| /* |
| * Copyright (c) 2003 The Regents of The University of Michigan |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are |
| * met: redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer; |
| * redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution; |
| * neither the name of the copyright holders nor the names of its |
| * contributors may be used to endorse or promote products derived from |
| * this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #ifndef __EXEC_CONTEXT_HH__ |
| #define __EXEC_CONTEXT_HH__ |
| |
| #include "sim/host.hh" |
| #include "targetarch/mem_req.hh" |
| |
| // forward declaration: see functional_memory.hh |
| class FunctionalMemory; |
| class PhysicalMemory; |
| class BaseCPU; |
| |
| #ifdef FULL_SYSTEM |
| |
| #include "targetarch/alpha_memory.hh" |
| class MemoryController; |
| |
| #include "kern/tru64/kernel_stats.hh" |
| #include "sim/system.hh" |
| |
| #else // !FULL_SYSTEM |
| |
| #include "sim/prog.hh" |
| |
| #endif // FULL_SYSTEM |
| |
| // |
| // The ExecContext object represents a functional context for |
| // instruction execution. It incorporates everything required for |
| // architecture-level functional simulation of a single thread. |
| // |
| |
| class ExecContext |
| { |
| public: |
| enum Status { Unallocated, Active, Suspended, Halted }; |
| |
| private: |
| Status _status; |
| |
| public: |
| Status status() const { return _status; } |
| |
| // Unlike setStatus(), initStatus() has no side effects other than |
| // setting the _status variable. |
| void initStatus(Status init_status) { _status = init_status; } |
| |
| void setStatus(Status new_status); |
| |
| #ifdef FULL_SYSTEM |
| public: |
| KernelStats kernelStats; |
| #endif |
| |
| public: |
| RegFile regs; // correct-path register context |
| |
| // pointer to CPU associated with this context |
| BaseCPU *cpu; |
| |
| // Index of hardware thread context on the CPU that this represents. |
| int thread_num; |
| |
| // ID of this context w.r.t. the System or Process object to which |
| // it belongs. For full-system mode, this is the system CPU ID. |
| int cpu_id; |
| |
| #ifdef FULL_SYSTEM |
| |
| FunctionalMemory *mem; |
| AlphaItb *itb; |
| AlphaDtb *dtb; |
| System *system; |
| |
| // the following two fields are redundant, since we can always |
| // look them up through the system pointer, but we'll leave them |
| // here for now for convenience |
| MemoryController *memCtrl; |
| PhysicalMemory *physmem; |
| |
| #else |
| Process *process; |
| |
| FunctionalMemory *mem; // functional storage for process address space |
| |
| // Address space ID. Note that this is used for TIMING cache |
| // simulation only; all functional memory accesses should use |
| // one of the FunctionalMemory pointers above. |
| short asid; |
| |
| #endif |
| |
| |
| /* |
| * number of executed instructions, for matching with syscall trace |
| * points in EIO files. |
| */ |
| Counter func_exe_insn; |
| |
| // |
| // Count failed store conditionals so we can warn of apparent |
| // application deadlock situations. |
| unsigned storeCondFailures; |
| |
| // constructor: initialize context from given process structure |
| #ifdef FULL_SYSTEM |
| ExecContext(BaseCPU *_cpu, int _thread_num, System *_system, |
| AlphaItb *_itb, AlphaDtb *_dtb, FunctionalMemory *_dem); |
| #else |
| ExecContext(BaseCPU *_cpu, int _thread_num, Process *_process, int _asid); |
| ExecContext(BaseCPU *_cpu, int _thread_num, FunctionalMemory *_mem, |
| int _asid); |
| #endif |
| virtual ~ExecContext() {} |
| |
| virtual void takeOverFrom(ExecContext *oldContext); |
| |
| void regStats(const std::string &name); |
| |
| #ifdef FULL_SYSTEM |
| bool validInstAddr(Addr addr) { return true; } |
| bool validDataAddr(Addr addr) { return true; } |
| int getInstAsid() { return ITB_ASN_ASN(regs.ipr[TheISA::IPR_ITB_ASN]); } |
| int getDataAsid() { return DTB_ASN_ASN(regs.ipr[TheISA::IPR_DTB_ASN]); } |
| |
| Fault translateInstReq(MemReqPtr req) |
| { |
| return itb->translate(req); |
| } |
| |
| Fault translateDataReadReq(MemReqPtr req) |
| { |
| return dtb->translate(req, false); |
| } |
| |
| Fault translateDataWriteReq(MemReqPtr req) |
| { |
| return dtb->translate(req, true); |
| } |
| |
| #else |
| bool validInstAddr(Addr addr) |
| { return process->validInstAddr(addr); } |
| |
| bool validDataAddr(Addr addr) |
| { return process->validDataAddr(addr); } |
