blob: ce492c9d92de69a04832b153bcd7dec1fdf1255a [file] [log] [blame]
// -*- mode:c++ -*-
// Copyright (c) 2010-2011, 2016-2019 ARM Limited
// All rights reserved
//
// The license below extends only to copyright in the software and shall
// not be construed as granting a license to any other intellectual
// property including but not limited to intellectual property relating
// to a hardware implementation of the functionality of the software
// licensed hereunder. You may use the software subject to the license
// terms below provided that you ensure that this notice is replicated
// unmodified and in its entirety in all distributions of the software,
// modified or unmodified, in source code or in binary form.
//
// Copyright (c) 2007-2008 The Florida State University
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met: redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer;
// redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution;
// neither the name of the copyright holders nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
////////////////////////////////////////////////////////////////////
//
// Floating Point operate instructions
//
output header {{
template<template <typename T> class Base>
StaticInstPtr
newNeonMemInst(const unsigned size,
const ExtMachInst &machInst,
const RegIndex dest, const RegIndex ra,
const uint32_t imm, const unsigned extraMemFlags)
{
switch (size) {
case 0:
return new Base<uint8_t>(machInst, dest, ra, imm, extraMemFlags);
case 1:
return new Base<uint16_t>(machInst, dest, ra, imm, extraMemFlags);
case 2:
return new Base<uint32_t>(machInst, dest, ra, imm, extraMemFlags);
case 3:
return new Base<uint64_t>(machInst, dest, ra, imm, extraMemFlags);
default:
panic("Unrecognized width %d for Neon mem inst.\n", (1 << size));
}
}
template<template <typename T> class Base>
StaticInstPtr
newNeonMixInst(const unsigned size,
const ExtMachInst &machInst,
const RegIndex dest, const RegIndex op1,
const uint32_t step)
{
switch (size) {
case 0:
return new Base<uint8_t>(machInst, dest, op1, step);
case 1:
return new Base<uint16_t>(machInst, dest, op1, step);
case 2:
return new Base<uint32_t>(machInst, dest, op1, step);
case 3:
return new Base<uint64_t>(machInst, dest, op1, step);
default:
panic("Unrecognized width %d for Neon mem inst.\n", (1 << size));
}
}
}};
let {{
header_output = '''
StaticInstPtr
decodeNeonMem(ExtMachInst machInst);
StaticInstPtr
decodeNeonData(ExtMachInst machInst);
StaticInstPtr
decodeAdvancedSIMD(ExtMachInst machInst);
'''
decoder_output = '''
StaticInstPtr
decodeNeonMem(ExtMachInst machInst)
{
const uint32_t b = bits(machInst, 11, 8);
const bool single = bits(machInst, 23);
const bool singleAll = single && (bits(b, 3, 2) == 3);
const bool load = bits(machInst, 21);
unsigned width = 0;
if (single) {
width = bits(b, 1, 0) + 1;
} else {
switch (bits(b, 3, 1)) {
case 0x0: width = 4;
break;
case 0x1: width = (b & 0x1) ? 2 : 1;
break;
case 0x2: width = 3;
break;
case 0x3: width = 1;
break;
case 0x4: width = 2;
break;
case 0x5:
if ((b & 0x1) == 0) {
width = 1;
break;
}
[[fallthrough]];
default:
return new Unknown(machInst);
}
}
assert(width > 0 && width <= 4);
const RegIndex rm = (RegIndex)(uint32_t)bits(machInst, 3, 0);
const RegIndex rn = (RegIndex)(uint32_t)bits(machInst, 19, 16);
const RegIndex vd = (RegIndex)(uint32_t)(bits(machInst, 15, 12) |
bits(machInst, 22) << 4);
const uint32_t type = bits(machInst, 11, 8);
uint32_t size = 0;
uint32_t align = 0;
unsigned inc = 1;
unsigned regs = 1;
unsigned lane = 0;
if (single) {
if (singleAll) {
size = bits(machInst, 7, 6);
bool t = bits(machInst, 5);
align = size | MMU::AllowUnaligned;
if (width == 1) {
regs = t ? 2 : 1;
inc = 1;
} else {
regs = width;
inc = t ? 2 : 1;
}
switch (width) {
case 1:
case 2:
if (bits(machInst, 4))
align = size + width - 1;
break;
case 3:
break;
case 4:
if (size == 3) {
if (bits(machInst, 4) == 0)
return new Unknown(machInst);
size = 2;
align = 0x4;
} else if (size == 2) {
if (bits(machInst, 4))
align = 0x3;
} else {
if (bits(machInst, 4))
align = size + 2;
}
break;
}
} else {
size = bits(machInst, 11, 10);
align = size | MMU::AllowUnaligned;
regs = width;
unsigned indexAlign = bits(machInst, 7, 4);
// If width is 1, inc is always 1. That's overridden later.
switch (size) {
case 0:
inc = 1;
lane = bits(indexAlign, 3, 1);
break;
case 1:
inc = bits(indexAlign, 1) ? 2 : 1;
lane = bits(indexAlign, 3, 2);
break;
case 2:
inc = bits(indexAlign, 2) ? 2 : 1;
lane = bits(indexAlign, 3);
break;
}
// Override inc for width of 1.
if (width == 1) {
inc = 1;
}
switch (width) {
case 1:
switch (size) {
case 0:
break;
case 1:
if (bits(indexAlign, 0))
align = 1;
break;
case 2:
if (bits(indexAlign, 1, 0))
align = 2;
break;
}
break;
case 2:
if (bits(indexAlign, 0))
align = size + 1;
break;
case 3:
break;
case 4:
switch (size) {
case 0:
case 1:
if (bits(indexAlign, 0))
align = size + 2;
break;
case 2:
if (bits(indexAlign, 0))
align = bits(indexAlign, 1, 0) + 2;
break;
}
break;
}
}
if (size == 0x3) {
return new Unknown(machInst);
}
} else {
size = bits(machInst, 7, 6);
align = bits(machInst, 5, 4);
if (align == 0) {
// @align wasn't specified, so alignment can be turned off.
align = size | MMU::AllowUnaligned;
} else {
align = align + 2;
}
switch (width) {
case 1:
switch (type) {
case 0x7: regs = 1;
break;
case 0xa: regs = 2;
break;
case 0x6: regs = 3;
break;
case 0x2: regs = 4;
break;
default:
return new Unknown(machInst);
}
break;
case 2:
// Regs doesn't behave exactly as it does in the manual
// because they loop over regs registers twice and we break
// it down in the macroop.
switch (type) {
case 0x8: regs = 2; inc = 1;
break;
case 0x9: regs = 2; inc = 2;
break;
case 0x3: regs = 4; inc = 2;
break;
default:
return new Unknown(machInst);
}
break;
case 3:
regs = 3;
switch (type) {
case 0x4: inc = 1;
break;
case 0x5: inc = 2;;
break;
default:
return new Unknown(machInst);
}
break;
case 4:
regs = 4;
switch (type) {
case 0: inc = 1;
break;
case 1: inc = 2;
break;
default:
return new Unknown(machInst);
}
break;
}
}
if (load) {
// Load instructions.
if (single) {
return new VldSingle(machInst, singleAll, width, rn, vd,
regs, inc, size, align, rm, lane);
} else {
return new VldMult(machInst, width, rn, vd,
regs, inc, size, align, rm);
}
} else {
// Store instructions.
if (single) {
if (singleAll) {
return new Unknown(machInst);
} else {
return new VstSingle(machInst, false, width, rn, vd,
regs, inc, size, align, rm, lane);
}
} else {
return new VstMult(machInst, width, rn, vd,
regs, inc, size, align, rm);
}
}
return new Unknown(machInst);
}
'''
decoder_output += '''
StaticInstPtr
decodeAdvancedSIMD(ExtMachInst machInst)
{
uint8_t op_code = (bits(machInst, 25) << 1)
| bits(machInst, 21);
IntRegIndex vd = (IntRegIndex)(2 * (bits(machInst, 15, 12) |
(bits(machInst, 22) << 4)));
IntRegIndex vn = (IntRegIndex)(2 * (bits(machInst, 19, 16) |
(bits(machInst, 7) << 4)));
IntRegIndex vm = (IntRegIndex)(2 * (bits(machInst, 3, 0) |
(bits(machInst, 5) << 4)));
bool q = bits (machInst, 6);
switch (op_code) {
case 0x0:
{
// VCADD
bool s = bits (machInst, 20);
if (s) {
if (q)
return new VcaddQ<uint32_t>(machInst, vd, vn, vm);
else
return new VcaddD<uint32_t>(machInst, vd, vn, vm);
} else {
if (q)
return new VcaddQ<uint16_t>(machInst, vd, vn, vm);
else
return new VcaddD<uint16_t>(machInst, vd, vn, vm);
}
}
case 0x1:
{
// VCMLA
bool s = bits (machInst, 20);
if (s) {
if (q)
return new VcmlaQ<uint32_t>(machInst, vd, vn, vm);
else
return new VcmlaD<uint32_t>(machInst, vd, vn, vm);
} else {
if (q)
return new VcmlaQ<uint16_t>(machInst, vd, vn, vm);
else
return new VcmlaD<uint16_t>(machInst, vd, vn, vm);
}
}
case 0x2:
case 0x3:
{
// VCMLA by element
bool s = bits (machInst, 23);
if (s) {
uint8_t index_fp = 0;
if (q)
return new VcmlaElemQ<uint32_t>(machInst, vd, vn, vm,
index_fp);
else
return new VcmlaElemD<uint32_t>(machInst, vd, vn, vm,
index_fp);
} else {
vm = (IntRegIndex)(uint8_t)(2* bits(machInst, 3, 0));
uint8_t index_fp = bits(machInst, 5);
if (q)
return new VcmlaElemQ<uint16_t>(machInst, vd, vn, vm,
index_fp);
else
return new VcmlaElemD<uint16_t>(machInst, vd, vn, vm,
index_fp);
}
}
default:
return new Unknown64(machInst);
}
}
'''
decoder_output += '''
static StaticInstPtr
decodeNeonThreeRegistersSameLength(ExtMachInst machInst)
{
const bool u = THUMB ? bits(machInst, 28) : bits(machInst, 24);
const uint32_t opc = bits(machInst, 11, 8);
const bool o1 = bits(machInst, 4);
const uint32_t size = bits(machInst, 21, 20);
const IntRegIndex vd =
(IntRegIndex)(2 * (bits(machInst, 15, 12) |
(bits(machInst, 22) << 4)));
const IntRegIndex vn =
(IntRegIndex)(2 * (bits(machInst, 19, 16) |
(bits(machInst, 7) << 4)));
const IntRegIndex vm =
(IntRegIndex)(2 * (bits(machInst, 3, 0) |
(bits(machInst, 5) << 4)));
const bool q = bits(machInst, 6);
