateTest },
["IsNonSpeculative", "IsSquashAfter", "IsUnverifiable"])
header_output += BasicDeclare.subst(sevlIop)
decoder_output += BasicConstructor.subst(sevlIop)
exec_output += BasicExecute.subst(sevlIop)
itIop = InstObjParams("it", "ItInst", "PredOp", \
{ "code" : ";",
"predicate_test" : predicateTest }, [])
header_output += BasicDeclare.subst(itIop)
decoder_output += BasicConstructor.subst(itIop)
exec_output += PredOpExecute.subst(itIop)
unknownCode = '''
return std::make_shared<UndefinedInstruction>(machInst, true);
'''
unknownIop = InstObjParams("unknown", "Unknown", "UnknownOp", \
{ "code": unknownCode,
"predicate_test": predicateTest })
header_output += BasicDeclare.subst(unknownIop)
decoder_output += BasicConstructor.subst(unknownIop)
exec_output += PredOpExecute.subst(unknownIop)
ubfxCode = '''
Dest = bits(Op1, imm2, imm1);
'''
ubfxIop = InstObjParams("ubfx", "Ubfx", "RegRegImmImmOp",
{ "code": ubfxCode,
"predicate_test": predicateTest }, [])
header_output += RegRegImmImmOpDeclare.subst(ubfxIop)
decoder_output += RegRegImmImmOpConstructor.subst(ubfxIop)
exec_output += PredOpExecute.subst(ubfxIop)
sbfxCode = '''
int32_t resTemp = bits(Op1, imm2, imm1);
Dest = resTemp | -(resTemp & (1 << (imm2 - imm1)));
'''
sbfxIop = InstObjParams("sbfx", "Sbfx", "RegRegImmImmOp",
{ "code": sbfxCode,
"predicate_test": predicateTest }, [])
header_output += RegRegImmImmOpDeclare.subst(sbfxIop)
decoder_output += RegRegImmImmOpConstructor.subst(sbfxIop)
exec_output += PredOpExecute.subst(sbfxIop)
bfcCode = '''
Dest = Op1 & ~(mask(imm2 - imm1 + 1) << imm1);
'''
bfcIop = InstObjParams("bfc", "Bfc", "RegRegImmImmOp",
{ "code": bfcCode,
"predicate_test": predicateTest }, [])
header_output += RegRegImmImmOpDeclare.subst(bfcIop)
decoder_output += RegRegImmImmOpConstructor.subst(bfcIop)
exec_output += PredOpExecute.subst(bfcIop)
bfiCode = '''
uint32_t bitMask = (mask(imm2 - imm1 + 1) << imm1);
Dest = ((Op1 << imm1) & bitMask) | (Dest & ~bitMask);
'''
bfiIop = InstObjParams("bfi", "Bfi", "RegRegImmImmOp",
{ "code": bfiCode,
"predicate_test": predicateTest }, [])
header_output += RegRegImmImmOpDeclare.subst(bfiIop)
decoder_output += RegRegImmImmOpConstructor.subst(bfiIop)
exec_output += PredOpExecute.subst(bfiIop)
mrc14code = '''
MiscRegIndex miscReg = (MiscRegIndex) xc->tcBase()->flattenRegId(
RegId(MiscRegClass, op1)).index();
bool can_read, undefined;
std::tie(can_read, undefined) = canReadCoprocReg(miscReg, Scr, Cpsr);
if (!can_read || undefined) {
return std::make_shared<UndefinedInstruction>(machInst, false,
mnemonic);
}
if (mcrMrc14TrapToHyp((MiscRegIndex) op1, Hcr, Cpsr, Scr, Hdcr,
Hstr, Hcptr, imm)) {
return std::make_shared<HypervisorTrap>(machInst, imm,
EC_TRAPPED_CP14_MCR_MRC);
}
Dest = MiscOp1;
'''
mrc14Iop = InstObjParams("mrc", "Mrc14", "RegMiscRegImmOp",
{ "code": mrc14code,
"predicate_test": predicateTest }, [])
header_output += RegMiscRegImmOpDeclare.subst(mrc14Iop)
decoder_output += RegMiscRegImmOpConstructor.subst(mrc14Iop)
exec_output += PredOpExecute.subst(mrc14Iop)
mcr14code = '''
MiscRegIndex miscReg = (MiscRegIndex) xc->tcBase()->flattenRegId(
RegId(MiscRegClass, dest)).index();
bool can_write, undefined;
std::tie(can_write, undefined) = canWriteCoprocReg(miscReg, Scr, Cpsr);
if (undefined || !can_write) {
return std::make_shared<UndefinedInstruction>(machInst, false,
