blob: c2dcb32491a9b4c8cb6754efd32e18104966d148 [file] [log] [blame]
/*
* Copyright (c) 2012-2013 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2008 The Hewlett-Packard Development Company
* All rights reserved.
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "arch/x86/interrupts.hh"
#include <list>
#include <memory>
#include "arch/x86/intmessage.hh"
#include "arch/x86/regs/apic.hh"
#include "cpu/base.hh"
#include "debug/LocalApic.hh"
#include "dev/x86/i82094aa.hh"
#include "dev/x86/pc.hh"
#include "dev/x86/south_bridge.hh"
#include "mem/packet_access.hh"
#include "sim/full_system.hh"
#include "sim/system.hh"
int
divideFromConf(uint32_t conf)
{
// This figures out what division we want from the division configuration
// register in the local APIC. The encoding is a little odd but it can
// be deciphered fairly easily.
int shift = ((conf & 0x8) >> 1) | (conf & 0x3);
shift = (shift + 1) % 8;
return 1 << shift;
}
namespace X86ISA
{
ApicRegIndex
decodeAddr(Addr paddr)
{
ApicRegIndex regNum;
paddr &= ~mask(3);
switch (paddr)
{
case 0x20:
regNum = APIC_ID;
break;
case 0x30:
regNum = APIC_VERSION;
break;
case 0x80:
regNum = APIC_TASK_PRIORITY;
break;
case 0x90:
regNum = APIC_ARBITRATION_PRIORITY;
break;
case 0xA0:
regNum = APIC_PROCESSOR_PRIORITY;
break;
case 0xB0:
regNum = APIC_EOI;
break;
case 0xD0:
regNum = APIC_LOGICAL_DESTINATION;
break;
case 0xE0:
regNum = APIC_DESTINATION_FORMAT;
break;
case 0xF0:
regNum = APIC_SPURIOUS_INTERRUPT_VECTOR;
break;
case 0x100:
case 0x110:
case 0x120:
case 0x130:
case 0x140:
case 0x150:
case 0x160:
case 0x170:
regNum = APIC_IN_SERVICE((paddr - 0x100) / 0x10);
break;
case 0x180:
case 0x190:
case 0x1A0:
case 0x1B0:
case 0x1C0:
case 0x1D0:
case 0x1E0:
case 0x1F0:
regNum = APIC_TRIGGER_MODE((paddr - 0x180) / 0x10);
break;
case 0x200:
case 0x210:
case 0x220:
case 0x230:
case 0x240:
case 0x250:
case 0x260:
case 0x270:
regNum = APIC_INTERRUPT_REQUEST((paddr - 0x200) / 0x10);
break;
case 0x280:
regNum = APIC_ERROR_STATUS;
break;
case 0x300:
regNum = APIC_INTERRUPT_COMMAND_LOW;
break;
case 0x310:
regNum = APIC_INTERRUPT_COMMAND_HIGH;
break;
case 0x320:
regNum = APIC_LVT_TIMER;
break;
case 0x330:
regNum = APIC_LVT_THERMAL_SENSOR;
break;
case 0x340:
regNum = APIC_LVT_PERFORMANCE_MONITORING_COUNTERS;
break;
case 0x350:
regNum = APIC_LVT_LINT0;
break;
case 0x360:
regNum = APIC_LVT_LINT1;
break;
case 0x370:
regNum = APIC_LVT_ERROR;
break;
case 0x380:
regNum = APIC_INITIAL_COUNT;
break;
case 0x390:
regNum = APIC_CURRENT_COUNT;
break;
case 0x3E0:
regNum = APIC_DIVIDE_CONFIGURATION;
break;
default:
// A reserved register field.
panic("Accessed reserved register field %#x.\n", paddr);
break;
}
return regNum;
}
}
Tick
X86ISA::Interrupts::read(PacketPtr pkt)
{
Addr offset = pkt->getAddr() - pioAddr;
// Make sure we're at least only accessing one register.