if (q && ((vd & 0x1) || (vn & 0x1) || (vm & 0x1)))
return new Unknown(machInst);
switch (opc) {
case 0x0:
if (o1) {
if (u) {
return decodeNeonUThreeReg<VqaddUD, VqaddUQ>(
q, size, machInst, vd, vn, vm);
} else {
return decodeNeonSThreeReg<VqaddSD, VqaddSQ>(
q, size, machInst, vd, vn, vm);
}
} else {
if (size == 3)
return new Unknown(machInst);
return decodeNeonUSThreeReg<VhaddD, VhaddQ>(
q, u, size, machInst, vd, vn, vm);
}
case 0x1:
if (!o1) {
return decodeNeonUSThreeReg<VrhaddD, VrhaddQ>(
q, u, size, machInst, vd, vn, vm);
} else {
if (u) {
switch (size) {
case 0:
if (q) {
return new VeorQ<uint64_t>(machInst, vd, vn, vm);
} else {
return new VeorD<uint64_t>(machInst, vd, vn, vm);
}
case 1:
if (q) {
return new VbslQ<uint64_t>(machInst, vd, vn, vm);
} else {
return new VbslD<uint64_t>(machInst, vd, vn, vm);
}
case 2:
if (q) {
return new VbitQ<uint64_t>(machInst, vd, vn, vm);
} else {
return new VbitD<uint64_t>(machInst, vd, vn, vm);
}
case 3:
if (q) {
return new VbifQ<uint64_t>(machInst, vd, vn, vm);
} else {
return new VbifD<uint64_t>(machInst, vd, vn, vm);
}
default:
GEM5_UNREACHABLE;
}
} else {
switch (size) {
case 0:
if (q) {
return new VandQ<uint64_t>(machInst, vd, vn, vm);
} else {
return new VandD<uint64_t>(machInst, vd, vn, vm);
}
case 1:
if (q) {
return new VbicQ<uint64_t>(machInst, vd, vn, vm);
} else {
return new VbicD<uint64_t>(machInst, vd, vn, vm);
}
case 2:
if (vn == vm) {
if (q) {
return new VmovQ<uint64_t>(
machInst, vd, vn, vm);
} else {
return new VmovD<uint64_t>(
machInst, vd, vn, vm);
}
} else {
if (q) {
return new VorrQ<uint64_t>(
machInst, vd, vn, vm);
} else {
return new VorrD<uint64_t>(
machInst, vd, vn, vm);
}
}
case 3:
if (q) {
return new VornQ<uint64_t>(
machInst, vd, vn, vm);
} else {
return new VornD<uint64_t>(
machInst, vd, vn, vm);
}
default:
GEM5_UNREACHABLE;
}
}
}
case 0x2:
if (o1) {
if (u) {
return decodeNeonUThreeReg<VqsubUD, VqsubUQ>(
q, size, machInst, vd, vn, vm);
} else {
return decodeNeonSThreeReg<VqsubSD, VqsubSQ>(
q, size, machInst, vd, vn, vm);
}
} else {
if (size == 3)
return new Unknown(machInst);
return decodeNeonUSThreeReg<VhsubD, VhsubQ>(
q, u, size, machInst, vd, vn, vm);
}
case 0x3:
if (o1) {
return decodeNeonUSThreeReg<VcgeD, VcgeQ>(
q, u, size, machInst, vd, vn, vm);
} else {
return decodeNeonUSThreeReg<VcgtD, VcgtQ>(
q, u, size, machInst, vd, vn, vm);
}
case 0x4:
if (o1) {
if (u) {
return decodeNeonUThreeReg<VqshlUD, VqshlUQ>(
q, size, machInst, vd, vm, vn);
} else {
return decodeNeonSThreeReg<VqshlSD, VqshlSQ>(
q, size, machInst, vd, vm, vn);
}
} else {
return decodeNeonUSThreeReg<VshlD, VshlQ>(
q, u, size, machInst, vd, vm, vn);
}
case 0x5:
if (o1) {
if (u) {
return decodeNeonUThreeReg<VqrshlUD, VqrshlUQ>(
q, size, machInst, vd, vm, vn);
} else {
return decodeNeonSThreeReg<VqrshlSD, VqrshlSQ>(
q, size, machInst, vd, vm, vn);
}
} else {
return decodeNeonUSThreeReg<VrshlD, VrshlQ>(
q, u, size, machInst, vd, vm, vn);
}
case 0x6:
if (o1) {
return decodeNeonUSThreeReg<VminD, VminQ>(
q, u, size, machInst, vd, vn, vm);
} else {
return decodeNeonUSThreeReg<VmaxD, VmaxQ>(
q, u, size, machInst, vd, vn, vm);
}
case 0x7:
if (o1) {
return decodeNeonUSThreeReg<VabaD, VabaQ>(
q, u, size, machInst, vd, vn, vm);
} else {
if (bits(machInst, 23) == 1) {
if (q) {
return new Unknown(machInst);
} else {
return decodeNeonUSThreeUSReg<Vabdl>(
u, size, machInst, vd, vn, vm);
}
} else {
return decodeNeonUSThreeReg<VabdD, VabdQ>(
q, u, size, machInst, vd, vn, vm);
}
}
case 0x8:
if (o1) {
if (u) {
return decodeNeonUThreeReg<VceqD, VceqQ>(
q, size, machInst, vd, vn, vm);
} else {
return decodeNeonUThreeReg<VtstD, VtstQ>(
q, size, machInst, vd, vn, vm);
}
} else {
if (u) {
return decodeNeonUThreeReg<NVsubD, NVsubQ>(
q, size, machInst, vd, vn, vm);
} else {
return decodeNeonUThreeReg<NVaddD, NVaddQ>(
q, size, machInst, vd, vn, vm);
}
}
case 0x9:
if (o1) {
if (u) {
return decodeNeonUThreeReg<NVmulpD, NVmulpQ>(
q, size, machInst, vd, vn, vm);
} else {
return decodeNeonSThreeReg<NVmulD, NVmulQ>(
q, size, machInst, vd, vn, vm);
}
} else {
if (u) {
return decodeNeonUSThreeReg<NVmlsD, NVmlsQ>(
q, u, size, machInst, vd, vn, vm);
} else {
return decodeNeonUSThreeReg<NVmlaD, NVmlaQ>(
q, u, size, machInst, vd, vn, vm);
}
}
case 0xa:
if (q)
return new Unknown(machInst);
if (o1) {
return decodeNeonUSThreeUSReg<VpminD>(
u, size, machInst, vd, vn, vm);
} else {
return decodeNeonUSThreeUSReg<VpmaxD>(
u, size, machInst, vd, vn, vm);
}
case 0xb:
if (o1) {
if (u) {
return decodeNeonSThreeSReg<VqrdmlahD, VqrdmlahQ>(
q, size, machInst, vd, vn, vm);
} else if (q) {
return new Unknown(machInst);
} else {
return decodeNeonUThreeUSReg<NVpaddD>(
size, machInst, vd, vn, vm);
}
} else {
if (u) {
return decodeNeonSThreeSReg<VqrdmulhD, VqrdmulhQ>(
q, size, machInst, vd, vn, vm);
} else {
return decodeNeonSThreeSReg<VqdmulhD, VqdmulhQ>(
q, size, machInst, vd, vn, vm);
}
}
case 0xc:
if (o1) {
if (u) {
return decodeNeonSThreeSReg<VqrdmlshD, VqrdmlshQ>(
q, size, machInst, vd, vn, vm);
} else {
if (bits(size, 1) == 0) {
if (q) {
return new NVfmaQFp<float>(machInst, vd, vn, vm);
} else {
return new NVfmaDFp<float>(machInst, vd, vn, vm);
}
} else {
if (q) {
return new NVfmsQFp<float>(machInst, vd, vn, vm);
} else {
return new NVfmsDFp<float>(machInst, vd, vn, vm);
}
}
}
} else {
if (u) {
switch (size) {
case 0x0:
return new SHA256H(machInst, vd, vn, vm);
case 0x1:
return new SHA256H2(machInst, vd, vn, vm);
case 0x2:
return new SHA256SU1(machInst, vd, vn, vm);
case 0x3:
return new Unknown(machInst);
default:
GEM5_UNREACHABLE;
}
} else {
switch (size) {
case 0x0:
return new SHA1C(machInst, vd, vn, vm);
case 0x1:
return new SHA1P(machInst, vd, vn, vm);
case 0x2:
return new SHA1M(machInst, vd, vn, vm);
case 0x3:
return new SHA1SU0(machInst, vd, vn, vm);
default:
GEM5_UNREACHABLE;
}
}
}
return new Unknown(machInst);
case 0xd:
if (o1) {
if (u) {
if (bits(size, 1) == 0) {
if (q) {
return new NVmulQFp<float>(machInst, vd, vn, vm);
} else {
return new NVmulDFp<float>(machInst, vd, vn, vm);
}
} else {
return new Unknown(machInst);
}
} else {
if (bits(size, 1) == 0) {
if (q) {
return new NVmlaQFp<float>(machInst, vd, vn, vm);
} else {
return new NVmlaDFp<float>(machInst, vd, vn, vm);
}
} else {
if (q) {
return new NVmlsQFp<float>(machInst, vd, vn, vm);
} else {
return new NVmlsDFp<float>(machInst, vd, vn, vm);
}
}
}
} else {
if (u) {
if (bits(size, 1) == 0) {
if (q) {
return new VpaddQFp<float>(machInst, vd, vn, vm);
} else {
return new VpaddDFp<float>(machInst, vd, vn, vm);
}
} else {
if (q) {
return new VabdQFp<float>(machInst, vd, vn, vm);
} else {
return new VabdDFp<float>(machInst, vd, vn, vm);
}
}
} else {
if (bits(size, 1) == 0) {
if (q) {
return new VaddQFp<float>(machInst, vd, vn, vm);
} else {
return new VaddDFp<float>(machInst, vd, vn, vm);
}
} else {
if (q) {
return new VsubQFp<float>(machInst, vd, vn, vm);
} else {
return new VsubDFp<float>(machInst, vd, vn, vm);
}
}
}
}
case 0xe:
if (o1) {
if (u) {
if (bits(size, 1) == 0) {
if (q) {
return new VacgeQFp<float>(machInst, vd, vn, vm);
} else {
return new VacgeDFp<float>(machInst, vd, vn, vm);
}
} else {
if (q) {
return new VacgtQFp<float>(machInst, vd, vn, vm);
} else {
return new VacgtDFp<float>(machInst, vd, vn, vm);
}
}
} else {
return new Unknown(machInst);
}
} else {
if (u) {
if (bits(size, 1) == 0) {
if (q) {
return new VcgeQFp<float>(machInst, vd, vn, vm);
} else {
return new VcgeDFp<float>(machInst, vd, vn, vm);
}
} else {
if (q) {
return new VcgtQFp<float>(machInst, vd, vn, vm);
} else {
return new VcgtDFp<float>(machInst, vd, vn, vm);
}
}
} else {
if (bits(size, 1) == 0) {
if (q) {
return new VceqQFp<float>(machInst, vd, vn, vm);
} else {
return new VceqDFp<float>(machInst, vd, vn, vm);
}
} else {
return new Unknown(machInst);
}
}
}
case 0xf:
if (o1) {
if (u) {
if (bits(size, 1) == 0) {
if (q) {
return new VmaxnmQFp<uint32_t>(
machInst, vd, vn, vm);
} else {
return new VmaxnmDFp<uint32_t>(
machInst, vd, vn, vm);
}
} else {
if (q) {
return new VminnmQFp<uint32_t>(
machInst, vd, vn, vm);
} else {
return new VminnmDFp<uint32_t>(
machInst, vd, vn, vm);
}
}
} else {
if (bits(size, 1) == 0) {
if (q) {
return new VrecpsQFp<float>(machInst, vd, vn, vm);
} else {
return new VrecpsDFp<float>(machInst, vd, vn, vm);
}
} else {
if (q) {
return new VrsqrtsQFp<float>(machInst, vd, vn, vm);
} else {
return new VrsqrtsDFp<float>(machInst, vd, vn, vm);
}
}
}
} else {
if (u) {
if (bits(size, 1) == 0) {
if (q) {
return new VpmaxQFp<uint32_t>(
machInst, vd, vn, vm);
} else {
return new VpmaxDFp<uint32_t>(
machInst, vd, vn, vm);
}
} else {
if (q) {
return new VpminQFp<uint32_t>(
machInst, vd, vn, vm);
} else {
return new VpminDFp<uint32_t>(
machInst, vd, vn, vm);
}
}
} else {
if (bits(size, 1) == 0) {
if (q) {
return new VmaxQFp<uint32_t>(
machInst, vd, vn, vm);
} else {
return new VmaxDFp<uint32_t>(