mnemonic);
}
if (mcrMrc14TrapToHyp(miscReg, Hcr, Cpsr, Scr, Hdcr,
Hstr, Hcptr, imm)) {
return std::make_shared<HypervisorTrap>(machInst, imm,
EC_TRAPPED_CP14_MCR_MRC);
}
MiscDest = Op1;
'''
mcr14Iop = InstObjParams("mcr", "Mcr14", "MiscRegRegImmOp",
{ "code": mcr14code,
"predicate_test": predicateTest },
["IsSerializeAfter","IsNonSpeculative"])
header_output += MiscRegRegImmOpDeclare.subst(mcr14Iop)
decoder_output += MiscRegRegImmOpConstructor.subst(mcr14Iop)
exec_output += PredOpExecute.subst(mcr14Iop)
mrc15code = '''
int preFlatOp1 = snsBankedIndex(op1, xc->tcBase());
MiscRegIndex miscReg = (MiscRegIndex)
xc->tcBase()->flattenRegId(RegId(MiscRegClass,
preFlatOp1)).index();
bool hypTrap = mcrMrc15TrapToHyp(miscReg, Hcr, Cpsr, Scr, Hdcr, Hstr,
Hcptr, imm);
bool can_read, undefined;
std::tie(can_read, undefined) = canReadCoprocReg(miscReg, Scr, Cpsr);
// if we're in non secure PL1 mode then we can trap regargless of whether
// the register is accessable, in other modes we trap if only if the register
// IS accessable.
if (undefined || (!can_read && !(hypTrap && !inUserMode(Cpsr) &&
!inSecureState(Scr, Cpsr)))) {
return std::make_shared<UndefinedInstruction>(machInst, false,
mnemonic);
}
if (hypTrap) {
return std::make_shared<HypervisorTrap>(machInst, imm,
EC_TRAPPED_CP15_MCR_MRC);
}
Dest = MiscNsBankedOp1;
'''
mrc15Iop = InstObjParams("mrc", "Mrc15", "RegMiscRegImmOp",
{ "code": mrc15code,
"predicate_test": predicateTest }, [])
header_output += RegMiscRegImmOpDeclare.subst(mrc15Iop)
decoder_output += RegMiscRegImmOpConstructor.subst(mrc15Iop)
exec_output += PredOpExecute.subst(mrc15Iop)
mcr15code = '''
int preFlatDest = snsBankedIndex(dest, xc->tcBase());
MiscRegIndex miscReg = (MiscRegIndex)
xc->tcBase()->flattenRegId(RegId(MiscRegClass,
preFlatDest)).index();
bool hypTrap = mcrMrc15TrapToHyp(miscReg, Hcr, Cpsr, Scr, Hdcr, Hstr,
Hcptr, imm);
bool can_write, undefined;
std::tie(can_write, undefined) = canWriteCoprocReg(miscReg, Scr, Cpsr);
// if we're in non secure PL1 mode then we can trap regargless of whether
// the register is accessable, in other modes we trap if only if the register
// IS accessable.
if (undefined || (!can_write && !(hypTrap && !inUserMode(Cpsr) &&
!inSecureState(Scr, Cpsr)))) {
return std::make_shared<UndefinedInstruction>(machInst, false,
mnemonic);
}
if (hypTrap) {
return std::make_shared<HypervisorTrap>(machInst, imm,
EC_TRAPPED_CP15_MCR_MRC);
}
MiscNsBankedDest = Op1;
'''
mcr15Iop = InstObjParams("mcr", "Mcr15", "MiscRegRegImmOp",
{ "code": mcr15code,
"predicate_test": predicateTest },
["IsSerializeAfter","IsNonSpeculative"])
header_output += MiscRegRegImmOpDeclare.subst(mcr15Iop)
decoder_output += MiscRegRegImmOpConstructor.subst(mcr15Iop)
exec_output += PredOpExecute.subst(mcr15Iop)
mrrc15code = '''
int preFlatOp1 = snsBankedIndex(op1, xc->tcBase());
MiscRegIndex miscReg = (MiscRegIndex)
xc->tcBase()->flattenRegId(RegId(MiscRegClass,
preFlatOp1)).index();
bool hypTrap = mcrrMrrc15TrapToHyp(miscReg, Cpsr, Scr, Hstr, Hcr, imm);
bool can_read, undefined;
std::tie(can_read, undefined) = canReadCoprocReg(miscReg, Scr, Cpsr);
// if we're in non secure PL1 mode then we can trap regargless of whether
// the register is accessable, in other modes we trap if only if the register
// IS accessable.