if ((offset & ~mask(3)) != ((offset + pkt->getSize()) & ~mask(3)))
panic("Accessed more than one register at a time in the APIC!\n");
ApicRegIndex reg = decodeAddr(offset);
uint32_t val = htole(readReg(reg));
DPRINTF(LocalApic,
"Reading Local APIC register %d at offset %#x as %#x.\n",
reg, offset, val);
pkt->setData(((uint8_t *)&val) + (offset & mask(3)));
pkt->makeAtomicResponse();
return pioDelay;
}
Tick
X86ISA::Interrupts::write(PacketPtr pkt)
{
Addr offset = pkt->getAddr() - pioAddr;
// Make sure we're at least only accessing one register.
if ((offset & ~mask(3)) != ((offset + pkt->getSize()) & ~mask(3)))
panic("Accessed more than one register at a time in the APIC!\n");
ApicRegIndex reg = decodeAddr(offset);
uint32_t val = regs[reg];
pkt->writeData(((uint8_t *)&val) + (offset & mask(3)));
DPRINTF(LocalApic,
"Writing Local APIC register %d at offset %#x as %#x.\n",
reg, offset, letoh(val));
setReg(reg, letoh(val));
pkt->makeAtomicResponse();
return pioDelay;
}
void
X86ISA::Interrupts::requestInterrupt(uint8_t vector,
uint8_t deliveryMode, bool level)
{
/*
* Fixed and lowest-priority delivery mode interrupts are handled
* using the IRR/ISR registers, checking against the TPR, etc.
* The SMI, NMI, ExtInt, INIT, etc interrupts go straight through.
*/
if (deliveryMode == DeliveryMode::Fixed ||
deliveryMode == DeliveryMode::LowestPriority) {
DPRINTF(LocalApic, "Interrupt is an %s.\n",
DeliveryMode::names[deliveryMode]);
// Queue up the interrupt in the IRR.
if (vector > IRRV)
IRRV = vector;
if (!getRegArrayBit(APIC_INTERRUPT_REQUEST_BASE, vector)) {
setRegArrayBit(APIC_INTERRUPT_REQUEST_BASE, vector);
if (level) {
setRegArrayBit(APIC_TRIGGER_MODE_BASE, vector);
} else {
clearRegArrayBit(APIC_TRIGGER_MODE_BASE, vector);
}
}
} else if (!DeliveryMode::isReserved(deliveryMode)) {
DPRINTF(LocalApic, "Interrupt is an %s.\n",
DeliveryMode::names[deliveryMode]);
if (deliveryMode == DeliveryMode::SMI && !pendingSmi) {
pendingUnmaskableInt = pendingSmi = true;
smiVector = vector;
} else if (deliveryMode == DeliveryMode::NMI && !pendingNmi) {
pendingUnmaskableInt = pendingNmi = true;
nmiVector = vector;
} else if (deliveryMode == DeliveryMode::ExtInt && !pendingExtInt) {
pendingExtInt = true;
extIntVector = vector;
} else if (deliveryMode == DeliveryMode::INIT && !pendingInit) {
pendingUnmaskableInt = pendingInit = true;
initVector = vector;
} else if (deliveryMode == DeliveryMode::SIPI &&
!pendingStartup && !startedUp) {
pendingUnmaskableInt = pendingStartup = true;
startupVector = vector;
}
}
if (FullSystem)
cpu->wakeup(0);
}
void
X86ISA::Interrupts::setCPU(BaseCPU * newCPU)
{
assert(newCPU);
if (cpu != NULL && cpu->cpuId() != newCPU->cpuId()) {
panic("Local APICs can't be moved between CPUs"
" with different IDs.\n");
}
cpu = newCPU;
initialApicId = cpu->cpuId();
regs[APIC_ID] = (initialApicId << 24);
pioAddr = x86LocalAPICAddress(initialApicId, 0);
}
void
X86ISA::Interrupts::init()
{
panic_if(!intMasterPort.isConnected(),
"Int port not connected to anything!");
panic_if(!pioPort.isConnected(),
"Pio port of %s not connected to anything!", name());
intSlavePort.sendRangeChange();
pioPort.sendRangeChange();
}
Tick
X86ISA::Interrupts::recvMessage(PacketPtr pkt)
{
Addr offset = pkt->getAddr() - x86InterruptAddress(initialApicId, 0);
assert(pkt->cmd == MemCmd::WriteReq);
switch(offset)
{
case 0:
{
TriggerIntMessage message = pkt->getRaw<TriggerIntMessage>();
DPRINTF(LocalApic,
"Got Trigger Interrupt message with vector %#x.\n",
message.vector);
requestInterrupt(message.vector,
message.deliveryMode, message.trigger);
}
break;
default:
panic("Local apic got unknown interrupt message at offset %#x.\n",
offset);
break;
}
pkt->makeAtomicResponse();
return pioDelay;
}
void
X86ISA::Interrupts::completeIPI(PacketPtr pkt)
{
if (--pendingIPIs == 0) {
InterruptCommandRegLow low = regs[APIC_INTERRUPT_COMMAND_LOW];
// Record that the ICR is now idle.
