| /* |
| * Copyright (c) 2008 Mark D. Hill and David A. Wood |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are |
| * met: redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer; |
| * redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution; |
| * neither the name of the copyright holders nor the names of its |
| * contributors may be used to endorse or promote products derived from |
| * this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include <memory> |
| |
| #include "debug/Config.hh" |
| #include "debug/Drain.hh" |
| #include "debug/RubyDma.hh" |
| #include "debug/RubyStats.hh" |
| #include "mem/protocol/SequencerMsg.hh" |
| #include "mem/ruby/system/DMASequencer.hh" |
| #include "mem/ruby/system/System.hh" |
| #include "sim/system.hh" |
| |
| DMASequencer::DMASequencer(const Params *p) |
| : MemObject(p), m_version(p->version), m_controller(NULL), |
| m_mandatory_q_ptr(NULL), m_usingRubyTester(p->using_ruby_tester), |
| slave_port(csprintf("%s.slave", name()), this, 0, p->ruby_system, |
| p->ruby_system->getAccessBackingStore()), |
| drainManager(NULL), system(p->system), retry(false) |
| { |
| assert(m_version != -1); |
| } |
| |
| void |
| DMASequencer::init() |
| { |
| MemObject::init(); |
| assert(m_controller != NULL); |
| m_mandatory_q_ptr = m_controller->getMandatoryQueue(); |
| m_mandatory_q_ptr->setSender(this); |
| m_is_busy = false; |
| m_data_block_mask = ~ (~0 << RubySystem::getBlockSizeBits()); |
| |
| slave_port.sendRangeChange(); |
| } |
| |
| BaseSlavePort & |
| DMASequencer::getSlavePort(const std::string &if_name, PortID idx) |
| { |
| // used by the CPUs to connect the caches to the interconnect, and |
| // for the x86 case also the interrupt master |
| if (if_name != "slave") { |
| // pass it along to our super class |
| return MemObject::getSlavePort(if_name, idx); |
| } else { |
| return slave_port; |
| } |
| } |
| |
| DMASequencer::MemSlavePort::MemSlavePort(const std::string &_name, |
| DMASequencer *_port, PortID id, RubySystem* _ruby_system, |
| bool _access_backing_store) |
| : QueuedSlavePort(_name, _port, queue, id), queue(*_port, *this), |
| ruby_system(_ruby_system), access_backing_store(_access_backing_store) |
| { |
| DPRINTF(RubyDma, "Created slave memport on ruby sequencer %s\n", _name); |
| } |
| |
| bool |
| DMASequencer::MemSlavePort::recvTimingReq(PacketPtr pkt) |
| { |
| DPRINTF(RubyDma, "Timing request for address %#x on port %d\n", |
| pkt->getAddr(), id); |
| DMASequencer *seq = static_cast<DMASequencer *>(&owner); |
| |
| if (pkt->memInhibitAsserted()) |
| panic("DMASequencer should never see an inhibited request\n"); |
| |
| assert(isPhysMemAddress(pkt->getAddr())); |
| assert(Address(pkt->getAddr()).getOffset() + pkt->getSize() <= |
| RubySystem::getBlockSizeBytes()); |
| |
| // Submit the ruby request |
| RequestStatus requestStatus = seq->makeRequest(pkt); |
| |
| // If the request successfully issued then we should return true. |
| // Otherwise, we need to tell the port to retry at a later point |
| // and return false. |
| if (requestStatus == RequestStatus_Issued) { |
| DPRINTF(RubyDma, "Request %s 0x%x issued\n", pkt->cmdString(), |
| pkt->getAddr()); |
| return true; |
| } |
| |
| // Unless one is using the ruby tester, record the stalled M5 port for |
| // later retry when the sequencer becomes free. |
| if (!seq->m_usingRubyTester) { |
| seq->retry = true; |
| } |
| |
| DPRINTF(RubyDma, "Request for address %#x did not issued because %s\n", |
| pkt->getAddr(), RequestStatus_to_string(requestStatus)); |
| |
| return false; |
| } |
| |
| void |
| DMASequencer::ruby_hit_callback(PacketPtr pkt) |