if (undefined || (!can_read && !(hypTrap && !inUserMode(Cpsr) &&
!inSecureState(Scr, Cpsr)))) {
return std::make_shared<UndefinedInstruction>(machInst, false,
mnemonic);
}
if (hypTrap) {
return std::make_shared<HypervisorTrap>(machInst, imm,
EC_TRAPPED_CP15_MCRR_MRRC);
}
Dest = bits(MiscNsBankedOp164, 63, 32);
Dest2 = bits(MiscNsBankedOp164, 31, 0);
'''
mrrc15Iop = InstObjParams("mrrc", "Mrrc15", "MrrcOp",
{ "code": mrrc15code,
"predicate_test": predicateTest }, [])
header_output += MrrcOpDeclare.subst(mrrc15Iop)
decoder_output += MrrcOpConstructor.subst(mrrc15Iop)
exec_output += PredOpExecute.subst(mrrc15Iop)
mcrr15code = '''
int preFlatDest = snsBankedIndex(dest, xc->tcBase());
MiscRegIndex miscReg = (MiscRegIndex)
xc->tcBase()->flattenRegId(RegId(MiscRegClass,
preFlatDest)).index();
bool hypTrap = mcrrMrrc15TrapToHyp(miscReg, Cpsr, Scr, Hstr, Hcr, imm);
bool can_write, undefined;
std::tie(can_write, undefined) = canWriteCoprocReg(miscReg, Scr, Cpsr);
// if we're in non secure PL1 mode then we can trap regargless of whether
// the register is accessable, in other modes we trap if only if the register
// IS accessable.
if (undefined || (!can_write && !(hypTrap && !inUserMode(Cpsr) &&
!inSecureState(Scr, Cpsr)))) {
return std::make_shared<UndefinedInstruction>(machInst, false,
mnemonic);
}
if (hypTrap) {
return std::make_shared<HypervisorTrap>(machInst, imm,
EC_TRAPPED_CP15_MCRR_MRRC);
}
MiscNsBankedDest64 = ((uint64_t) Op1 << 32) | Op2;
'''
mcrr15Iop = InstObjParams("mcrr", "Mcrr15", "McrrOp",
{ "code": mcrr15code,
"predicate_test": predicateTest }, [])
header_output += McrrOpDeclare.subst(mcrr15Iop)
decoder_output += McrrOpConstructor.subst(mcrr15Iop)
exec_output += PredOpExecute.subst(mcrr15Iop)
enterxCode = '''
NextThumb = true;
NextJazelle = true;
'''
enterxIop = InstObjParams("enterx", "Enterx", "PredOp",
{ "code": enterxCode,
"predicate_test": predicateTest }, [])
header_output += BasicDeclare.subst(enterxIop)
decoder_output += BasicConstructor.subst(enterxIop)
exec_output += PredOpExecute.subst(enterxIop)
leavexCode = '''
NextThumb = true;
NextJazelle = false;
'''
leavexIop = InstObjParams("leavex", "Leavex", "PredOp",
{ "code": leavexCode,
"predicate_test": predicateTest }, [])
header_output += BasicDeclare.subst(leavexIop)
decoder_output += BasicConstructor.subst(leavexIop)
exec_output += PredOpExecute.subst(leavexIop)
setendCode = '''
CPSR cpsr = Cpsr;
cpsr.e = imm;
Cpsr = cpsr;
fault = checkSETENDEnabled(xc->tcBase(), cpsr);
'''
setendIop = InstObjParams("setend", "Setend", "ImmOp",
{ "code": setendCode,
"predicate_test": predicateTest },
["IsSerializeAfter","IsNonSpeculative"])
header_output += ImmOpDeclare.subst(setendIop)
decoder_output += ImmOpConstructor.subst(setendIop)
exec_output += PredOpExecute.subst(setendIop)
clrexCode = '''
LLSCLock = 0;
'''
clrexIop = InstObjParams("clrex", "Clrex","PredOp",
{ "code": clrexCode,
"predicate_test": predicateTest },[])
header_output += BasicDeclare.subst(clrexIop)
decoder_output += BasicConstructor.subst(clrexIop)
exec_output += PredOpExecute.subst(clrexIop)
McrDcCheckCode = '''
int preFlatDest = snsBankedIndex(dest, xc->tcBase());
MiscRegIndex miscReg = (MiscRegIndex) xc->tcBase()->flattenRegId(
RegId(MiscRegClass, preFlatDest)).index();
bool hypTrap = mcrMrc15TrapToHyp(miscReg, Hcr, Cpsr, Scr, Hdcr, Hstr,
Hcptr, imm);
bool can_write, undefined;
std::tie(can_write, undefined) = canWriteCoprocReg(miscReg, Scr, Cpsr);
// if we're in non secure PL1 mode then we can trap regardless
// of whether the register is accessible, in other modes we
// trap if only if the register IS accessible.