low.deliveryStatus = 0;
regs[APIC_INTERRUPT_COMMAND_LOW] = low;
}
DPRINTF(LocalApic, "ICR is now idle.\n");
delete pkt;
}
AddrRangeList
X86ISA::Interrupts::getAddrRanges() const
{
assert(cpu);
AddrRangeList ranges;
ranges.push_back(RangeSize(pioAddr, PageBytes));
return ranges;
}
AddrRangeList
X86ISA::Interrupts::getIntAddrRange() const
{
AddrRangeList ranges;
ranges.push_back(RangeEx(x86InterruptAddress(initialApicId, 0),
x86InterruptAddress(initialApicId, 0) +
PhysAddrAPICRangeSize));
return ranges;
}
uint32_t
X86ISA::Interrupts::readReg(ApicRegIndex reg)
{
if (reg >= APIC_TRIGGER_MODE(0) &&
reg <= APIC_TRIGGER_MODE(15)) {
panic("Local APIC Trigger Mode registers are unimplemented.\n");
}
switch (reg) {
case APIC_ARBITRATION_PRIORITY:
panic("Local APIC Arbitration Priority register unimplemented.\n");
break;
case APIC_PROCESSOR_PRIORITY:
panic("Local APIC Processor Priority register unimplemented.\n");
break;
case APIC_ERROR_STATUS:
regs[APIC_INTERNAL_STATE] &= ~ULL(0x1);
break;
case APIC_CURRENT_COUNT:
{
if (apicTimerEvent.scheduled()) {
// Compute how many m5 ticks happen per count.
uint64_t ticksPerCount = clockPeriod() *
divideFromConf(regs[APIC_DIVIDE_CONFIGURATION]);
// Compute how many m5 ticks are left.
uint64_t val = apicTimerEvent.when() - curTick();
// Turn that into a count.
val = (val + ticksPerCount - 1) / ticksPerCount;
return val;
} else {
return 0;
}
}
default:
break;
}
return regs[reg];
}
void
X86ISA::Interrupts::setReg(ApicRegIndex reg, uint32_t val)
{
uint32_t newVal = val;
if (reg >= APIC_IN_SERVICE(0) &&
reg <= APIC_IN_SERVICE(15)) {
panic("Local APIC In-Service registers are unimplemented.\n");
}
if (reg >= APIC_TRIGGER_MODE(0) &&
reg <= APIC_TRIGGER_MODE(15)) {
panic("Local APIC Trigger Mode registers are unimplemented.\n");
}
if (reg >= APIC_INTERRUPT_REQUEST(0) &&
reg <= APIC_INTERRUPT_REQUEST(15)) {
panic("Local APIC Interrupt Request registers "
"are unimplemented.\n");
}
switch (reg) {
case APIC_ID:
newVal = val & 0xFF;
break;
case APIC_VERSION:
// The Local APIC Version register is read only.
return;
case APIC_TASK_PRIORITY:
newVal = val & 0xFF;
break;
case APIC_ARBITRATION_PRIORITY:
panic("Local APIC Arbitration Priority register unimplemented.\n");
break;
case APIC_PROCESSOR_PRIORITY:
panic("Local APIC Processor Priority register unimplemented.\n");
break;
case APIC_EOI:
// Remove the interrupt that just completed from the local apic state.
