| /* |
| * Copyright (c) 2012-2013,2019 ARM Limited |
| * All rights reserved. |
| * |
| * The license below extends only to copyright in the software and shall |
| * not be construed as granting a license to any other intellectual |
| * property including but not limited to intellectual property relating |
| * to a hardware implementation of the functionality of the software |
| * licensed hereunder. You may use the software subject to the license |
| * terms below provided that you ensure that this notice is replicated |
| * unmodified and in its entirety in all distributions of the software, |
| * modified or unmodified, in source code or in binary form. |
| * |
| * Copyright (c) 2009-2013 Advanced Micro Devices, Inc. |
| * Copyright (c) 2011 Mark D. Hill and David A. Wood |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are |
| * met: redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer; |
| * redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution; |
| * neither the name of the copyright holders nor the names of its |
| * contributors may be used to endorse or promote products derived from |
| * this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "mem/ruby/system/RubyPort.hh" |
| |
| #include "cpu/testers/rubytest/RubyTester.hh" |
| #include "debug/Config.hh" |
| #include "debug/Drain.hh" |
| #include "debug/Ruby.hh" |
| #include "mem/ruby/protocol/AccessPermission.hh" |
| #include "mem/ruby/slicc_interface/AbstractController.hh" |
| #include "mem/simple_mem.hh" |
| #include "sim/full_system.hh" |
| #include "sim/system.hh" |
| |
| RubyPort::RubyPort(const Params *p) |
| : ClockedObject(p), m_ruby_system(p->ruby_system), m_version(p->version), |
| m_controller(NULL), m_mandatory_q_ptr(NULL), |
| m_usingRubyTester(p->using_ruby_tester), system(p->system), |
| pioMasterPort(csprintf("%s.pio-master-port", name()), this), |
| pioSlavePort(csprintf("%s.pio-slave-port", name()), this), |
| memMasterPort(csprintf("%s.mem-master-port", name()), this), |
| memSlavePort(csprintf("%s-mem-slave-port", name()), this, |
| p->ruby_system->getAccessBackingStore(), -1, |
| p->no_retry_on_stall), |
| gotAddrRanges(p->port_master_connection_count), |
| m_isCPUSequencer(p->is_cpu_sequencer) |
| { |
| assert(m_version != -1); |
| |
| // create the slave ports based on the number of connected ports |
| for (size_t i = 0; i < p->port_slave_connection_count; ++i) { |
| slave_ports.push_back(new MemSlavePort(csprintf("%s.slave%d", name(), |
| i), this, p->ruby_system->getAccessBackingStore(), |
| i, p->no_retry_on_stall)); |
| } |
| |
| // create the master ports based on the number of connected ports |
| for (size_t i = 0; i < p->port_master_connection_count; ++i) { |
| master_ports.push_back(new PioMasterPort(csprintf("%s.master%d", |
| name(), i), this)); |
| } |
| } |
| |
| void |
| RubyPort::init() |
| { |
| assert(m_controller != NULL); |
| m_mandatory_q_ptr = m_controller->getMandatoryQueue(); |
| } |
| |
| Port & |
| RubyPort::getPort(const std::string &if_name, PortID idx) |
| { |
| if (if_name == "mem_master_port") { |
| return memMasterPort; |
| } else if (if_name == "pio_master_port") { |
| return pioMasterPort; |
| } else if (if_name == "mem_slave_port") { |
| return memSlavePort; |
| } else if (if_name == "pio_slave_port") { |
| return pioSlavePort; |
| } else if (if_name == "master") { |
| // used by the x86 CPUs to connect the interrupt PIO and interrupt |
| // slave port |
| if (idx >= static_cast<PortID>(master_ports.size())) { |
| panic("RubyPort::getPort master: unknown index %d\n", idx); |
| } |
| |
| return *master_ports[idx]; |
| } else if (if_name == "slave") { |
| // used by the CPUs to connect the caches to the interconnect, and |
| // for the x86 case also the interrupt master |
| if (idx >= static_cast<PortID>(slave_ports.size())) { |
| panic("RubyPort::getPort slave: unknown index %d\n", idx); |
| } |
| |
| return *slave_ports[idx]; |
| } |
| |
| // pass it along to our super class |
| return ClockedObject::getPort(if_name, idx); |
| } |
| |
| RubyPort::PioMasterPort::PioMasterPort(const std::string &_name, |