if (undefined || (!can_write & !(hypTrap & !inUserMode(Cpsr) &
!inSecureState(Scr, Cpsr)))) {
return std::make_shared<UndefinedInstruction>(machInst, false,
mnemonic);
}
if (hypTrap) {
return std::make_shared<HypervisorTrap>(machInst, imm,
EC_TRAPPED_CP15_MCR_MRC);
}
'''
McrDcimvacCode = '''
const Request::Flags memAccessFlags(ArmISA::TLB::MustBeOne |
Request::INVALIDATE |
Request::DST_POC);
EA = Op1;
'''
McrDcimvacIop = InstObjParams("mcr", "McrDcimvac",
"MiscRegRegImmOp",
{"memacc_code": McrDcCheckCode,
"postacc_code": "",
"ea_code": McrDcimvacCode,
"predicate_test": predicateTest},
['IsMemRef', 'IsStore'])
header_output += MiscRegRegImmMemOpDeclare.subst(McrDcimvacIop)
decoder_output += MiscRegRegImmOpConstructor.subst(McrDcimvacIop)
exec_output += Mcr15Execute.subst(McrDcimvacIop) + \
Mcr15InitiateAcc.subst(McrDcimvacIop) + \
Mcr15CompleteAcc.subst(McrDcimvacIop)
McrDccmvacCode = '''
const Request::Flags memAccessFlags(ArmISA::TLB::MustBeOne |
Request::CLEAN |
Request::DST_POC);
EA = Op1;
'''
McrDccmvacIop = InstObjParams("mcr", "McrDccmvac",
"MiscRegRegImmOp",
{"memacc_code": McrDcCheckCode,
"postacc_code": "",
"ea_code": McrDccmvacCode,
"predicate_test": predicateTest},
['IsMemRef', 'IsStore'])
header_output += MiscRegRegImmMemOpDeclare.subst(McrDccmvacIop)
decoder_output += MiscRegRegImmOpConstructor.subst(McrDccmvacIop)
exec_output += Mcr15Execute.subst(McrDccmvacIop) + \
Mcr15InitiateAcc.subst(McrDccmvacIop) + \
Mcr15CompleteAcc.subst(McrDccmvacIop)
McrDccmvauCode = '''
const Request::Flags memAccessFlags(ArmISA::TLB::MustBeOne |
Request::CLEAN |
Request::DST_POU);
EA = Op1;
'''
McrDccmvauIop = InstObjParams("mcr", "McrDccmvau",
"MiscRegRegImmOp",
{"memacc_code": McrDcCheckCode,
"postacc_code": "",
"ea_code": McrDccmvauCode,
"predicate_test": predicateTest},
['IsMemRef', 'IsStore'])
header_output += MiscRegRegImmMemOpDeclare.subst(McrDccmvauIop)
decoder_output += MiscRegRegImmOpConstructor.subst(McrDccmvauIop)
exec_output += Mcr15Execute.subst(McrDccmvauIop) + \
Mcr15InitiateAcc.subst(McrDccmvauIop) + \
Mcr15CompleteAcc.subst(McrDccmvauIop)
McrDccimvacCode = '''
const Request::Flags memAccessFlags(ArmISA::TLB::MustBeOne |
Request::CLEAN |
Request::INVALIDATE |
Request::DST_POC);
EA = Op1;
'''
McrDccimvacIop = InstObjParams("mcr", "McrDccimvac",
"MiscRegRegImmOp",
{"memacc_code": McrDcCheckCode,
"postacc_code": "",
"ea_code": McrDccimvacCode,
"predicate_test": predicateTest},
['IsMemRef', 'IsStore'])
header_output += MiscRegRegImmMemOpDeclare.subst(McrDccimvacIop)
decoder_output += MiscRegRegImmOpConstructor.subst(McrDccimvacIop)
exec_output += Mcr15Execute.subst(McrDccimvacIop) + \