clearRegArrayBit(APIC_IN_SERVICE_BASE, ISRV);
updateISRV();
return;
case APIC_LOGICAL_DESTINATION:
newVal = val & 0xFF000000;
break;
case APIC_DESTINATION_FORMAT:
newVal = val | 0x0FFFFFFF;
break;
case APIC_SPURIOUS_INTERRUPT_VECTOR:
regs[APIC_INTERNAL_STATE] &= ~ULL(1 << 1);
regs[APIC_INTERNAL_STATE] |= val & (1 << 8);
if (val & (1 << 9))
warn("Focus processor checking not implemented.\n");
break;
case APIC_ERROR_STATUS:
{
if (regs[APIC_INTERNAL_STATE] & 0x1) {
regs[APIC_INTERNAL_STATE] &= ~ULL(0x1);
newVal = 0;
} else {
regs[APIC_INTERNAL_STATE] |= ULL(0x1);
return;
}
}
break;
case APIC_INTERRUPT_COMMAND_LOW:
{
InterruptCommandRegLow low = regs[APIC_INTERRUPT_COMMAND_LOW];
// Check if we're already sending an IPI.
if (low.deliveryStatus) {
newVal = low;
break;
}
low = val;
InterruptCommandRegHigh high = regs[APIC_INTERRUPT_COMMAND_HIGH];
TriggerIntMessage message = 0;
message.destination = high.destination;
message.vector = low.vector;
message.deliveryMode = low.deliveryMode;
message.destMode = low.destMode;
message.level = low.level;
message.trigger = low.trigger;
std::list<int> apics;
int numContexts = sys->numContexts();
switch (low.destShorthand) {
case 0:
if (message.deliveryMode == DeliveryMode::LowestPriority) {
panic("Lowest priority delivery mode "
"IPIs aren't implemented.\n");
}
if (message.destMode == 1) {
int dest = message.destination;
hack_once("Assuming logical destinations are 1 << id.\n");
for (int i = 0; i < numContexts; i++) {
if (dest & 0x1)
apics.push_back(i);
dest = dest >> 1;
}
} else {
if (message.destination == 0xFF) {
for (int i = 0; i < numContexts; i++) {
if (i == initialApicId) {
requestInterrupt(message.vector,
message.deliveryMode, message.trigger);
} else {
apics.push_back(i);
}
}
} else {
if (message.destination == initialApicId) {
requestInterrupt(message.vector,
message.deliveryMode, message.trigger);
} else {
apics.push_back(message.destination);
}
}
}
break;
case 1:
newVal = val;
requestInterrupt(message.vector,
message.deliveryMode, message.trigger);
break;
case 2:
requestInterrupt(message.vector,
message.deliveryMode, message.trigger);
// Fall through
case 3:
{
for (int i = 0; i < numContexts; i++) {
if (i != initialApicId) {
apics.push_back(i);
}
}
}
break;
}
// Record that an IPI is being sent if one actually is.
if (apics.size()) {
low.deliveryStatus = 1;
pendingIPIs += apics.size();
}
regs[APIC_INTERRUPT_COMMAND_LOW] = low;
for (auto id: apics) {
PacketPtr pkt = buildIntTriggerPacket(id, message);
intMasterPort.sendMessage(pkt, sys->isTimingMode(),
[this](PacketPtr pkt) { completeIPI(pkt); });
}
newVal = regs[APIC_INTERRUPT_COMMAND_LOW];
}
break;
case APIC_LVT_TIMER:
case APIC_LVT_THERMAL_SENSOR:
case APIC_LVT_PERFORMANCE_MONITORING_COUNTERS:
case APIC_LVT_LINT0:
case APIC_LVT_LINT1:
case APIC_LVT_ERROR:
{
uint64_t readOnlyMask = (1 << 12) | (1 << 14);
newVal = (val & ~readOnlyMask) |
(regs[reg] & readOnlyMask);
}
break;
case APIC_INITIAL_COUNT:
{
newVal = bits(val, 31, 0);
// Compute how many timer ticks we're being programmed for.
uint64_t newCount = newVal *
(divideFromConf(regs[APIC_DIVIDE_CONFIGURATION]));
// Schedule on the edge of the next tick plus the new count.