| RubyPort *_port) |
| : QueuedMasterPort(_name, _port, reqQueue, snoopRespQueue), |
| reqQueue(*_port, *this), snoopRespQueue(*_port, *this) |
| { |
| DPRINTF(RubyPort, "Created master pioport on sequencer %s\n", _name); |
| } |
| |
| RubyPort::PioSlavePort::PioSlavePort(const std::string &_name, |
| RubyPort *_port) |
| : QueuedSlavePort(_name, _port, queue), queue(*_port, *this) |
| { |
| DPRINTF(RubyPort, "Created slave pioport on sequencer %s\n", _name); |
| } |
| |
| RubyPort::MemMasterPort::MemMasterPort(const std::string &_name, |
| RubyPort *_port) |
| : QueuedMasterPort(_name, _port, reqQueue, snoopRespQueue), |
| reqQueue(*_port, *this), snoopRespQueue(*_port, *this) |
| { |
| DPRINTF(RubyPort, "Created master memport on ruby sequencer %s\n", _name); |
| } |
| |
| RubyPort::MemSlavePort::MemSlavePort(const std::string &_name, RubyPort *_port, |
| bool _access_backing_store, PortID id, |
| bool _no_retry_on_stall) |
| : QueuedSlavePort(_name, _port, queue, id), queue(*_port, *this), |
| access_backing_store(_access_backing_store), |
| no_retry_on_stall(_no_retry_on_stall) |
| { |
| DPRINTF(RubyPort, "Created slave memport on ruby sequencer %s\n", _name); |
| } |
| |
| bool |
| RubyPort::PioMasterPort::recvTimingResp(PacketPtr pkt) |
| { |
| RubyPort *rp = static_cast<RubyPort *>(&owner); |
| DPRINTF(RubyPort, "Response for address: 0x%#x\n", pkt->getAddr()); |
| |
| // send next cycle |
| rp->pioSlavePort.schedTimingResp( |
| pkt, curTick() + rp->m_ruby_system->clockPeriod()); |
| return true; |
| } |
| |
| bool RubyPort::MemMasterPort::recvTimingResp(PacketPtr pkt) |
| { |
| // got a response from a device |
| assert(pkt->isResponse()); |
| |
| // First we must retrieve the request port from the sender State |
| RubyPort::SenderState *senderState = |
| safe_cast<RubyPort::SenderState *>(pkt->popSenderState()); |
| MemSlavePort *port = senderState->port; |
| assert(port != NULL); |
| delete senderState; |
| |
| // In FS mode, ruby memory will receive pio responses from devices |
| // and it must forward these responses back to the particular CPU. |
| DPRINTF(RubyPort, "Pio response for address %#x, going to %s\n", |
| pkt->getAddr(), port->name()); |
| |
| // attempt to send the response in the next cycle |
| RubyPort *rp = static_cast<RubyPort *>(&owner); |
| port->schedTimingResp(pkt, curTick() + rp->m_ruby_system->clockPeriod()); |
| |
| return true; |
| } |
| |
| bool |
| RubyPort::PioSlavePort::recvTimingReq(PacketPtr pkt) |
| { |
| RubyPort *ruby_port = static_cast<RubyPort *>(&owner); |
| |
| for (size_t i = 0; i < ruby_port->master_ports.size(); ++i) { |
| AddrRangeList l = ruby_port->master_ports[i]->getAddrRanges(); |
| for (auto it = l.begin(); it != l.end(); ++it) { |
| if (it->contains(pkt->getAddr())) { |
| // generally it is not safe to assume success here as |
| // the port could be blocked |
| bool M5_VAR_USED success = |
| ruby_port->master_ports[i]->sendTimingReq(pkt); |
| assert(success); |
| return true; |
| } |
| } |
| } |
| panic("Should never reach here!\n"); |
| } |
| |
| Tick |
| RubyPort::PioSlavePort::recvAtomic(PacketPtr pkt) |
| { |
| RubyPort *ruby_port = static_cast<RubyPort *>(&owner); |
| // Only atomic_noncaching mode supported! |
| if (!ruby_port->system->bypassCaches()) { |
| panic("Ruby supports atomic accesses only in noncaching mode\n"); |
| } |
| |
| for (size_t i = 0; i < ruby_port->master_ports.size(); ++i) { |
| AddrRangeList l = ruby_port->master_ports[i]->getAddrRanges(); |
| for (auto it = l.begin(); it != l.end(); ++it) { |
| if (it->contains(pkt->getAddr())) { |
| return ruby_port->master_ports[i]->sendAtomic(pkt); |
| } |
| } |
| } |
| panic("Could not find address in Ruby PIO address ranges!\n"); |
| } |
| |
| bool |
| RubyPort::MemSlavePort::recvTimingReq(PacketPtr pkt) |
| { |
| DPRINTF(RubyPort, "Timing request for address %#x on port %d\n", |
| pkt->getAddr(), id); |
| RubyPort *ruby_port = static_cast<RubyPort *>(&owner); |
| |
| if (pkt->cacheResponding()) |
| panic("RubyPort should never see request with the " |
| "cacheResponding flag set\n"); |