machInst, vd, vn, vm);
}
} else {
if (q) {
return new VminQFp<uint32_t>(
machInst, vd, vn, vm);
} else {
return new VminDFp<uint32_t>(
machInst, vd, vn, vm);
}
}
}
}
}
return new Unknown(machInst);
}
static StaticInstPtr
decodeNeonOneRegModImm(ExtMachInst machInst)
{
const IntRegIndex vd =
(IntRegIndex)(2 * (bits(machInst, 15, 12) |
(bits(machInst, 22) << 4)));
const bool q = bits(machInst, 6);
const bool op = bits(machInst, 5);
const uint8_t cmode = bits(machInst, 11, 8);
const uint8_t imm = ((THUMB ? bits(machInst, 28) :
bits(machInst, 24)) << 7) |
(bits(machInst, 18, 16) << 4) |
(bits(machInst, 3, 0) << 0);
// Check for invalid immediate encodings and return an unknown op
// if it happens
bool immValid = true;
const uint64_t bigImm = simd_modified_imm(op, cmode, imm, immValid);
if (!immValid) {
return new Unknown(machInst);
}
if (op) {
if (bits(cmode, 3) == 0) {
if (bits(cmode, 0) == 0) {
if (q)
return new NVmvniQ<uint64_t>(machInst, vd, bigImm);
else
return new NVmvniD<uint64_t>(machInst, vd, bigImm);
} else {
if (q)
return new NVbiciQ<uint64_t>(machInst, vd, bigImm);
else
return new NVbiciD<uint64_t>(machInst, vd, bigImm);
}
} else {
if (bits(cmode, 2) == 1) {
switch (bits(cmode, 1, 0)) {
case 0:
case 1:
if (q)
return new NVmvniQ<uint64_t>(machInst, vd, bigImm);
else
return new NVmvniD<uint64_t>(machInst, vd, bigImm);
case 2:
if (q)
return new NVmoviQ<uint64_t>(machInst, vd, bigImm);
else
return new NVmoviD<uint64_t>(machInst, vd, bigImm);
case 3:
if (q)
return new Unknown(machInst);
else
return new Unknown(machInst);
}
} else {
if (bits(cmode, 0) == 0) {
if (q)
return new NVmvniQ<uint64_t>(machInst, vd, bigImm);
else
return new NVmvniD<uint64_t>(machInst, vd, bigImm);
} else {
if (q)
return new NVbiciQ<uint64_t>(machInst, vd, bigImm);
else
return new NVbiciD<uint64_t>(machInst, vd, bigImm);
}
}
}
} else {
if (bits(cmode, 3) == 0) {
if (bits(cmode, 0) == 0) {
if (q)
return new NVmoviQ<uint64_t>(machInst, vd, bigImm);
else
return new NVmoviD<uint64_t>(machInst, vd, bigImm);
} else {
if (q)
return new NVorriQ<uint64_t>(machInst, vd, bigImm);
else
return new NVorriD<uint64_t>(machInst, vd, bigImm);
}
} else {
if (bits(cmode, 2) == 1) {
if (q)
return new NVmoviQ<uint64_t>(machInst, vd, bigImm);
else
return new NVmoviD<uint64_t>(machInst, vd, bigImm);
} else {
if (bits(cmode, 0) == 0) {
if (q)
return new NVmoviQ<uint64_t>(machInst, vd, bigImm);
else
return new NVmoviD<uint64_t>(machInst, vd, bigImm);
} else {
if (q)
return new NVorriQ<uint64_t>(machInst, vd, bigImm);
else
return new NVorriD<uint64_t>(machInst, vd, bigImm);
}
}
}
}
return new Unknown(machInst);
}
static StaticInstPtr
decodeNeonTwoRegAndShift(ExtMachInst machInst)
{
const uint32_t opc = bits(machInst, 11, 8);
const bool u = THUMB ? bits(machInst, 28) : bits(machInst, 24);
const bool q = bits(machInst, 6);
const bool l = bits(machInst, 7);
const IntRegIndex vd =
(IntRegIndex)(2 * (bits(machInst, 15, 12) |
(bits(machInst, 22) << 4)));
const IntRegIndex vm =
(IntRegIndex)(2 * (bits(machInst, 3, 0) |
(bits(machInst, 5) << 4)));
unsigned imm6 = bits(machInst, 21, 16);
unsigned imm = ((l ? 1 : 0) << 6) | imm6;
unsigned size = 3;
unsigned lShiftAmt = 0;
unsigned bitSel;
for (bitSel = 1 << 6; true; bitSel >>= 1) {
if (bitSel & imm)
break;
else if (!size)
return new Unknown(machInst);
size--;
}
lShiftAmt = imm6 & ~bitSel;
unsigned rShiftAmt = 0;
if (opc != 0xe && opc != 0xf) {
if (size > 2)
rShiftAmt = 64 - imm6;
else
rShiftAmt = 2 * (8 << size) - imm6;
}
switch (opc) {
case 0x0:
return decodeNeonUSTwoShiftReg<NVshrD, NVshrQ>(
q, u, size, machInst, vd, vm, rShiftAmt);
case 0x1:
return decodeNeonUSTwoShiftReg<NVsraD, NVsraQ>(
q, u, size, machInst, vd, vm, rShiftAmt);
case 0x2:
return decodeNeonUSTwoShiftReg<NVrshrD, NVrshrQ>(
q, u, size, machInst, vd, vm, rShiftAmt);
case 0x3:
return decodeNeonUSTwoShiftReg<NVrsraD, NVrsraQ>(
q, u, size, machInst, vd, vm, rShiftAmt);
case 0x4:
if (u) {
return decodeNeonUTwoShiftReg<NVsriD, NVsriQ>(
q, size, machInst, vd, vm, rShiftAmt);
} else {
return new Unknown(machInst);
}
case 0x5:
if (u) {
return decodeNeonUTwoShiftReg<NVsliD, NVsliQ>(
q, size, machInst, vd, vm, lShiftAmt);
} else {
return decodeNeonUTwoShiftReg<NVshlD, NVshlQ>(
q, size, machInst, vd, vm, lShiftAmt);
}
case 0x6:
case 0x7:
if (u) {
if (opc == 0x6) {
return decodeNeonSTwoShiftReg<NVqshlusD, NVqshlusQ>(
q, size, machInst, vd, vm, lShiftAmt);
} else {
return decodeNeonUTwoShiftReg<NVqshluD, NVqshluQ>(
q, size, machInst, vd, vm, lShiftAmt);
}
} else {
return decodeNeonSTwoShiftReg<NVqshlD, NVqshlQ>(
q, size, machInst, vd, vm, lShiftAmt);
}
case 0x8:
if (l) {
return new Unknown(machInst);
} else if (u) {
return decodeNeonSTwoShiftSReg<NVqshruns, NVqrshruns>(
q, size, machInst, vd, vm, rShiftAmt);
} else {
return decodeNeonUTwoShiftSReg<NVshrn, NVrshrn>(
q, size, machInst, vd, vm, rShiftAmt);
}
case 0x9:
if (l) {
return new Unknown(machInst);
} else if (u) {
return decodeNeonUTwoShiftSReg<NVqshrun, NVqrshrun>(
q, size, machInst, vd, vm, rShiftAmt);
} else {
return decodeNeonSTwoShiftSReg<NVqshrn, NVqrshrn>(
q, size, machInst, vd, vm, rShiftAmt);
}
case 0xa:
if (l || q) {
return new Unknown(machInst);
} else {
return decodeNeonUSTwoShiftSReg<NVmovl, NVshll>(
lShiftAmt, u, size, machInst, vd, vm, lShiftAmt);
}
case 0xe:
if (l) {
return new Unknown(machInst);
} else {
if (bits(imm6, 5) == 0)
return new Unknown(machInst);
if (u) {
if (q) {
return new NVcvtu2fpQ<float>(
machInst, vd, vm, 64 - imm6);
} else {
return new NVcvtu2fpD<float>(
machInst, vd, vm, 64 - imm6);
}
} else {
if (q) {
return new NVcvts2fpQ<float>(
machInst, vd, vm, 64 - imm6);
} else {
return new NVcvts2fpD<float>(
machInst, vd, vm, 64 - imm6);
}
}
}
case 0xf:
if (l) {
return new Unknown(machInst);
} else {
if (bits(imm6, 5) == 0)
return new Unknown(machInst);
if (u) {
if (q) {
return new NVcvt2ufxQ<float>(
machInst, vd, vm, 64 - imm6);
} else {
return new NVcvt2ufxD<float>(
machInst, vd, vm, 64 - imm6);
}
} else {
if (q) {
return new NVcvt2sfxQ<float>(
machInst, vd, vm, 64 - imm6);
} else {
return new NVcvt2sfxD<float>(
machInst, vd, vm, 64 - imm6);
}
}
}
}
return new Unknown(machInst);
}
static StaticInstPtr
decodeNeonThreeRegDiffLengths(ExtMachInst machInst)
{
const bool u = THUMB ? bits(machInst, 28) : bits(machInst, 24);
const uint32_t opc = bits(machInst, 11, 8);
const IntRegIndex vd =
(IntRegIndex)(2 * (bits(machInst, 15, 12) |
(bits(machInst, 22) << 4)));
const IntRegIndex vn =
(IntRegIndex)(2 * (bits(machInst, 19, 16) |
(bits(machInst, 7) << 4)));
const IntRegIndex vm =
(IntRegIndex)(2 * (bits(machInst, 3, 0) |
(bits(machInst, 5) << 4)));
const unsigned size = bits(machInst, 21, 20);
switch (opc) {
case 0x0:
return decodeNeonUSThreeUSReg<Vaddl>(
u, size, machInst, vd, vn, vm);
case 0x1:
return decodeNeonUSThreeUSReg<Vaddw>(
u, size, machInst, vd, vn, vm);
case 0x2:
return decodeNeonUSThreeUSReg<Vsubl>(
u, size, machInst, vd, vn, vm);
case 0x3:
return decodeNeonUSThreeUSReg<Vsubw>(
u, size, machInst, vd, vn, vm);
case 0x4:
if (u) {
return decodeNeonUThreeUSReg<Vraddhn>(
size, machInst, vd, vn, vm);
} else {
return decodeNeonUThreeUSReg<Vaddhn>(
size, machInst, vd, vn, vm);
}
case 0x5:
return decodeNeonUSThreeUSReg<Vabal>(
u, size, machInst, vd, vn, vm);
case 0x6:
if (u) {
return decodeNeonUThreeUSReg<Vrsubhn>(
size, machInst, vd, vn, vm);
} else {
return decodeNeonUThreeUSReg<Vsubhn>(
size, machInst, vd, vn, vm);
}
case 0x7:
if (bits(machInst, 23)) {
return decodeNeonUSThreeUSReg<Vabdl>(
u, size, machInst, vd, vn, vm);
} else {
return decodeNeonUSThreeReg<VabdD, VabdQ>(
bits(machInst, 6), u, size, machInst, vd, vn, vm);
}
case 0x8:
return decodeNeonUSThreeUSReg<Vmlal>(
u, size, machInst, vd, vn, vm);
case 0xa:
return decodeNeonUSThreeUSReg<Vmlsl>(
u, size, machInst, vd, vn, vm);
case 0x9:
if (u) {
return new Unknown(machInst);
} else {
return decodeNeonSThreeUSReg<Vqdmlal>(
size, machInst, vd, vn, vm);
}
case 0xb:
if (u) {
return new Unknown(machInst);
} else {
return decodeNeonSThreeUSReg<Vqdmlsl>(
size, machInst, vd, vn, vm);
}
case 0xc:
return decodeNeonUSThreeUSReg<Vmull>(
u, size, machInst, vd, vn, vm);
case 0xd:
if (u) {
return new Unknown(machInst);
} else {
return decodeNeonSThreeUSReg<Vqdmull>(
size, machInst, vd, vn, vm);
}
case 0xe:
return decodeNeonUThreeUSReg<Vmullp>(
size, machInst, vd, vn, vm);
}
return new Unknown(machInst);
}
static StaticInstPtr
decodeNeonTwoRegScalar(ExtMachInst machInst)
{
const bool u = THUMB ? bits(machInst, 28) : bits(machInst, 24);
const uint32_t opc = bits(machInst, 11, 8);
const unsigned size = bits(machInst, 21, 20);
const IntRegIndex vd =
(IntRegIndex)(2 * (bits(machInst, 15, 12) |
(bits(machInst, 22) << 4)));
const IntRegIndex vn =
(IntRegIndex)(2 * (bits(machInst, 19, 16) |
(bits(machInst, 7) << 4)));
const IntRegIndex vm = (size == 2) ?