Mcr15InitiateAcc.subst(McrDccimvacIop) + \
Mcr15CompleteAcc.subst(McrDccimvacIop)
isbCode = '''
// If the barrier is due to a CP15 access check for hyp traps
if ((imm != 0) && mcrMrc15TrapToHyp(MISCREG_CP15ISB, Hcr, Cpsr, Scr,
Hdcr, Hstr, Hcptr, imm)) {
return std::make_shared<HypervisorTrap>(machInst, imm,
EC_TRAPPED_CP15_MCR_MRC);
}
'''
isbIop = InstObjParams("isb", "Isb", "ImmOp",
{"code": isbCode,
"predicate_test": predicateTest},
['IsSquashAfter'])
header_output += ImmOpDeclare.subst(isbIop)
decoder_output += ImmOpConstructor.subst(isbIop)
exec_output += PredOpExecute.subst(isbIop)
dsbCode = '''
// If the barrier is due to a CP15 access check for hyp traps
if ((imm != 0) && mcrMrc15TrapToHyp(MISCREG_CP15DSB, Hcr, Cpsr, Scr,
Hdcr, Hstr, Hcptr, imm)) {
return std::make_shared<HypervisorTrap>(machInst, imm,
EC_TRAPPED_CP15_MCR_MRC);
}
'''
dsbIop = InstObjParams("dsb", "Dsb", "ImmOp",
{"code": dsbCode,
"predicate_test": predicateTest},
['IsMemBarrier', 'IsSerializeAfter'])
header_output += ImmOpDeclare.subst(dsbIop)
decoder_output += ImmOpConstructor.subst(dsbIop)
exec_output += PredOpExecute.subst(dsbIop)
dmbCode = '''
// If the barrier is due to a CP15 access check for hyp traps
if ((imm != 0) && mcrMrc15TrapToHyp(MISCREG_CP15DMB, Hcr, Cpsr, Scr,
Hdcr, Hstr, Hcptr, imm)) {
return std::make_shared<HypervisorTrap>(machInst, imm,
EC_TRAPPED_CP15_MCR_MRC);
}
'''
dmbIop = InstObjParams("dmb", "Dmb", "ImmOp",
{"code": dmbCode,
"predicate_test": predicateTest},
['IsMemBarrier'])
header_output += ImmOpDeclare.subst(dmbIop)
decoder_output += ImmOpConstructor.subst(dmbIop)
exec_output += PredOpExecute.subst(dmbIop)
dbgCode = '''
'''
dbgIop = InstObjParams("dbg", "Dbg", "PredOp",
{"code": dbgCode,
"predicate_test": predicateTest})
header_output += BasicDeclare.subst(dbgIop)
decoder_output += BasicConstructor.subst(dbgIop)
exec_output += PredOpExecute.subst(dbgIop)
cpsCode = '''
uint32_t mode = bits(imm, 4, 0);
uint32_t f = bits(imm, 5);
uint32_t i = bits(imm, 6);
uint32_t a = bits(imm, 7);
bool setMode = bits(imm, 8);
bool enable = bits(imm, 9);
CPSR cpsr = Cpsr;
SCTLR sctlr = Sctlr;
if (cpsr.mode != MODE_USER) {
if (enable) {
if (f) cpsr.f = 0;
if (i) cpsr.i = 0;
if (a) cpsr.a = 0;
} else {
if (f && !sctlr.nmfi) cpsr.f = 1;
if (i) cpsr.i = 1;
if (a) cpsr.a = 1;
}
if (setMode) {
cpsr.mode = mode;
}
}
Cpsr = cpsr;
'''
cpsIop = InstObjParams("cps", "Cps", "ImmOp",
{ "code": cpsCode,
"predicate_test": predicateTest },
["IsSerializeAfter","IsNonSpeculative"])
header_output += ImmOpDeclare.subst(cpsIop)
decoder_output += ImmOpConstructor.subst(cpsIop)
exec_output += PredOpExecute.subst(cpsIop)
}};