blob: 7f12fda4c281509557167a8db4157a92a17f302c [file] [log] [blame]
/*
* Copyright (c) 2008 Mark D. Hill and David A. Wood
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <memory>
#include "debug/Config.hh"
#include "debug/Drain.hh"
#include "debug/RubyDma.hh"
#include "debug/RubyStats.hh"
#include "mem/protocol/SequencerMsg.hh"
#include "mem/ruby/system/DMASequencer.hh"
#include "mem/ruby/system/System.hh"
#include "sim/system.hh"
DMASequencer::DMASequencer(const Params *p)
: MemObject(p), m_ruby_system(p->ruby_system), m_version(p->version),
m_controller(NULL), m_mandatory_q_ptr(NULL),
m_usingRubyTester(p->using_ruby_tester),
slave_port(csprintf("%s.slave", name()), this, 0, p->ruby_system,
p->ruby_system->getAccessBackingStore()),
system(p->system), retry(false)
{
assert(m_version != -1);
}
void
DMASequencer::init()
{
MemObject::init();
assert(m_controller != NULL);
m_mandatory_q_ptr = m_controller->getMandatoryQueue();
m_mandatory_q_ptr->setSender(this);
m_is_busy = false;
m_data_block_mask = ~ (~0 << RubySystem::getBlockSizeBits());
slave_port.sendRangeChange();
}
BaseSlavePort &
DMASequencer::getSlavePort(const std::string &if_name, PortID idx)
{
// used by the CPUs to connect the caches to the interconnect, and
// for the x86 case also the interrupt master
if (if_name != "slave") {
// pass it along to our super class
return MemObject::getSlavePort(if_name, idx);
} else {
return slave_port;
}
}
DMASequencer::MemSlavePort::MemSlavePort(const std::string &_name,
DMASequencer *_port, PortID id, RubySystem* _ruby_system,
bool _access_backing_store)
: QueuedSlavePort(_name, _port, queue, id), queue(*_port, *this),
m_ruby_system(_ruby_system), access_backing_store(_access_backing_store)
{
DPRINTF(RubyDma, "Created slave memport on ruby sequencer %s\n", _name);
}
bool
DMASequencer::MemSlavePort::recvTimingReq(PacketPtr pkt)
{
DPRINTF(RubyDma, "Timing request for address %#x on port %d\n",
pkt->getAddr(), id);
DMASequencer *seq = static_cast<DMASequencer *>(&owner);
if (pkt->memInhibitAsserted())
panic("DMASequencer should never see an inhibited request\n");
assert(isPhysMemAddress(pkt->getAddr()));
assert(Address(pkt->getAddr()).getOffset() + pkt->getSize() <=
RubySystem::getBlockSizeBytes());
// Submit the ruby request
RequestStatus requestStatus = seq->makeRequest(pkt);
// If the request successfully issued then we should return true.
// Otherwise, we need to tell the port to retry at a later point
// and return false.
if (requestStatus == RequestStatus_Issued) {
DPRINTF(RubyDma, "Request %s 0x%x issued\n", pkt->cmdString(),
pkt->getAddr());
return true;
}
// Unless one is using the ruby tester, record the stalled M5 port for
// later retry when the sequencer becomes free.
if (!seq->m_usingRubyTester) {
seq->retry = true;
}
DPRINTF(RubyDma, "Request for address %#x did not issued because %s\n",
pkt->getAddr(), RequestStatus_to_string(requestStatus));
return false;
}
void
DMASequencer::ruby_hit_callback(PacketPtr pkt)
{
DPRINTF(RubyDma, "Hit callback for %s 0x%x\n", pkt->cmdString(),
pkt->getAddr());
// The packet was destined for memory and has not yet been turned
// into a response
assert(system->isMemAddr(pkt->getAddr()));
assert(pkt->isRequest());
slave_port.hitCallback(pkt);
// If we had to stall the slave ports, wake it up because
// the sequencer likely has free resources now.
if (retry) {
retry = false;
DPRINTF(RubyDma,"Sequencer may now be free. SendRetry to port %s\n",
slave_port.name());
slave_port.sendRetryReq();
}
testDrainComplete();
}
void
DMASequencer::testDrainComplete()
{
//If we weren't able to drain before, we might be able to now.