(IntRegIndex)(2 * bits(machInst, 3, 0)) :
(IntRegIndex)(2 * bits(machInst, 2, 0));
const unsigned index = (size == 2) ? (unsigned)bits(machInst, 5) :
(bits(machInst, 3) | (bits(machInst, 5) << 1));
switch (opc) {
case 0x0:
if (u) {
switch (size) {
case 1:
return new VmlasQ<uint16_t>(machInst, vd, vn, vm, index);
case 2:
return new VmlasQ<uint32_t>(machInst, vd, vn, vm, index);
default:
return new Unknown(machInst);
}
} else {
switch (size) {
case 1:
return new VmlasD<uint16_t>(machInst, vd, vn, vm, index);
case 2:
return new VmlasD<uint32_t>(machInst, vd, vn, vm, index);
default:
return new Unknown(machInst);
}
}
case 0x1:
if (u)
return new VmlasQFp<float>(machInst, vd, vn, vm, index);
else
return new VmlasDFp<float>(machInst, vd, vn, vm, index);
case 0x4:
if (u) {
switch (size) {
case 1:
return new VmlssQ<uint16_t>(machInst, vd, vn, vm, index);
case 2:
return new VmlssQ<uint32_t>(machInst, vd, vn, vm, index);
default:
return new Unknown(machInst);
}
} else {
switch (size) {
case 1:
return new VmlssD<uint16_t>(machInst, vd, vn, vm, index);
case 2:
return new VmlssD<uint32_t>(machInst, vd, vn, vm, index);
default:
return new Unknown(machInst);
}
}
case 0x5:
if (u)
return new VmlssQFp<float>(machInst, vd, vn, vm, index);
else
return new VmlssDFp<float>(machInst, vd, vn, vm, index);
case 0x2:
if (u) {
switch (size) {
case 1:
return new Vmlals<uint16_t>(machInst, vd, vn, vm, index);
case 2:
return new Vmlals<uint32_t>(machInst, vd, vn, vm, index);
default:
return new Unknown(machInst);
}
} else {
switch (size) {
case 1:
return new Vmlals<int16_t>(machInst, vd, vn, vm, index);
case 2:
return new Vmlals<int32_t>(machInst, vd, vn, vm, index);
default:
return new Unknown(machInst);
}
}
case 0x6:
if (u) {
switch (size) {
case 1:
return new Vmlsls<uint16_t>(machInst, vd, vn, vm, index);
case 2:
return new Vmlsls<uint32_t>(machInst, vd, vn, vm, index);
default:
return new Unknown(machInst);
}
} else {
switch (size) {
case 1:
return new Vmlsls<int16_t>(machInst, vd, vn, vm, index);
case 2:
return new Vmlsls<int32_t>(machInst, vd, vn, vm, index);
default:
return new Unknown(machInst);
}
}
case 0x3:
if (u) {
return new Unknown(machInst);
} else {
switch (size) {
case 1:
return new Vqdmlals<int16_t>(machInst, vd, vn, vm, index);
case 2:
return new Vqdmlals<int32_t>(machInst, vd, vn, vm, index);
default:
return new Unknown(machInst);
}
}
case 0x7:
if (u) {
return new Unknown(machInst);
} else {
switch (size) {
case 1:
return new Vqdmlsls<int16_t>(machInst, vd, vn, vm, index);
case 2:
return new Vqdmlsls<int32_t>(machInst, vd, vn, vm, index);
default:
return new Unknown(machInst);
}
}
case 0x8:
if (u) {
switch (size) {
case 1:
return new VmulsQ<uint16_t>(machInst, vd, vn, vm, index);
case 2:
return new VmulsQ<uint32_t>(machInst, vd, vn, vm, index);
default:
return new Unknown(machInst);
}
} else {
switch (size) {
case 1:
return new VmulsD<uint16_t>(machInst, vd, vn, vm, index);
case 2:
return new VmulsD<uint32_t>(machInst, vd, vn, vm, index);
default:
return new Unknown(machInst);
}
}
case 0x9:
if (u)
return new VmulsQFp<float>(machInst, vd, vn, vm, index);
else
return new VmulsDFp<float>(machInst, vd, vn, vm, index);
case 0xa:
if (u) {
switch (size) {
case 1:
return new Vmulls<uint16_t>(machInst, vd, vn, vm, index);
case 2:
return new Vmulls<uint32_t>(machInst, vd, vn, vm, index);
default:
return new Unknown(machInst);
}
} else {
switch (size) {
case 1:
return new Vmulls<int16_t>(machInst, vd, vn, vm, index);
case 2:
return new Vmulls<int32_t>(machInst, vd, vn, vm, index);
default:
return new Unknown(machInst);
}
}
case 0xb:
if (u) {
return new Unknown(machInst);
} else {
if (u) {
switch (size) {
case 1:
return new Vqdmulls<uint16_t>(
machInst, vd, vn, vm, index);
case 2:
return new Vqdmulls<uint32_t>(
machInst, vd, vn, vm, index);
default:
return new Unknown(machInst);
}
} else {
switch (size) {
case 1:
return new Vqdmulls<int16_t>(
machInst, vd, vn, vm, index);
case 2:
return new Vqdmulls<int32_t>(
machInst, vd, vn, vm, index);
default:
return new Unknown(machInst);
}
}
}
case 0xc:
if (u) {
switch (size) {
case 1:
return new VqdmulhsQ<int16_t>(
machInst, vd, vn, vm, index);
case 2:
return new VqdmulhsQ<int32_t>(
machInst, vd, vn, vm, index);
default:
return new Unknown(machInst);
}
} else {
switch (size) {
case 1:
return new VqdmulhsD<int16_t>(
machInst, vd, vn, vm, index);
case 2:
return new VqdmulhsD<int32_t>(
machInst, vd, vn, vm, index);
default:
return new Unknown(machInst);
}
}
case 0xd:
if (u) {
switch (size) {
case 1:
return new VqrdmulhsQ<int16_t>(
machInst, vd, vn, vm, index);
case 2:
return new VqrdmulhsQ<int32_t>(
machInst, vd, vn, vm, index);
default:
return new Unknown(machInst);
}
} else {
switch (size) {
case 1:
return new VqrdmulhsD<int16_t>(
machInst, vd, vn, vm, index);
case 2:
return new VqrdmulhsD<int32_t>(
machInst, vd, vn, vm, index);
default:
return new Unknown(machInst);
}
}
case 0xe:
if (u) {
switch (size) {
case 1:
return new VqrdmlahsQ<int16_t>(
machInst, vd, vn, vm, index);
case 2:
return new VqrdmlahsQ<int32_t>(
machInst, vd, vn, vm, index);
default:
return new Unknown(machInst);
}
} else {
switch (size) {
case 1:
return new VqrdmlahsD<int16_t>(
machInst, vd, vn, vm, index);
case 2:
return new VqrdmlahsD<int32_t>(
machInst, vd, vn, vm, index);
default:
return new Unknown(machInst);
}
}
case 0xf:
if (u) {
switch (size) {
case 1:
return new VqrdmlshsQ<int16_t>(
machInst, vd, vn, vm, index);
case 2:
return new VqrdmlshsQ<int32_t>(
machInst, vd, vn, vm, index);
default:
return new Unknown(machInst);
}
} else {
switch (size) {
case 1:
return new VqrdmlshsD<int16_t>(
machInst, vd, vn, vm, index);
case 2:
return new VqrdmlshsD<int32_t>(
machInst, vd, vn, vm, index);
default:
return new Unknown(machInst);
}
}
}
return new Unknown(machInst);
}
static StaticInstPtr
decodeNeonTwoRegMisc(ExtMachInst machInst)
{
const uint32_t opc1 = bits(machInst, 17, 16);
const uint32_t b = bits(machInst, 10, 6);
const bool q = bits(machInst, 6);
const IntRegIndex vd =
(IntRegIndex)(2 * (bits(machInst, 15, 12) |
(bits(machInst, 22) << 4)));
const IntRegIndex vm =
(IntRegIndex)(2 * (bits(machInst, 3, 0) |
(bits(machInst, 5) << 4)));
const unsigned size = bits(machInst, 19, 18);
switch (opc1) {
case 0x0:
switch (bits(b, 4, 1)) {
case 0x0:
switch (size) {
case 0:
if (q) {
return new NVrev64Q<uint8_t>(machInst, vd, vm);
} else {
return new NVrev64D<uint8_t>(machInst, vd, vm);
}
case 1:
if (q) {
return new NVrev64Q<uint16_t>(machInst, vd, vm);
} else {
return new NVrev64D<uint16_t>(machInst, vd, vm);
}
case 2:
if (q) {
return new NVrev64Q<uint32_t>(machInst, vd, vm);
} else {
return new NVrev64D<uint32_t>(machInst, vd, vm);
}
default:
return new Unknown(machInst);
}
case 0x1:
switch (size) {
case 0:
if (q) {
return new NVrev32Q<uint8_t>(machInst, vd, vm);
} else {
return new NVrev32D<uint8_t>(machInst, vd, vm);
}
case 1:
if (q) {
return new NVrev32Q<uint16_t>(machInst, vd, vm);
} else {
return new NVrev32D<uint16_t>(machInst, vd, vm);
}
default:
return new Unknown(machInst);
}
case 0x2:
if (size != 0) {
return new Unknown(machInst);
} else if (q) {
return new NVrev16Q<uint8_t>(machInst, vd, vm);
} else {
return new NVrev16D<uint8_t>(machInst, vd, vm);
}
case 0x4:
return decodeNeonSTwoMiscSReg<NVpaddlD, NVpaddlQ>(
q, size, machInst, vd, vm);
case 0x5:
return decodeNeonUTwoMiscSReg<NVpaddlD, NVpaddlQ>(
q, size, machInst, vd, vm);
case 0x6:
if (q == 0) {
return new AESE(machInst, vd, vd, vm);
} else {
return new AESD(machInst, vd, vd, vm);
}
case 0x7:
if (q == 0) {