| |
| int getInstAsid() { return asid; } |
| int getDataAsid() { return asid; } |
| |
| Fault dummyTranslation(MemReqPtr req) |
| { |
| #if 0 |
| assert((req->vaddr >> 48 & 0xffff) == 0); |
| #endif |
| |
| // put the asid in the upper 16 bits of the paddr |
| req->paddr = req->vaddr & ~((Addr)0xffff << sizeof(Addr) * 8 - 16); |
| req->paddr = req->paddr | (Addr)req->asid << sizeof(Addr) * 8 - 16; |
| return No_Fault; |
| } |
| Fault translateInstReq(MemReqPtr req) |
| { |
| return dummyTranslation(req); |
| } |
| Fault translateDataReadReq(MemReqPtr req) |
| { |
| return dummyTranslation(req); |
| } |
| Fault translateDataWriteReq(MemReqPtr req) |
| { |
| return dummyTranslation(req); |
| } |
| |
| #endif |
| |
| template <class T> |
| Fault read(MemReqPtr req, T& data) |
| { |
| #if defined(TARGET_ALPHA) && defined(FULL_SYSTEM) |
| if (req->flags & LOCKED) { |
| MiscRegFile *cregs = &req->xc->regs.miscRegs; |
| cregs->lock_addr = req->paddr; |
| cregs->lock_flag = true; |
| } |
| #endif |
| return mem->read(req, data); |
| } |
| |
| template <class T> |
| Fault write(MemReqPtr req, T& data) |
| { |
| #if defined(TARGET_ALPHA) && defined(FULL_SYSTEM) |
| |
| MiscRegFile *cregs; |
| |
| // If this is a store conditional, act appropriately |
| if (req->flags & LOCKED) { |
| cregs = &req->xc->regs.miscRegs; |
| |
| if (req->flags & UNCACHEABLE) { |
| // Don't update result register (see stq_c in isa_desc) |
| req->result = 2; |
| req->xc->storeCondFailures = 0;//Needed? [RGD] |
| } else { |
| req->result = cregs->lock_flag; |
| if (!cregs->lock_flag || |
| ((cregs->lock_addr & ~0xf) != (req->paddr & ~0xf))) { |
| cregs->lock_flag = false; |
| if (((++req->xc->storeCondFailures) % 100000) == 0) { |
| std::cerr << "Warning: " |
| << req->xc->storeCondFailures |
| << " consecutive store conditional failures " |
| << "on cpu " << req->xc->cpu_id |
| << std::endl; |
| } |
| return No_Fault; |
| } |
| else req->xc->storeCondFailures = 0; |
| } |
| } |
| |
| // Need to clear any locked flags on other proccessors for |
| // this address. Only do this for succsful Store Conditionals |
| // and all other stores (WH64?). Unsuccessful Store |
| // Conditionals would have returned above, and wouldn't fall |
| // through. |
| for (int i = 0; i < system->execContexts.size(); i++){ |
| cregs = &system->execContexts[i]->regs.miscRegs; |
| if ((cregs->lock_addr & ~0xf) == (req->paddr & ~0xf)) { |
| cregs->lock_flag = false; |
| } |
| } |
| |
| #endif |
| return mem->write(req, data); |
| } |
| |
| virtual bool misspeculating(); |
| |
| |
| // |
| // New accessors for new decoder. |
| // |
| uint64_t readIntReg(int reg_idx) |
| { |
| return regs.intRegFile[reg_idx]; |
| } |
| |
| float readFloatRegSingle(int reg_idx) |
| { |
| return (float)regs.floatRegFile.d[reg_idx]; |
| } |
| |
| double readFloatRegDouble(int reg_idx) |
| { |
| return regs.floatRegFile.d[reg_idx]; |
| } |
| |
| uint64_t readFloatRegInt(int reg_idx) |
| { |
| return regs.floatRegFile.q[reg_idx]; |
| } |
| |
| void setIntReg(int reg_idx, uint64_t val) |
| { |
| regs.intRegFile[reg_idx] = val; |
| } |
| |
| void setFloatRegSingle(int reg_idx, float val) |
| { |
| regs.floatRegFile.d[reg_idx] = (double)val; |
| } |
| |
| void setFloatRegDouble(int reg_idx, double val) |
| { |
| regs.floatRegFile.d[reg_idx] = val; |
| } |
| |
| void setFloatRegInt(int reg_idx, uint64_t val) |
| { |
| regs.floatRegFile.q[reg_idx] = val; |
| } |
| |
| uint64_t readPC() |
| { |
| return regs.pc; |
| } |
| |
| void setNextPC(uint64_t val) |
| { |
| regs.npc = val; |
| } |
| |
| uint64_t readUniq() |
| { |
| return regs.miscRegs.uniq; |
| } |
| |
| void setUniq(uint64_t val) |
| { |
| regs.miscRegs.uniq = val; |
| } |
| |
| uint64_t readFpcr() |
| { |
| return regs.miscRegs.fpcr; |
| } |
| |
| void setFpcr(uint64_t val) |
| { |
| regs.miscRegs.fpcr = val; |
| } |
| |
| #ifdef FULL_SYSTEM |
| uint64_t readIpr(int idx, Fault &fault); |
| Fault setIpr(int idx, uint64_t val); |
| Fault hwrei(); |
| void ev5_trap(Fault fault); |
| bool simPalCheck(int palFunc); |
| #endif |
| |
| #ifndef FULL_SYSTEM |
| void syscall() |
| { |
| process->syscall(this); |
| } |
| #endif |
| }; |
| |
| |
| // for non-speculative execution context, spec_mode is always false |
| inline bool |
| ExecContext::misspeculating() |
| { |
| return false; |
| } |
| |
| #endif // __EXEC_CONTEXT_HH__ |