| { |
| DPRINTF(RubyDma, "Hit callback for %s 0x%x\n", pkt->cmdString(), |
| pkt->getAddr()); |
| |
| // The packet was destined for memory and has not yet been turned |
| // into a response |
| assert(system->isMemAddr(pkt->getAddr())); |
| assert(pkt->isRequest()); |
| slave_port.hitCallback(pkt); |
| |
| // If we had to stall the slave ports, wake it up because |
| // the sequencer likely has free resources now. |
| if (retry) { |
| retry = false; |
| DPRINTF(RubyDma,"Sequencer may now be free. SendRetry to port %s\n", |
| slave_port.name()); |
| slave_port.sendRetryReq(); |
| } |
| |
| testDrainComplete(); |
| } |
| |
| void |
| DMASequencer::testDrainComplete() |
| { |
| //If we weren't able to drain before, we might be able to now. |
| if (drainManager != NULL) { |
| unsigned int drainCount = outstandingCount(); |
| DPRINTF(Drain, "Drain count: %u\n", drainCount); |
| if (drainCount == 0) { |
| DPRINTF(Drain, "DMASequencer done draining, signaling drain done\n"); |
| drainManager->signalDrainDone(); |
| // Clear the drain manager once we're done with it. |
| drainManager = NULL; |
| } |
| } |
| } |
| |
| unsigned int |
| DMASequencer::getChildDrainCount(DrainManager *dm) |
| { |
| int count = 0; |
| count += slave_port.drain(dm); |
| DPRINTF(Config, "count after slave port check %d\n", count); |
| return count; |
| } |
| |
| unsigned int |
| DMASequencer::drain(DrainManager *dm) |
| { |
| if (isDeadlockEventScheduled()) { |
| descheduleDeadlockEvent(); |
| } |
| |
| // If the DMASequencer is not empty, then it needs to clear all outstanding |
| // requests before it should call drainManager->signalDrainDone() |
| DPRINTF(Config, "outstanding count %d\n", outstandingCount()); |
| bool need_drain = outstandingCount() > 0; |
| |
| // |
| // Also, get the number of child ports that will also need to clear |
| // their buffered requests before they call drainManager->signalDrainDone() |
| // |
| unsigned int child_drain_count = getChildDrainCount(dm); |
| |
| // Set status |
| if (need_drain) { |
| drainManager = dm; |
| |
| DPRINTF(Drain, "DMASequencer not drained\n"); |
| setDrainState(Drainable::Draining); |
| return child_drain_count + 1; |
| } |
| |
| drainManager = NULL; |
| setDrainState(Drainable::Drained); |
| return child_drain_count; |
| } |
| |
| void |
| DMASequencer::MemSlavePort::hitCallback(PacketPtr pkt) |
| { |
| bool needsResponse = pkt->needsResponse(); |
| assert(!pkt->isLLSC()); |
| assert(!pkt->isFlush()); |
| |
| DPRINTF(RubyDma, "Hit callback needs response %d\n", needsResponse); |
| |
| // turn packet around to go back to requester if response expected |
| |
| if (access_backing_store) { |
| ruby_system->getPhysMem()->access(pkt); |
| } else if (needsResponse) { |
| pkt->makeResponse(); |
| } |
| |
| if (needsResponse) { |
| DPRINTF(RubyDma, "Sending packet back over port\n"); |
| // send next cycle |
| schedTimingResp(pkt, curTick() + g_system_ptr->clockPeriod()); |
| } else { |
| delete pkt; |
| } |
| |
| DPRINTF(RubyDma, "Hit callback done!\n"); |
| } |
| |
| bool |
| DMASequencer::MemSlavePort::isPhysMemAddress(Addr addr) const |
| { |
| DMASequencer *seq = static_cast<DMASequencer *>(&owner); |
| return seq->system->isMemAddr(addr); |
| } |
| |
| RequestStatus |
| DMASequencer::makeRequest(PacketPtr pkt) |
| { |
| if (m_is_busy) { |
| return RequestStatus_BufferFull; |
| } |
| |
| uint64_t paddr = pkt->getAddr(); |
| uint8_t* data = pkt->getPtr<uint8_t>(); |
| int len = pkt->getSize(); |
| bool write = pkt->isWrite(); |
| |
| assert(!m_is_busy); // only support one outstanding DMA request |
| m_is_busy = true; |
| |