return new AESMC(machInst, vd, vm);
} else {
return new AESIMC(machInst, vd, vm);
}
case 0x8:
return decodeNeonSTwoMiscReg<NVclsD, NVclsQ>(
q, size, machInst, vd, vm);
case 0x9:
return decodeNeonSTwoMiscReg<NVclzD, NVclzQ>(
q, size, machInst, vd, vm);
case 0xa:
return decodeNeonUTwoMiscReg<NVcntD, NVcntQ>(
q, size, machInst, vd, vm);
case 0xb:
if (q)
return new NVmvnQ<uint64_t>(machInst, vd, vm);
else
return new NVmvnD<uint64_t>(machInst, vd, vm);
case 0xc:
return decodeNeonSTwoMiscSReg<NVpadalD, NVpadalQ>(
q, size, machInst, vd, vm);
case 0xd:
return decodeNeonUTwoMiscSReg<NVpadalD, NVpadalQ>(
q, size, machInst, vd, vm);
case 0xe:
return decodeNeonSTwoMiscReg<NVqabsD, NVqabsQ>(
q, size, machInst, vd, vm);
case 0xf:
return decodeNeonSTwoMiscReg<NVqnegD, NVqnegQ>(
q, size, machInst, vd, vm);
default:
return new Unknown(machInst);
}
case 0x1:
switch (bits(b, 3, 1)) {
case 0x0:
if (bits(b, 4)) {
if (q) {
return new NVcgtQFp<float>(machInst, vd, vm);
} else {
return new NVcgtDFp<float>(machInst, vd, vm);
}
} else {
return decodeNeonSTwoMiscReg<NVcgtD, NVcgtQ>(
q, size, machInst, vd, vm);
}
case 0x1:
if (bits(b, 4)) {
if (q) {
return new NVcgeQFp<float>(machInst, vd, vm);
} else {
return new NVcgeDFp<float>(machInst, vd, vm);
}
} else {
return decodeNeonSTwoMiscReg<NVcgeD, NVcgeQ>(
q, size, machInst, vd, vm);
}
case 0x2:
if (bits(b, 4)) {
if (q) {
return new NVceqQFp<float>(machInst, vd, vm);
} else {
return new NVceqDFp<float>(machInst, vd, vm);
}
} else {
return decodeNeonSTwoMiscReg<NVceqD, NVceqQ>(
q, size, machInst, vd, vm);
}
case 0x3:
if (bits(b, 4)) {
if (q) {
return new NVcleQFp<float>(machInst, vd, vm);
} else {
return new NVcleDFp<float>(machInst, vd, vm);
}
} else {
return decodeNeonSTwoMiscReg<NVcleD, NVcleQ>(
q, size, machInst, vd, vm);
}
case 0x4:
if (bits(b, 4)) {
if (q) {
return new NVcltQFp<float>(machInst, vd, vm);
} else {
return new NVcltDFp<float>(machInst, vd, vm);
}
} else {
return decodeNeonSTwoMiscReg<NVcltD, NVcltQ>(
q, size, machInst, vd, vm);
}
case 0x5:
if (q) {
return new SHA1H(machInst, vd, vm);
} else {
return new Unknown(machInst);
}
case 0x6:
if (bits(machInst, 10)) {
if (q)
return new NVabsQFp<float>(machInst, vd, vm);
else
return new NVabsDFp<float>(machInst, vd, vm);
} else {
return decodeNeonSTwoMiscReg<NVabsD, NVabsQ>(
q, size, machInst, vd, vm);
}
case 0x7:
if (bits(machInst, 10)) {
if (q)
return new NVnegQFp<float>(machInst, vd, vm);
else
return new NVnegDFp<float>(machInst, vd, vm);
} else {
return decodeNeonSTwoMiscReg<NVnegD, NVnegQ>(
q, size, machInst, vd, vm);
}
default:
return new Unknown64(machInst);
}
case 0x2:
switch (bits(b, 4, 1)) {
case 0x0:
if (q)
return new NVswpQ<uint64_t>(machInst, vd, vm);
else
return new NVswpD<uint64_t>(machInst, vd, vm);
case 0x1:
return decodeNeonUTwoMiscSReg<NVtrnD, NVtrnQ>(
q, size, machInst, vd, vm);
case 0x2:
return decodeNeonUTwoMiscReg<NVuzpD, NVuzpQ>(
q, size, machInst, vd, vm);
case 0x3:
return decodeNeonUTwoMiscReg<NVzipD, NVzipQ>(
q, size, machInst, vd, vm);
case 0x4:
if (b == 0x8) {
return decodeNeonUTwoMiscUSReg<NVmovn>(
size, machInst, vd, vm);
} else {
return decodeNeonSTwoMiscUSReg<NVqmovuns>(
size, machInst, vd, vm);
}
case 0x5:
if (q) {
return decodeNeonUTwoMiscUSReg<NVqmovun>(
size, machInst, vd, vm);
} else {
return decodeNeonSTwoMiscUSReg<NVqmovn>(
size, machInst, vd, vm);
}
case 0x6:
if (b == 0xc) {
return decodeNeonSTwoShiftUSReg<NVshll>(
size, machInst, vd, vm, 8 << size);
} else {
return new Unknown(machInst);
}
case 0x7:
if (q) {
return new SHA256SU0(machInst, vd, vm);
} else {
return new SHA1SU1(machInst, vd, vm);
}
case 0xc:
case 0xe:
if (b == 0x18) {
if (size != 1 || (vm % 2))
return new Unknown(machInst);
return new NVcvts2h<uint16_t>(machInst, vd, vm);
} else if (b == 0x1c) {
if (size != 1 || (vd % 2))
return new Unknown(machInst);
return new NVcvth2s<uint16_t>(machInst, vd, vm);
} else {
return new Unknown(machInst);
}
default:
return new Unknown(machInst);
}
case 0x3:
if (bits(b, 4, 3) == 0x3) {
if ((q && (vd % 2 || vm % 2)) || size != 2) {
return new Unknown(machInst);
} else {
if (bits(b, 2)) {
if (bits(b, 1)) {
if (q) {
return new NVcvt2ufxQ<float>(
machInst, vd, vm, 0);
} else {
return new NVcvt2ufxD<float>(
machInst, vd, vm, 0);
}
} else {
if (q) {
return new NVcvt2sfxQ<float>(
machInst, vd, vm, 0);
} else {
return new NVcvt2sfxD<float>(
machInst, vd, vm, 0);
}
}
} else {
if (bits(b, 1)) {
if (q) {
return new NVcvtu2fpQ<float>(
machInst, vd, vm, 0);
} else {
return new NVcvtu2fpD<float>(
machInst, vd, vm, 0);
}
} else {
if (q) {
return new NVcvts2fpQ<float>(
machInst, vd, vm, 0);
} else {
return new NVcvts2fpD<float>(
machInst, vd, vm, 0);
}
}
}
}
} else if ((b & 0x1a) == 0x10) {
if (bits(b, 2)) {
if (q) {
return new NVrecpeQFp<float>(machInst, vd, vm);
} else {
return new NVrecpeDFp<float>(machInst, vd, vm);
}
} else {
if (q) {
return new NVrecpeQ<uint32_t>(machInst, vd, vm);
} else {
return new NVrecpeD<uint32_t>(machInst, vd, vm);
}
}
} else if ((b & 0x1a) == 0x12) {
if (bits(b, 2)) {
if (q) {
return new NVrsqrteQFp<float>(machInst, vd, vm);
} else {
return new NVrsqrteDFp<float>(machInst, vd, vm);
}
} else {
if (q) {
return new NVrsqrteQ<uint32_t>(machInst, vd, vm);
} else {
return new NVrsqrteD<uint32_t>(machInst, vd, vm);
}
}
} else {
return new Unknown(machInst);
}
}
return new Unknown(machInst);
}
StaticInstPtr
decodeNeonData(ExtMachInst machInst)
{
const bool u = THUMB ? bits(machInst, 28) : bits(machInst, 24);
const uint32_t a = bits(machInst, 23, 19);
const uint32_t q = bits(machInst, 11, 8);
const uint32_t c = bits(machInst, 7, 4);
if (bits(a, 4) == 0) {
return decodeNeonThreeRegistersSameLength(machInst);
} else if ((c & 0x9) == 1) {
if ((a & 0x7) == 0) {
return decodeNeonOneRegModImm(machInst);
} else {
return decodeNeonTwoRegAndShift(machInst);
}
} else if ((c & 0x9) == 9) {
return decodeNeonTwoRegAndShift(machInst);
} else if (bits(a, 2, 1) != 0x3) {
if ((c & 0x5) == 0) {
return decodeNeonThreeRegDiffLengths(machInst);
} else if ((c & 0x5) == 4) {
return decodeNeonTwoRegScalar(machInst);
}
} else if ((a & 0x16) == 0x16) {
const IntRegIndex vd =
(IntRegIndex)(2 * (bits(machInst, 15, 12) |
(bits(machInst, 22) << 4)));
const IntRegIndex vn =
(IntRegIndex)(2 * (bits(machInst, 19, 16) |
(bits(machInst, 7) << 4)));
const IntRegIndex vm =
(IntRegIndex)(2 * (bits(machInst, 3, 0) |
(bits(machInst, 5) << 4)));
if (!u) {
if (bits(c, 0) == 0) {
unsigned imm4 = bits(machInst, 11, 8);
bool q = bits(machInst, 6);
if (imm4 >= 16 && !q)
return new Unknown(machInst);
if (q) {
return new NVextQ<uint8_t>(machInst, vd, vn, vm, imm4);
} else {
return new NVextD<uint8_t>(machInst, vd, vn, vm, imm4);
}
}
} else if (bits(q, 3) == 0 && bits(c, 0) == 0) {
return decodeNeonTwoRegMisc(machInst);
} else if (bits(q, 3, 2) == 0x2 && bits(c, 0) == 0) {
unsigned length = bits(machInst, 9, 8) + 1;
if ((uint32_t)vn / 2 + length > 32)
return new Unknown(machInst);
if (bits(machInst, 6) == 0) {
switch (length) {
case 1:
return new NVtbl1(machInst, vd, vn, vm);
case 2:
return new NVtbl2(machInst, vd, vn, vm);
case 3:
return new NVtbl3(machInst, vd, vn, vm);
case 4:
return new NVtbl4(machInst, vd, vn, vm);
}
} else {
switch (length) {
case 1:
return new NVtbx1(machInst, vd, vn, vm);
case 2:
return new NVtbx2(machInst, vd, vn, vm);
case 3:
return new NVtbx3(machInst, vd, vn, vm);
case 4:
return new NVtbx4(machInst, vd, vn, vm);
}
}
} else if (q == 0xc && (c & 0x9) == 0) {
unsigned imm4 = bits(machInst, 19, 16);
if (bits(imm4, 2, 0) == 0)
return new Unknown(machInst);