Tick offset = curTick() % clockPeriod();
if (offset) {
reschedule(apicTimerEvent,
curTick() + (newCount + 1) *
clockPeriod() - offset, true);
} else {
if (newCount)
reschedule(apicTimerEvent,
curTick() + newCount *
clockPeriod(), true);
}
}
break;
case APIC_CURRENT_COUNT:
//Local APIC Current Count register is read only.
return;
case APIC_DIVIDE_CONFIGURATION:
newVal = val & 0xB;
break;
default:
break;
}
regs[reg] = newVal;
return;
}
X86ISA::Interrupts::Interrupts(Params * p)
: BaseInterrupts(p), sys(p->system), clockDomain(*p->clk_domain),
apicTimerEvent([this]{ processApicTimerEvent(); }, name()),
pendingSmi(false), smiVector(0),
pendingNmi(false), nmiVector(0),
pendingExtInt(false), extIntVector(0),
pendingInit(false), initVector(0),
pendingStartup(false), startupVector(0),
startedUp(false), pendingUnmaskableInt(false),
pendingIPIs(0), cpu(NULL),
intSlavePort(name() + ".int_slave", this, this),
intMasterPort(name() + ".int_master", this, this, p->int_latency),
pioPort(this), pioDelay(p->pio_latency)
{
memset(regs, 0, sizeof(regs));
//Set the local apic DFR to the flat model.
regs[APIC_DESTINATION_FORMAT] = (uint32_t)(-1);
ISRV = 0;
IRRV = 0;
regs[APIC_VERSION] = (5 << 16) | 0x14;
}
bool
X86ISA::Interrupts::checkInterrupts(ThreadContext *tc) const
{
RFLAGS rflags = tc->readMiscRegNoEffect(MISCREG_RFLAGS);
if (pendingUnmaskableInt) {
DPRINTF(LocalApic, "Reported pending unmaskable interrupt.\n");
return true;
}
if (rflags.intf) {
if (pendingExtInt) {
DPRINTF(LocalApic, "Reported pending external interrupt.\n");
return true;
}
if (IRRV > ISRV && bits(IRRV, 7, 4) >
bits(regs[APIC_TASK_PRIORITY], 7, 4)) {
DPRINTF(LocalApic, "Reported pending regular interrupt.\n");
return true;
}
}
return false;
}
bool
X86ISA::Interrupts::checkInterruptsRaw() const
{
return pendingUnmaskableInt || pendingExtInt ||
(IRRV > ISRV && bits(IRRV, 7, 4) >
bits(regs[APIC_TASK_PRIORITY], 7, 4));
}
Fault
X86ISA::Interrupts::getInterrupt(ThreadContext *tc)
{
assert(checkInterrupts(tc));
// These are all probably fairly uncommon, so we'll make them easier to
// check for.
if (pendingUnmaskableInt) {
if (pendingSmi) {
DPRINTF(LocalApic, "Generated SMI fault object.\n");
return std::make_shared<SystemManagementInterrupt>();
} else if (pendingNmi) {
DPRINTF(LocalApic, "Generated NMI fault object.\n");
return std::make_shared<NonMaskableInterrupt>(nmiVector);
} else if (pendingInit) {
DPRINTF(LocalApic, "Generated INIT fault object.\n");
return std::make_shared<InitInterrupt>(initVector);
} else if (pendingStartup) {
DPRINTF(LocalApic, "Generating SIPI fault object.\n");
return std::make_shared<StartupInterrupt>(startupVector);
} else {
panic("pendingUnmaskableInt set, but no unmaskable "
"ints were pending.\n");
return NoFault;
}
} else if (pendingExtInt) {
DPRINTF(LocalApic, "Generated external interrupt fault object.\n");
return std::make_shared<ExternalInterrupt>(extIntVector);
} else {
DPRINTF(LocalApic, "Generated regular interrupt fault object.\n");
// The only thing left are fixed and lowest priority interrupts.