| |
| // ruby doesn't support cache maintenance operations at the |
| // moment, as a workaround, we respond right away |
| if (pkt->req->isCacheMaintenance()) { |
| warn_once("Cache maintenance operations are not supported in Ruby.\n"); |
| pkt->makeResponse(); |
| schedTimingResp(pkt, curTick()); |
| return true; |
| } |
| // Check for pio requests and directly send them to the dedicated |
| // pio port. |
| if (pkt->cmd != MemCmd::MemFenceReq) { |
| if (!isPhysMemAddress(pkt->getAddr())) { |
| assert(ruby_port->memMasterPort.isConnected()); |
| DPRINTF(RubyPort, "Request address %#x assumed to be a " |
| "pio address\n", pkt->getAddr()); |
| |
| // Save the port in the sender state object to be used later to |
| // route the response |
| pkt->pushSenderState(new SenderState(this)); |
| |
| // send next cycle |
| RubySystem *rs = ruby_port->m_ruby_system; |
| ruby_port->memMasterPort.schedTimingReq(pkt, |
| curTick() + rs->clockPeriod()); |
| return true; |
| } |
| |
| assert(getOffset(pkt->getAddr()) + pkt->getSize() <= |
| RubySystem::getBlockSizeBytes()); |
| } |
| |
| // Submit the ruby request |
| RequestStatus requestStatus = ruby_port->makeRequest(pkt); |
| |
| // If the request successfully issued then we should return true. |
| // Otherwise, we need to tell the port to retry at a later point |
| // and return false. |
| if (requestStatus == RequestStatus_Issued) { |
| // Save the port in the sender state object to be used later to |
| // route the response |
| pkt->pushSenderState(new SenderState(this)); |
| |
| DPRINTF(RubyPort, "Request %s address %#x issued\n", pkt->cmdString(), |
| pkt->getAddr()); |
| return true; |
| } |
| |
| if (pkt->cmd != MemCmd::MemFenceReq) { |
| DPRINTF(RubyPort, |
| "Request %s for address %#x did not issue because %s\n", |
| pkt->cmdString(), pkt->getAddr(), |
| RequestStatus_to_string(requestStatus)); |
| } |
| |
| addToRetryList(); |
| |
| return false; |
| } |
| |
| Tick |
| RubyPort::MemSlavePort::recvAtomic(PacketPtr pkt) |
| { |
| RubyPort *ruby_port = static_cast<RubyPort *>(&owner); |
| // Only atomic_noncaching mode supported! |
| if (!ruby_port->system->bypassCaches()) { |
| panic("Ruby supports atomic accesses only in noncaching mode\n"); |
| } |
| |
| // Check for pio requests and directly send them to the dedicated |
| // pio port. |
| if (pkt->cmd != MemCmd::MemFenceReq) { |
| if (!isPhysMemAddress(pkt->getAddr())) { |
| assert(ruby_port->memMasterPort.isConnected()); |
| DPRINTF(RubyPort, "Request address %#x assumed to be a " |
| "pio address\n", pkt->getAddr()); |
| |
| // Save the port in the sender state object to be used later to |
| // route the response |
| pkt->pushSenderState(new SenderState(this)); |
| |
| // send next cycle |
| Tick req_ticks = ruby_port->memMasterPort.sendAtomic(pkt); |
| return ruby_port->ticksToCycles(req_ticks); |
| } |
| |
| assert(getOffset(pkt->getAddr()) + pkt->getSize() <= |
| RubySystem::getBlockSizeBytes()); |
| } |
| |
| // Find appropriate directory for address |
| // This assumes that protocols have a Directory machine, |
| // which has its memPort hooked up to memory. This can |
| // fail for some custom protocols. |
| MachineID id = ruby_port->m_controller->mapAddressToMachine( |
| pkt->getAddr(), MachineType_Directory); |
| RubySystem *rs = ruby_port->m_ruby_system; |
| AbstractController *directory = |
| rs->m_abstract_controls[id.getType()][id.getNum()]; |
| Tick latency = directory->recvAtomic(pkt); |
| if (access_backing_store) |
| rs->getPhysMem()->access(pkt); |
| return latency; |
| } |
| |
| void |
| RubyPort::MemSlavePort::addToRetryList() |
| { |
| RubyPort *ruby_port = static_cast<RubyPort *>(&owner); |
| |
| // |
| // Unless the requestor do not want retries (e.g., the Ruby tester), |
| // record the stalled M5 port for later retry when the sequencer |
| // becomes free. |
| // |
| if (!no_retry_on_stall && !ruby_port->onRetryList(this)) { |
| ruby_port->addToRetryList(this); |
| } |
| } |
| |
| void |
| RubyPort::MemSlavePort::recvFunctional(PacketPtr pkt) |
| { |