unsigned size = 0;
while ((imm4 & 0x1) == 0) {
size++;
imm4 >>= 1;
}
unsigned index = imm4 >> 1;
const bool q = bits(machInst, 6);
return decodeNeonUTwoShiftSReg<NVdupD, NVdupQ>(
q, size, machInst, vd, vm, index);
}
}
return new Unknown(machInst);
}
'''
}};
def format ThumbNeonMem() {{
decode_block = '''
return decodeNeonMem(machInst);
'''
}};
def format ThumbNeonData() {{
decode_block = '''
return decodeNeonData(machInst);
'''
}};
def format Thumb32NeonSIMD() {{
decode_block = '''
return decodeAdvancedSIMD(machInst);
'''
}};
let {{
header_output = '''
bool
wrongVLdmStmRegs(IntRegIndex start_reg, uint8_t count, bool single);
StaticInstPtr
decodeExtensionRegLoadStore(ExtMachInst machInst);
'''
decoder_output = '''
bool
wrongVLdmStmRegs(RegIndex start_reg, uint8_t count, bool single)
{
if (single) {
const auto regs = count;
if (regs == 0 || start_reg + regs > NumFloatV7ArchRegs)
return true;
} else {
const auto regs = count/2;
if (regs == 0 || start_reg + regs > NumFloatV7ArchRegs ||
regs > 16)
return true;
}
return false;
}
StaticInstPtr
decodeExtensionRegLoadStore(ExtMachInst machInst)
{
const uint32_t opcode = bits(machInst, 24, 20);
const uint32_t offset = bits(machInst, 7, 0);
const bool single = (bits(machInst, 8) == 0);
const IntRegIndex rn = (IntRegIndex)(uint32_t)bits(machInst, 19, 16);
RegIndex vd = decodeFpVd(machInst, single ? 0x2 : 0x3, false);
switch (bits(opcode, 4, 3)) {
case 0x0:
if (bits(opcode, 4, 1) == 0x2 &&
!(machInst.thumb == 1 && bits(machInst, 28) == 1) &&
!(machInst.thumb == 0 && machInst.condCode == 0xf)) {
if ((bits(machInst, 7, 4) & 0xd) != 1) {
break;
}
const IntRegIndex rt =
(IntRegIndex)(uint32_t)bits(machInst, 15, 12);
const IntRegIndex rt2 =
(IntRegIndex)(uint32_t)bits(machInst, 19, 16);
const bool op = bits(machInst, 20);
uint32_t vm;
if (single) {
vm = (bits(machInst, 3, 0) << 1) | bits(machInst, 5);
} else {
vm = (bits(machInst, 3, 0) << 1) |
(bits(machInst, 5) << 5);
}
if (op) {
return new Vmov2Core2Reg(machInst, rt, rt2,
(IntRegIndex)vm);
} else {
return new Vmov2Reg2Core(machInst, (IntRegIndex)vm,
rt, rt2);
}
}
break;
case 0x1:
{
if (wrongVLdmStmRegs(vd, offset, single)) {
break;
}
switch (bits(opcode, 1, 0)) {
case 0x0:
return new VLdmStm(machInst, rn, vd, single,
true, false, false, offset);
case 0x1:
return new VLdmStm(machInst, rn, vd, single,
true, false, true, offset);
case 0x2:
return new VLdmStm(machInst, rn, vd, single,
true, true, false, offset);
case 0x3:
// If rn == sp, then this is called vpop.
return new VLdmStm(machInst, rn, vd, single,
true, true, true, offset);
default:
GEM5_UNREACHABLE;
}
}
case 0x2:
if (bits(opcode, 1, 0) == 0x2) {
if (wrongVLdmStmRegs(vd, offset, single)) {
break;
} else {
// If rn == sp, then this is called vpush.
return new VLdmStm(machInst, rn, vd, single,
false, true, false, offset);
}
} else if (bits(opcode, 1, 0) == 0x3) {
if (wrongVLdmStmRegs(vd, offset, single)) {
break;
} else {
return new VLdmStm(machInst, rn, vd, single,
false, true, true, offset);
}
}
[[fallthrough]];
case 0x3:
const bool up = (bits(machInst, 23) == 1);
const uint32_t imm = bits(machInst, 7, 0) << 2;
if (bits(opcode, 1, 0) == 0x0) {
if (single) {
if (up) {
return new %(vstr_us)s(machInst, vd, rn, up, imm);
} else {
return new %(vstr_s)s(machInst, vd, rn, up, imm);
}
} else {
if (up) {
return new %(vstr_ud)s(machInst, vd, vd + 1,
rn, up, imm);
} else {
return new %(vstr_d)s(machInst, vd, vd + 1,
rn, up, imm);
}
}
} else if (bits(opcode, 1, 0) == 0x1) {
if (single) {
if (up) {
return new %(vldr_us)s(machInst, vd, rn, up, imm);
} else {
return new %(vldr_s)s(machInst, vd, rn, up, imm);
}
} else {
if (up) {
return new %(vldr_ud)s(machInst, vd, vd + 1,
rn, up, imm);
} else {
return new %(vldr_d)s(machInst, vd, vd + 1,
rn, up, imm);
}
}
}
}
return new Unknown(machInst);
}
''' % {
"vldr_us" : "VLDR_" + loadImmClassName(False, True, False),
"vldr_s" : "VLDR_" + loadImmClassName(False, False, False),
"vldr_ud" : "VLDR_" + loadDoubleImmClassName(False, True, False),
"vldr_d" : "VLDR_" + loadDoubleImmClassName(False, False, False),
"vstr_us" : "VSTR_" + storeImmClassName(False, True, False),
"vstr_s" : "VSTR_" + storeImmClassName(False, False, False),
"vstr_ud" : "VSTR_" + storeDoubleImmClassName(False, True, False),
"vstr_d" : "VSTR_" + storeDoubleImmClassName(False, False, False)
}
}};
def format ExtensionRegLoadStore() {{
decode_block = '''
return decodeExtensionRegLoadStore(machInst);
'''
}};
let {{
header_output = '''
StaticInstPtr
decodeShortFpTransfer(ExtMachInst machInst);
IntRegIndex decodeFpVd(ExtMachInst machInst, uint32_t size, bool isInt);
IntRegIndex decodeFpVm(ExtMachInst machInst, uint32_t size, bool isInt);
IntRegIndex decodeFpVn(ExtMachInst machInst, uint32_t size);
'''
decoder_output = '''
IntRegIndex decodeFpVd(ExtMachInst machInst, uint32_t size, bool isInt)
{
if (!isInt and size == 3) {
return (IntRegIndex)((bits(machInst, 22) << 5) |
(bits(machInst, 15, 12) << 1));
} else {
return (IntRegIndex)(bits(machInst, 22) |
(bits(machInst, 15, 12) << 1));
}
}
IntRegIndex decodeFpVm(ExtMachInst machInst, uint32_t size, bool isInt)
{
if (!isInt and size == 3) {
return (IntRegIndex)((bits(machInst, 5) << 5) |
(bits(machInst, 3, 0) << 1));
} else {
return (IntRegIndex)(bits(machInst, 5) |
(bits(machInst, 3, 0) << 1));
}
}
IntRegIndex decodeFpVn(ExtMachInst machInst, uint32_t size)
{
if (size == 3) {
return (IntRegIndex)((bits(machInst, 7) << 5) |
(bits(machInst, 19, 16) << 1));
} else {
return (IntRegIndex)(bits(machInst, 7) |
(bits(machInst, 19, 16) << 1));
}
}
StaticInstPtr
decodeFloatingPointDataProcessing(ExtMachInst machInst) {
const uint32_t op0 = bits(machInst, 23, 20);
const uint32_t op1 = bits(machInst, 19, 16);
const uint32_t op2 = bits(machInst, 9, 8);
const uint32_t op3 = bits(machInst, 6);
const uint32_t rm = bits(machInst, 17, 16);
const uint32_t size = bits(machInst, 9, 8);
IntRegIndex vd = decodeFpVd(machInst, size, false);
IntRegIndex vm = decodeFpVm(machInst, size, false);
IntRegIndex vdInt = decodeFpVd(machInst, size, true);
IntRegIndex vn = decodeFpVn(machInst, size);
if (bits(machInst, 31, 24) == 0xFE && !bits(machInst, 4)) {
if (bits(op0, 3) == 0 && op2 != 0 && !op3){
ConditionCode cond;
switch(bits(machInst, 21, 20)) {
case 0x0: cond = COND_EQ; break;
case 0x1: cond = COND_VS; break;
case 0x2: cond = COND_GE; break;
case 0x3: cond = COND_GT; break;
default: panic("unreachable");
}
if (size == 3) {
return new VselD(machInst, vd, vn, vm, cond);
} else {
return new VselS(machInst, vd, vn, vm, cond);
}
} else if (bits(op0, 3) == 1 && bits(op0, 1, 0) == 0 && op2 != 0) {
const bool op = bits(machInst, 6);
if (op) {
if (size == 1) {
return new FailUnimplemented("vminnm.f16", machInst);
}
return decodeNeonSizeSingleDouble<VminnmS, VminnmD>(
size, machInst, vd, vn, vm);
} else {
if (size == 1) {
return new FailUnimplemented("vmaxnm.f16", machInst);
}
return decodeNeonSizeSingleDouble<VmaxnmS, VmaxnmD>(
size, machInst, vd, vn, vm);
}
} else if (bits(op0, 3) && bits(op0, 1, 0) == 3 &&
bits(op1, 3) && op2 != 0 && op3)
{
const uint32_t o1 = bits(machInst, 18);
if (o1 == 0) {
if (size == 3) {
switch(rm) {
case 0x0:
return decodeVfpRegRegOp<VRIntAD>(machInst, vd, vm,
true);
case 0x1:
return decodeVfpRegRegOp<VRIntND>(machInst, vd, vm,
true);
case 0x2:
return decodeVfpRegRegOp<VRIntPD>(machInst, vd, vm,
true);
case 0x3:
return decodeVfpRegRegOp<VRIntMD>(machInst, vd, vm,
true);
default: return new Unknown(machInst);
}
} else {
switch(rm) {
case 0x0:
return decodeVfpRegRegOp<VRIntAS>(machInst, vd, vm,
false);
case 0x1:
return decodeVfpRegRegOp<VRIntNS>(machInst, vd, vm,
false);
case 0x2:
return decodeVfpRegRegOp<VRIntPS>(machInst, vd, vm,
false);
case 0x3:
return decodeVfpRegRegOp<VRIntMS>(machInst, vd, vm,
false);
default: return new Unknown(machInst);
}
}
} else {
const bool op = bits(machInst, 7);
switch(rm) {
case 0x0:
switch(size) {
case 0x0:
return new Unknown(machInst);
case 0x1:
return new FailUnimplemented(
"vcvta.u32.f16", machInst);
case 0x2:
if (op) {
return new VcvtaFpSIntS(machInst, vdInt, vm);
} else {
return new VcvtaFpUIntS(machInst, vdInt, vm);
}
case 0x3:
if (op) {
return new VcvtaFpSIntD(machInst, vdInt, vm);
} else {
return new VcvtaFpUIntD(machInst, vdInt, vm);
}
default: return new Unknown(machInst);
}
case 0x1:
switch(size) {
case 0x0:
return new Unknown(machInst);
case 0x1:
return new FailUnimplemented(
"vcvtn.u32.f16", machInst);
case 0x2:
if (op) {
return new VcvtnFpSIntS(machInst, vdInt, vm);
} else {
return new VcvtnFpUIntS(machInst, vdInt, vm);
}
case 0x3:
if (op) {
return new VcvtnFpSIntD(machInst, vdInt, vm);
} else {
return new VcvtnFpUIntD(machInst, vdInt, vm);
}
default: return new Unknown(machInst);
}
case 0x2:
switch(size) {
case 0x0:
return new Unknown(machInst);
case 0x1:
return new FailUnimplemented(
"vcvtp.u32.f16", machInst);
case 0x2:
if (op) {
return new VcvtpFpSIntS(machInst, vdInt, vm);
} else {
return new VcvtpFpUIntS(machInst, vdInt, vm);
}
case 0x3:
if (op) {
return new VcvtpFpSIntD(machInst, vdInt, vm);
} else {
return new VcvtpFpUIntD(machInst, vdInt, vm);
}
default: return new Unknown(machInst);
}
case 0x3:
switch(size) {
case 0x0:
return new Unknown(machInst);
case 0x1:
return new FailUnimplemented(
"vcvtm.u32.f16", machInst);
case 0x2:
if (op) {
return new VcvtmFpSIntS(machInst, vdInt, vm);
} else {
return new VcvtmFpUIntS(machInst, vdInt, vm);
}
case 0x3:
if (op) {
return new VcvtmFpSIntD(machInst, vdInt, vm);
} else {
return new VcvtmFpUIntD(machInst, vdInt, vm);
}
default: return new Unknown(machInst);
}
default: return new Unknown(machInst);
}
}
} else {
return new Unknown(machInst);
}
} else {
return new Unknown(machInst);
}
}
StaticInstPtr
decodeShortFpTransfer(ExtMachInst machInst)
{
if ((machInst.thumb == 1 && bits(machInst, 28) == 1) ||
(machInst.thumb == 0 && machInst.condCode == 0xf)) {
return decodeFloatingPointDataProcessing(machInst);
}
const uint32_t l = bits(machInst, 20);
const uint32_t c = bits(machInst, 8);
const uint32_t a = bits(machInst, 23, 21);
const uint32_t q = bits(machInst, 6, 5);
if (l == 0 && c == 0) {
if (a == 0) {
const uint32_t vn = (bits(machInst, 19, 16) << 1) |
bits(machInst, 7);
const IntRegIndex rt =
(IntRegIndex)(uint32_t)bits(machInst, 15, 12);
if (bits(machInst, 20) == 1) {
return new VmovRegCoreW(machInst, rt, (IntRegIndex)vn);
} else {
return new VmovCoreRegW(machInst, (IntRegIndex)vn, rt);
}
} else if (a == 0x7) {
const IntRegIndex rt =
(IntRegIndex)(uint32_t)bits(machInst, 15, 12);
uint32_t reg = bits(machInst, 19, 16);
uint32_t specReg;
switch (reg) {
case 0:
specReg = MISCREG_FPSID;
break;
case 1:
specReg = MISCREG_FPSCR;
break;
case 6:
specReg = MISCREG_MVFR1;
break;
case 7:
specReg = MISCREG_MVFR0;
break;
case 8:
specReg = MISCREG_FPEXC;
break;
default:
return new Unknown(machInst);
}
if (specReg == MISCREG_FPSCR) {
return new VmsrFpscr(machInst, (IntRegIndex)specReg, rt);
} else {
uint32_t iss = mcrMrcIssBuild(0, bits(machInst, 3, 0), rt,
reg, a, bits(machInst, 7, 5));
return new Vmsr(machInst, (IntRegIndex)specReg, rt, iss);
}
}
} else if (l == 0 && c == 1) {
if (bits(a, 2) == 0) {
uint32_t vd = (bits(machInst, 7) << 5) |
(bits(machInst, 19, 16) << 1);
// Handle accessing each single precision half of the vector.
vd += bits(machInst, 21);
const IntRegIndex rt =
(IntRegIndex)(uint32_t)bits(machInst, 15, 12);
if (bits(machInst, 22) == 1) {
return new VmovCoreRegB(machInst, (IntRegIndex)vd,
rt, bits(machInst, 6, 5));
} else if (bits(machInst, 5) == 1) {
return new VmovCoreRegH(machInst, (IntRegIndex)vd,
rt, bits(machInst, 6));
} else if (bits(machInst, 6) == 0) {
return new VmovCoreRegW(machInst, (IntRegIndex)vd, rt);
} else {
return new Unknown(machInst);
}
} else if (bits(q, 1) == 0) {
bool q = bits(machInst, 21);
unsigned be = (bits(machInst, 22) << 1) | (bits(machInst, 5));
IntRegIndex vd = (IntRegIndex)(2 * (uint32_t)
(bits(machInst, 19, 16) | (bits(machInst, 7) << 4)));
IntRegIndex rt = (IntRegIndex)(uint32_t)
bits(machInst, 15, 12);
if (q) {
switch (be) {
case 0:
return new NVdupQGpr<uint32_t>(machInst, vd, rt);
case 1:
return new NVdupQGpr<uint16_t>(machInst, vd, rt);
case 2:
return new NVdupQGpr<uint8_t>(machInst, vd, rt);
case 3:
return new Unknown(machInst);
}
} else {
switch (be) {
case 0:
return new NVdupDGpr<uint32_t>(machInst, vd, rt);
case 1:
return new NVdupDGpr<uint16_t>(machInst, vd, rt);
case 2:
return new NVdupDGpr<uint8_t>(machInst, vd, rt);
case 3:
return new Unknown(machInst);
}
}
}
} else if (l == 1 && c == 0) {
if (a == 0) {
const uint32_t vn = (bits(machInst, 19, 16) << 1) |
bits(machInst, 7);
const IntRegIndex rt =
(IntRegIndex)(uint32_t)bits(machInst, 15, 12);
if (bits(machInst, 20) == 1) {
return new VmovRegCoreW(machInst, rt, (IntRegIndex)vn);
} else {
return new VmovCoreRegW(machInst, (IntRegIndex)vn, rt);
}
} else if (a == 7) {
const IntRegIndex rt =
(IntRegIndex)(uint32_t)bits(machInst, 15, 12);
uint32_t reg = bits(machInst, 19, 16);
uint32_t specReg;
switch (reg) {
case 0:
specReg = MISCREG_FPSID;
break;
case 1:
specReg = MISCREG_FPSCR;
break;
case 6:
specReg = MISCREG_MVFR1;
break;
case 7:
specReg = MISCREG_MVFR0;
break;
case 8:
specReg = MISCREG_FPEXC;
break;
default:
return new Unknown(machInst);
}
if (rt == 0xf) {
if (specReg == MISCREG_FPSCR) {
return new VmrsApsrFpscr(machInst);
} else {
return new Unknown(machInst);
}
} else if (specReg == MISCREG_FPSCR) {
return new VmrsFpscr(machInst, rt, (IntRegIndex)specReg);
} else {
uint32_t iss = mcrMrcIssBuild(l, bits(machInst, 3, 0), rt,
reg, a, bits(machInst, 7, 5));
return new Vmrs(machInst, rt, (IntRegIndex)specReg, iss);
}
}
} else {
uint32_t vd = (bits(machInst, 7) << 5) |
(bits(machInst, 19, 16) << 1);
// Handle indexing into each single precision half of the vector.
vd += bits(machInst, 21);
uint32_t index;
const IntRegIndex rt =
(IntRegIndex)(uint32_t)bits(machInst, 15, 12);
const bool u = (bits(machInst, 23) == 1);
if (bits(machInst, 22) == 1) {
index = bits(machInst, 6, 5);
if (u) {
return new VmovRegCoreUB(machInst, rt,
(IntRegIndex)vd, index);
} else {
return new VmovRegCoreSB(machInst, rt,
(IntRegIndex)vd, index);
}
} else if (bits(machInst, 5) == 1) {
index = bits(machInst, 6);
if (u) {
return new VmovRegCoreUH(machInst, rt,
(IntRegIndex)vd, index);
} else {
return new VmovRegCoreSH(machInst, rt,
(IntRegIndex)vd, index);
}
} else if (bits(machInst, 6) == 0 && !u) {
return new VmovRegCoreW(machInst, rt, (IntRegIndex)vd);
} else {
return new Unknown(machInst);
}
}
return new Unknown(machInst);
}
'''
}};
def format ShortFpTransfer() {{
decode_block = '''
return decodeShortFpTransfer(machInst);
'''
}};
let {{
header_output = '''
StaticInstPtr
decodeVfpData(ExtMachInst machInst);
'''
decoder_output = '''
StaticInstPtr
decodeVfpData(ExtMachInst machInst)
{
const uint32_t opc1 = bits(machInst, 23, 20);
const uint32_t opc2 = bits(machInst, 19, 16);
const uint32_t opc3 = bits(machInst, 7, 6);
//const uint32_t opc4 = bits(machInst, 3, 0);
const bool single = (bits(machInst, 8) == 0);
// Used to select between vcmp and vcmpe.