| active_request.start_paddr = paddr; |
| active_request.write = write; |
| active_request.data = data; |
| active_request.len = len; |
| active_request.bytes_completed = 0; |
| active_request.bytes_issued = 0; |
| active_request.pkt = pkt; |
| |
| std::shared_ptr<SequencerMsg> msg = |
| std::make_shared<SequencerMsg>(clockEdge()); |
| msg->getPhysicalAddress() = Address(paddr); |
| msg->getLineAddress() = line_address(msg->getPhysicalAddress()); |
| msg->getType() = write ? SequencerRequestType_ST : SequencerRequestType_LD; |
| int offset = paddr & m_data_block_mask; |
| |
| msg->getLen() = (offset + len) <= RubySystem::getBlockSizeBytes() ? |
| len : RubySystem::getBlockSizeBytes() - offset; |
| |
| if (write && (data != NULL)) { |
| if (active_request.data != NULL) { |
| msg->getDataBlk().setData(data, offset, msg->getLen()); |
| } |
| } |
| |
| assert(m_mandatory_q_ptr != NULL); |
| m_mandatory_q_ptr->enqueue(msg); |
| active_request.bytes_issued += msg->getLen(); |
| |
| return RequestStatus_Issued; |
| } |
| |
| void |
| DMASequencer::issueNext() |
| { |
| assert(m_is_busy); |
| active_request.bytes_completed = active_request.bytes_issued; |
| if (active_request.len == active_request.bytes_completed) { |
| // |
| // Must unset the busy flag before calling back the dma port because |
| // the callback may cause a previously nacked request to be reissued |
| // |
| DPRINTF(RubyDma, "DMA request completed\n"); |
| m_is_busy = false; |
| ruby_hit_callback(active_request.pkt); |
| return; |
| } |
| |
| std::shared_ptr<SequencerMsg> msg = |
| std::make_shared<SequencerMsg>(clockEdge()); |
| msg->getPhysicalAddress() = Address(active_request.start_paddr + |
| active_request.bytes_completed); |
| |
| assert((msg->getPhysicalAddress().getAddress() & m_data_block_mask) == 0); |
| msg->getLineAddress() = line_address(msg->getPhysicalAddress()); |
| |
| msg->getType() = (active_request.write ? SequencerRequestType_ST : |
| SequencerRequestType_LD); |
| |
| msg->getLen() = |
| (active_request.len - |
| active_request.bytes_completed < RubySystem::getBlockSizeBytes() ? |
| active_request.len - active_request.bytes_completed : |
| RubySystem::getBlockSizeBytes()); |
| |
| if (active_request.write) { |
| msg->getDataBlk(). |
| setData(&active_request.data[active_request.bytes_completed], |
| 0, msg->getLen()); |
| msg->getType() = SequencerRequestType_ST; |
| } else { |
| msg->getType() = SequencerRequestType_LD; |
| } |
| |
| assert(m_mandatory_q_ptr != NULL); |
| m_mandatory_q_ptr->enqueue(msg); |
| active_request.bytes_issued += msg->getLen(); |
| DPRINTF(RubyDma, |
| "DMA request bytes issued %d, bytes completed %d, total len %d\n", |
| active_request.bytes_issued, active_request.bytes_completed, |
| active_request.len); |
| } |
| |
| void |
| DMASequencer::dataCallback(const DataBlock & dblk) |
| { |
| assert(m_is_busy); |
| int len = active_request.bytes_issued - active_request.bytes_completed; |
| int offset = 0; |
| if (active_request.bytes_completed == 0) |
| offset = active_request.start_paddr & m_data_block_mask; |
| assert(!active_request.write); |
| if (active_request.data != NULL) { |
| memcpy(&active_request.data[active_request.bytes_completed], |
| dblk.getData(offset, len), len); |
| } |
| issueNext(); |
| } |
| |
| void |
| DMASequencer::ackCallback() |
| { |
| issueNext(); |
| } |
| |
| void |
| DMASequencer::recordRequestType(DMASequencerRequestType requestType) |
| { |
| DPRINTF(RubyStats, "Recorded statistic: %s\n", |
| DMASequencerRequestType_to_string(requestType)); |
| } |
| |
| DMASequencer * |
| DMASequencerParams::create() |
| { |
| return new DMASequencer(this); |
| } |