return std::make_shared<ExternalInterrupt>(IRRV);
}
}
void
X86ISA::Interrupts::updateIntrInfo(ThreadContext *tc)
{
assert(checkInterrupts(tc));
if (pendingUnmaskableInt) {
if (pendingSmi) {
DPRINTF(LocalApic, "SMI sent to core.\n");
pendingSmi = false;
} else if (pendingNmi) {
DPRINTF(LocalApic, "NMI sent to core.\n");
pendingNmi = false;
} else if (pendingInit) {
DPRINTF(LocalApic, "Init sent to core.\n");
pendingInit = false;
startedUp = false;
} else if (pendingStartup) {
DPRINTF(LocalApic, "SIPI sent to core.\n");
pendingStartup = false;
startedUp = true;
}
if (!(pendingSmi || pendingNmi || pendingInit || pendingStartup))
pendingUnmaskableInt = false;
} else if (pendingExtInt) {
pendingExtInt = false;
} else {
DPRINTF(LocalApic, "Interrupt %d sent to core.\n", IRRV);
// Mark the interrupt as "in service".
ISRV = IRRV;
setRegArrayBit(APIC_IN_SERVICE_BASE, ISRV);
// Clear it out of the IRR.
clearRegArrayBit(APIC_INTERRUPT_REQUEST_BASE, IRRV);
updateIRRV();
}
}
void
X86ISA::Interrupts::serialize(CheckpointOut &cp) const
{
SERIALIZE_ARRAY(regs, NUM_APIC_REGS);
SERIALIZE_SCALAR(pendingSmi);
SERIALIZE_SCALAR(smiVector);
SERIALIZE_SCALAR(pendingNmi);
SERIALIZE_SCALAR(nmiVector);
SERIALIZE_SCALAR(pendingExtInt);
SERIALIZE_SCALAR(extIntVector);
SERIALIZE_SCALAR(pendingInit);
SERIALIZE_SCALAR(initVector);
SERIALIZE_SCALAR(pendingStartup);
SERIALIZE_SCALAR(startupVector);
SERIALIZE_SCALAR(startedUp);
SERIALIZE_SCALAR(pendingUnmaskableInt);
SERIALIZE_SCALAR(pendingIPIs);
SERIALIZE_SCALAR(IRRV);
SERIALIZE_SCALAR(ISRV);
bool apicTimerEventScheduled = apicTimerEvent.scheduled();
SERIALIZE_SCALAR(apicTimerEventScheduled);
Tick apicTimerEventTick = apicTimerEvent.when();
SERIALIZE_SCALAR(apicTimerEventTick);
}
void
X86ISA::Interrupts::unserialize(CheckpointIn &cp)
{
UNSERIALIZE_ARRAY(regs, NUM_APIC_REGS);
UNSERIALIZE_SCALAR(pendingSmi);
UNSERIALIZE_SCALAR(smiVector);
UNSERIALIZE_SCALAR(pendingNmi);
UNSERIALIZE_SCALAR(nmiVector);
UNSERIALIZE_SCALAR(pendingExtInt);
UNSERIALIZE_SCALAR(extIntVector);
UNSERIALIZE_SCALAR(pendingInit);
UNSERIALIZE_SCALAR(initVector);
UNSERIALIZE_SCALAR(pendingStartup);
UNSERIALIZE_SCALAR(startupVector);
UNSERIALIZE_SCALAR(startedUp);
UNSERIALIZE_SCALAR(pendingUnmaskableInt);
UNSERIALIZE_SCALAR(pendingIPIs);
UNSERIALIZE_SCALAR(IRRV);
UNSERIALIZE_SCALAR(ISRV);
bool apicTimerEventScheduled;
UNSERIALIZE_SCALAR(apicTimerEventScheduled);
if (apicTimerEventScheduled) {
Tick apicTimerEventTick;
UNSERIALIZE_SCALAR(apicTimerEventTick);
if (apicTimerEvent.scheduled()) {
reschedule(apicTimerEvent, apicTimerEventTick, true);
} else {
schedule(apicTimerEvent, apicTimerEventTick);
}
}
}
X86ISA::Interrupts *
X86LocalApicParams::create()
{
return new X86ISA::Interrupts(this);
}
void
X86ISA::Interrupts::processApicTimerEvent() {
if (triggerTimerInterrupt())
setReg(APIC_INITIAL_COUNT, readReg(APIC_INITIAL_COUNT));
}