const bool e = (bits(machInst, 7) == 1);
IntRegIndex vd;
IntRegIndex vm;
IntRegIndex vn;
if (single) {
vd = (IntRegIndex)(bits(machInst, 22) |
(bits(machInst, 15, 12) << 1));
vm = (IntRegIndex)(bits(machInst, 5) |
(bits(machInst, 3, 0) << 1));
vn = (IntRegIndex)(bits(machInst, 7) |
(bits(machInst, 19, 16) << 1));
} else {
vd = (IntRegIndex)((bits(machInst, 22) << 5) |
(bits(machInst, 15, 12) << 1));
vm = (IntRegIndex)((bits(machInst, 5) << 5) |
(bits(machInst, 3, 0) << 1));
vn = (IntRegIndex)((bits(machInst, 7) << 5) |
(bits(machInst, 19, 16) << 1));
}
switch (opc1 & 0xb /* 1011 */) {
case 0x0:
if (bits(machInst, 6) == 0) {
if (single) {
return decodeVfpRegRegRegOp<VmlaS>(
machInst, vd, vn, vm, false);
} else {
return decodeVfpRegRegRegOp<VmlaD>(
machInst, vd, vn, vm, true);
}
} else {
if (single) {
return decodeVfpRegRegRegOp<VmlsS>(
machInst, vd, vn, vm, false);
} else {
return decodeVfpRegRegRegOp<VmlsD>(
machInst, vd, vn, vm, true);
}
}
case 0x1:
if (bits(machInst, 6) == 1) {
if (single) {
return decodeVfpRegRegRegOp<VnmlaS>(
machInst, vd, vn, vm, false);
} else {
return decodeVfpRegRegRegOp<VnmlaD>(
machInst, vd, vn, vm, true);
}
} else {
if (single) {
return decodeVfpRegRegRegOp<VnmlsS>(
machInst, vd, vn, vm, false);
} else {
return decodeVfpRegRegRegOp<VnmlsD>(
machInst, vd, vn, vm, true);
}
}
case 0x2:
if ((opc3 & 0x1) == 0) {
if (single) {
return decodeVfpRegRegRegOp<VmulS>(
machInst, vd, vn, vm, false);
} else {
return decodeVfpRegRegRegOp<VmulD>(
machInst, vd, vn, vm, true);
}
} else {
if (single) {
return decodeVfpRegRegRegOp<VnmulS>(
machInst, vd, vn, vm, false);
} else {
return decodeVfpRegRegRegOp<VnmulD>(
machInst, vd, vn, vm, true);
}
}
case 0x3:
if ((opc3 & 0x1) == 0) {
if (single) {
return decodeVfpRegRegRegOp<VaddS>(
machInst, vd, vn, vm, false);
} else {
return decodeVfpRegRegRegOp<VaddD>(
machInst, vd, vn, vm, true);
}
} else {
if (single) {
return decodeVfpRegRegRegOp<VsubS>(
machInst, vd, vn, vm, false);
} else {
return decodeVfpRegRegRegOp<VsubD>(
machInst, vd, vn, vm, true);
}
}
case 0x8:
if (machInst.condCode == 0xF) {
const bool op = bits(machInst, 6);
const uint32_t size = bits(machInst, 9, 8);
if (op) {
if (size == 1) {
return new FailUnimplemented("vminnm.f16", machInst);
}
return decodeNeonSizeSingleDouble<VminnmS, VminnmD>(
size, machInst, vd, vn, vm);
} else {
if (size == 1) {
return new FailUnimplemented("vmaxnm.f16", machInst);
}
return decodeNeonSizeSingleDouble<VmaxnmS, VmaxnmD>(
size, machInst, vd, vn, vm);
}
}
if ((opc3 & 0x1) == 0) {
if (single) {
return decodeVfpRegRegRegOp<VdivS>(
machInst, vd, vn, vm, false);
} else {
return decodeVfpRegRegRegOp<VdivD>(
machInst, vd, vn, vm, true);
}
}
break;
case 0x9:
if ((opc3 & 0x1) == 0) {
if (single) {
return decodeVfpRegRegRegOp<VfnmaS>(
machInst, vd, vn, vm, false);
} else {
return decodeVfpRegRegRegOp<VfnmaD>(
machInst, vd, vn, vm, true);
}
} else {
if (single) {
return decodeVfpRegRegRegOp<VfnmsS>(
machInst, vd, vn, vm, false);
} else {
return decodeVfpRegRegRegOp<VfnmsD>(
machInst, vd, vn, vm, true);
}
}
break;
case 0xa:
if ((opc3 & 0x1) == 0) {
if (single) {
return decodeVfpRegRegRegOp<VfmaS>(
machInst, vd, vn, vm, false);
} else {
return decodeVfpRegRegRegOp<VfmaD>(
machInst, vd, vn, vm, true);
}
} else {
if (single) {
return decodeVfpRegRegRegOp<VfmsS>(
machInst, vd, vn, vm, false);
} else {
return decodeVfpRegRegRegOp<VfmsD>(
machInst, vd, vn, vm, true);
}
}
break;
case 0xb:
if ((opc3 & 0x1) == 0) {
const uint32_t baseImm =
bits(machInst, 3, 0) | (bits(machInst, 19, 16) << 4);
if (single) {
uint32_t imm = vfp_modified_imm(baseImm, FpDataType::Fp32);
return decodeVfpRegImmOp<VmovImmS>(
machInst, vd, imm, false);
} else {
uint64_t imm = vfp_modified_imm(baseImm, FpDataType::Fp64);
return decodeVfpRegImmOp<VmovImmD>(
machInst, vd, imm, true);
}
}
switch (opc2) {
case 0x0:
if (opc3 == 1) {
if (single) {
return decodeVfpRegRegOp<VmovRegS>(
machInst, vd, vm, false);
} else {
return decodeVfpRegRegOp<VmovRegD>(
machInst, vd, vm, true);
}
} else {
if (single) {
return decodeVfpRegRegOp<VabsS>(
machInst, vd, vm, false);
} else {
return decodeVfpRegRegOp<VabsD>(
machInst, vd, vm, true);
}
}
case 0x1:
if (opc3 == 1) {
if (single) {
return decodeVfpRegRegOp<VnegS>(
machInst, vd, vm, false);
} else {
return decodeVfpRegRegOp<VnegD>(
machInst, vd, vm, true);
}
} else {
if (single) {
return decodeVfpRegRegOp<VsqrtS>(
machInst, vd, vm, false);
} else {
return decodeVfpRegRegOp<VsqrtD>(
machInst, vd, vm, true);
}
}
case 0x2:
case 0x3:
{
const bool toHalf = bits(machInst, 16);
const bool top = bits(machInst, 7);
if (top) {
if (toHalf) {
return new VcvtFpSFpHT(machInst, vd, vm);
} else {
return new VcvtFpHTFpS(machInst, vd, vm);
}
} else {
if (toHalf) {
return new VcvtFpSFpHB(machInst, vd, vm);
} else {
return new VcvtFpHBFpS(machInst, vd, vm);
}
}
}
case 0x4:
if (single) {
if (e) {
return new VcmpeS(machInst, vd, vm);
} else {
return new VcmpS(machInst, vd, vm);
}
} else {
if (e) {
return new VcmpeD(machInst, vd, vm);
} else {
return new VcmpD(machInst, vd, vm);
}
}
case 0x5:
if (single) {
if (e) {
return new VcmpeZeroS(machInst, vd, 0);
} else {
return new VcmpZeroS(machInst, vd, 0);
}
} else {
if (e) {
return new VcmpeZeroD(machInst, vd, 0);
} else {
return new VcmpZeroD(machInst, vd, 0);
}
}
case 0x7:
if (opc3 == 0x3) {
if (single) {
vd = (IntRegIndex)((bits(machInst, 22) << 5) |
(bits(machInst, 15, 12) << 1));
return new VcvtFpSFpD(machInst, vd, vm);
} else {
vd = (IntRegIndex)(bits(machInst, 22) |
(bits(machInst, 15, 12) << 1));
return new VcvtFpDFpS(machInst, vd, vm);
}
}
break;
case 0x8:
if (bits(machInst, 7) == 0) {
if (single) {
return new VcvtUIntFpS(machInst, vd, vm);
} else {
vm = (IntRegIndex)(bits(machInst, 5) |
(bits(machInst, 3, 0) << 1));
return new VcvtUIntFpD(machInst, vd, vm);
}
} else {
if (single) {
return new VcvtSIntFpS(machInst, vd, vm);
} else {
vm = (IntRegIndex)(bits(machInst, 5) |
(bits(machInst, 3, 0) << 1));
return new VcvtSIntFpD(machInst, vd, vm);
}
}
case 0x9:
if (bits(machInst, 31, 28) != 0xF
&& bits(machInst, 27, 23) == 0x1D) {
vd = (IntRegIndex)(bits(machInst, 22) |
(bits(machInst, 15, 12) << 1));
return new VjcvtSFixedFpD(machInst, vd, vm);
}
break;
case 0xa:
{
const bool half = (bits(machInst, 7) == 0);
const uint32_t imm = bits(machInst, 5) |
(bits(machInst, 3, 0) << 1);
const uint32_t size =
(bits(machInst, 7) == 0 ? 16 : 32) - imm;
if (single) {
if (half) {
return new VcvtSHFixedFpS(machInst, vd, vd, size);
} else {
return new VcvtSFixedFpS(machInst, vd, vd, size);
}
} else {
if (half) {
return new VcvtSHFixedFpD(machInst, vd, vd, size);
} else {
return new VcvtSFixedFpD(machInst, vd, vd, size);
}
}
}
case 0xb:
{
const bool half = (bits(machInst, 7) == 0);
const uint32_t imm = bits(machInst, 5) |
(bits(machInst, 3, 0) << 1);
const uint32_t size =
(bits(machInst, 7) == 0 ? 16 : 32) - imm;
if (single) {
if (half) {
return new VcvtUHFixedFpS(machInst, vd, vd, size);
} else {
return new VcvtUFixedFpS(machInst, vd, vd, size);
}
} else {
if (half) {
return new VcvtUHFixedFpD(machInst, vd, vd, size);
} else {
return new VcvtUFixedFpD(machInst, vd, vd, size);
}
}
}
case 0xc:
if (bits(machInst, 7) == 0) {
if (single) {
return new VcvtFpUIntSR(machInst, vd, vm);
} else {
vd = (IntRegIndex)(bits(machInst, 22) |
(bits(machInst, 15, 12) << 1));
return new VcvtFpUIntDR(machInst, vd, vm);
}
} else {
if (single) {
return new VcvtFpUIntS(machInst, vd, vm);
} else {
vd = (IntRegIndex)(bits(machInst, 22) |
(bits(machInst, 15, 12) << 1));
return new VcvtFpUIntD(machInst, vd, vm);
}
}
case 0xd:
if (bits(machInst, 7) == 0) {
if (single) {
return new VcvtFpSIntSR(machInst, vd, vm);
} else {
vd = (IntRegIndex)(bits(machInst, 22) |
(bits(machInst, 15, 12) << 1));
return new VcvtFpSIntDR(machInst, vd, vm);
}
} else {
if (single) {
return new VcvtFpSIntS(machInst, vd, vm);
} else {
vd = (IntRegIndex)(bits(machInst, 22) |
(bits(machInst, 15, 12) << 1));
return new VcvtFpSIntD(machInst, vd, vm);
}
}
case 0xe:
{
const bool half = (bits(machInst, 7) == 0);
const uint32_t imm = bits(machInst, 5) |
(bits(machInst, 3, 0) << 1);
const uint32_t size =
(bits(machInst, 7) == 0 ? 16 : 32) - imm;
if (single) {
if (half) {
return new VcvtFpSHFixedS(machInst, vd, vd, size);
} else {
return new VcvtFpSFixedS(machInst, vd, vd, size);
}
} else {
if (half) {
return new VcvtFpSHFixedD(machInst, vd, vd, size);
} else {
return new VcvtFpSFixedD(machInst, vd, vd, size);
}
}
}
case 0xf:
{
const bool half = (bits(machInst, 7) == 0);
const uint32_t imm = bits(machInst, 5) |
(bits(machInst, 3, 0) << 1);
const uint32_t size =
(bits(machInst, 7) == 0 ? 16 : 32) - imm;
if (single) {
if (half) {
return new VcvtFpUHFixedS(machInst, vd, vd, size);
} else {
return new VcvtFpUFixedS(machInst, vd, vd, size);
}
} else {
if (half) {
return new VcvtFpUHFixedD(machInst, vd, vd, size);
} else {
return new VcvtFpUFixedD(machInst, vd, vd, size);
}
}
}
}
break;
}
return new Unknown(machInst);
}
'''
}};
def format VfpData() {{
decode_block = '''
return decodeVfpData(machInst);
'''
}};