if (drainState() == DrainState::Draining) {
unsigned int drainCount = outstandingCount();
DPRINTF(Drain, "Drain count: %u\n", drainCount);
if (drainCount == 0) {
DPRINTF(Drain, "DMASequencer done draining, signaling drain done\n");
signalDrainDone();
}
}
}
DrainState
DMASequencer::drain()
{
if (isDeadlockEventScheduled()) {
descheduleDeadlockEvent();
}
// If the DMASequencer is not empty, then it needs to clear all outstanding
// requests before it should call signalDrainDone()
DPRINTF(Config, "outstanding count %d\n", outstandingCount());
// Set status
if (outstandingCount() > 0) {
DPRINTF(Drain, "DMASequencer not drained\n");
return DrainState::Draining;
} else {
return DrainState::Drained;
}
}
void
DMASequencer::MemSlavePort::hitCallback(PacketPtr pkt)
{
bool needsResponse = pkt->needsResponse();
assert(!pkt->isLLSC());
assert(!pkt->isFlush());
DPRINTF(RubyDma, "Hit callback needs response %d\n", needsResponse);
// turn packet around to go back to requester if response expected
if (access_backing_store) {
m_ruby_system->getPhysMem()->access(pkt);
} else if (needsResponse) {
pkt->makeResponse();
}
if (needsResponse) {
DPRINTF(RubyDma, "Sending packet back over port\n");
// send next cycle
DMASequencer *seq = static_cast<DMASequencer *>(&owner);
RubySystem *rs = seq->m_ruby_system;
schedTimingResp(pkt, curTick() + rs->clockPeriod());
} else {
delete pkt;
}
DPRINTF(RubyDma, "Hit callback done!\n");
}
bool
DMASequencer::MemSlavePort::isPhysMemAddress(Addr addr) const
{
DMASequencer *seq = static_cast<DMASequencer *>(&owner);
return seq->system->isMemAddr(addr);
}
RequestStatus
DMASequencer::makeRequest(PacketPtr pkt)
{
if (m_is_busy) {
return RequestStatus_BufferFull;
}
uint64_t paddr = pkt->getAddr();
uint8_t* data = pkt->getPtr<uint8_t>();
int len = pkt->getSize();
bool write = pkt->isWrite();
assert(!m_is_busy); // only support one outstanding DMA request
m_is_busy = true;
active_request.start_paddr = paddr;
active_request.write = write;
active_request.data = data;
active_request.len = len;
active_request.bytes_completed = 0;
active_request.bytes_issued = 0;
active_request.pkt = pkt;
std::shared_ptr<SequencerMsg> msg =
std::make_shared<SequencerMsg>(clockEdge());
msg->getPhysicalAddress() = Address(paddr);
msg->getLineAddress() = line_address(msg->getPhysicalAddress());
msg->getType() = write ? SequencerRequestType_ST : SequencerRequestType_LD;
int offset = paddr & m_data_block_mask;
msg->getLen() = (offset + len) <= RubySystem::getBlockSizeBytes() ?
len : RubySystem::getBlockSizeBytes() - offset;
if (write && (data != NULL)) {
if (active_request.data != NULL) {
msg->getDataBlk().setData(data, offset, msg->getLen());
}
}
assert(m_mandatory_q_ptr != NULL);
m_mandatory_q_ptr->enqueue(msg);
active_request.bytes_issued += msg->getLen();
return RequestStatus_Issued;
}
void
DMASequencer::issueNext()
{
assert(m_is_busy);
active_request.bytes_completed = active_request.bytes_issued;
if (active_request.len == active_request.bytes_completed) {
//
// Must unset the busy flag before calling back the dma port because
// the callback may cause a previously nacked request to be reissued
//
DPRINTF(RubyDma, "DMA request completed\n");
m_is_busy = false;
ruby_hit_callback(active_request.pkt);
return;
}
std::shared_ptr<SequencerMsg> msg =
std::make_shared<SequencerMsg>(clockEdge());
msg->getPhysicalAddress() = Address(active_request.start_paddr +
active_request.bytes_completed);
assert((msg->getPhysicalAddress().getAddress() & m_data_block_mask) == 0);
msg->getLineAddress() = line_address(msg->getPhysicalAddress());
msg->getType() = (active_request.write ? SequencerRequestType_ST :
SequencerRequestType_LD);
msg->getLen() =
(active_request.len -
active_request.bytes_completed < RubySystem::getBlockSizeBytes() ?
active_request.len - active_request.bytes_completed :
RubySystem::getBlockSizeBytes());
if (active_request.write) {
msg->getDataBlk().
setData(&active_request.data[active_request.bytes_completed],
0, msg->getLen());
msg->getType() = SequencerRequestType_ST;
} else {
msg->getType() = SequencerRequestType_LD;
}
assert(m_mandatory_q_ptr != NULL);
m_mandatory_q_ptr->enqueue(msg);
active_request.bytes_issued += msg->getLen();
DPRINTF(RubyDma,
"DMA request bytes issued %d, bytes completed %d, total len %d\n",
active_request.bytes_issued, active_request.bytes_completed,
active_request.len);
}
void
DMASequencer::dataCallback(const DataBlock & dblk)
{
assert(m_is_busy);
int len = active_request.bytes_issued - active_request.bytes_completed;
int offset = 0;
if (active_request.bytes_completed == 0)
offset = active_request.start_paddr & m_data_block_mask;
assert(!active_request.write);
if (active_request.data != NULL) {
memcpy(&active_request.data[active_request.bytes_completed],
dblk.getData(offset, len), len);
}
issueNext();
}
void
DMASequencer::ackCallback()
{
issueNext();
}
void
DMASequencer::recordRequestType(DMASequencerRequestType requestType)
{
DPRINTF(RubyStats, "Recorded statistic: %s\n",
DMASequencerRequestType_to_string(requestType));
}
DMASequencer *
DMASequencerParams::create()
{
return new DMASequencer(this);
}