| DPRINTF(RubyPort, "Functional access for address: %#x\n", pkt->getAddr()); |
| |
| RubyPort *rp M5_VAR_USED = static_cast<RubyPort *>(&owner); |
| RubySystem *rs = rp->m_ruby_system; |
| |
| // Check for pio requests and directly send them to the dedicated |
| // pio port. |
| if (!isPhysMemAddress(pkt->getAddr())) { |
| DPRINTF(RubyPort, "Pio Request for address: 0x%#x\n", pkt->getAddr()); |
| assert(rp->pioMasterPort.isConnected()); |
| rp->pioMasterPort.sendFunctional(pkt); |
| return; |
| } |
| |
| assert(pkt->getAddr() + pkt->getSize() <= |
| makeLineAddress(pkt->getAddr()) + RubySystem::getBlockSizeBytes()); |
| |
| if (access_backing_store) { |
| // The attached physmem contains the official version of data. |
| // The following command performs the real functional access. |
| // This line should be removed once Ruby supplies the official version |
| // of data. |
| rs->getPhysMem()->functionalAccess(pkt); |
| } else { |
| bool accessSucceeded = false; |
| bool needsResponse = pkt->needsResponse(); |
| |
| // Do the functional access on ruby memory |
| if (pkt->isRead()) { |
| accessSucceeded = rs->functionalRead(pkt); |
| } else if (pkt->isWrite()) { |
| accessSucceeded = rs->functionalWrite(pkt); |
| } else { |
| panic("Unsupported functional command %s\n", pkt->cmdString()); |
| } |
| |
| // Unless the requester explicitly said otherwise, generate an error if |
| // the functional request failed |
| if (!accessSucceeded && !pkt->suppressFuncError()) { |
| fatal("Ruby functional %s failed for address %#x\n", |
| pkt->isWrite() ? "write" : "read", pkt->getAddr()); |
| } |
| |
| // turn packet around to go back to requester if response expected |
| if (needsResponse) { |
| // The pkt is already turned into a reponse if the directory |
| // forwarded the request to the memory controller (see |
| // AbstractController::functionalMemoryWrite and |
| // AbstractMemory::functionalAccess) |
| if (!pkt->isResponse()) |
| pkt->makeResponse(); |
| pkt->setFunctionalResponseStatus(accessSucceeded); |
| } |
| |
| DPRINTF(RubyPort, "Functional access %s!\n", |
| accessSucceeded ? "successful":"failed"); |
| } |
| } |
| |
| void |
| RubyPort::ruby_hit_callback(PacketPtr pkt) |
| { |
| DPRINTF(RubyPort, "Hit callback for %s 0x%x\n", pkt->cmdString(), |
| pkt->getAddr()); |
| |
| // The packet was destined for memory and has not yet been turned |
| // into a response |
| assert(system->isMemAddr(pkt->getAddr())); |
| assert(pkt->isRequest()); |
| |
| // First we must retrieve the request port from the sender State |
| RubyPort::SenderState *senderState = |
| safe_cast<RubyPort::SenderState *>(pkt->popSenderState()); |
| MemSlavePort *port = senderState->port; |
| assert(port != NULL); |
| delete senderState; |
| |
| port->hitCallback(pkt); |
| |
| trySendRetries(); |
| } |
| |
| void |
| RubyPort::trySendRetries() |
| { |
| // |
| // If we had to stall the MemSlavePorts, wake them up because the sequencer |
| // likely has free resources now. |
| // |
| if (!retryList.empty()) { |
| // Record the current list of ports to retry on a temporary list |
| // before calling sendRetryReq on those ports. sendRetryReq will cause |
| // an immediate retry, which may result in the ports being put back on |
| // the list. Therefore we want to clear the retryList before calling |
| // sendRetryReq. |
| std::vector<MemSlavePort *> curRetryList(retryList); |
| |
| retryList.clear(); |
| |
| for (auto i = curRetryList.begin(); i != curRetryList.end(); ++i) { |
| DPRINTF(RubyPort, |
| "Sequencer may now be free. SendRetry to port %s\n", |
| (*i)->name()); |
| (*i)->sendRetryReq(); |
| } |
| } |
| } |
| |
| void |
| RubyPort::testDrainComplete() |
| { |
| //If we weren't able to drain before, we might be able to now. |
| if (drainState() == DrainState::Draining) { |
| unsigned int drainCount = outstandingCount(); |
| DPRINTF(Drain, "Drain count: %u\n", drainCount); |
| if (drainCount == 0) { |
| DPRINTF(Drain, "RubyPort done draining, signaling drain done\n"); |
| signalDrainDone(); |
| } |
| } |
| } |
| |
| DrainState |
| RubyPort::drain() |
| { |
| if (isDeadlockEventScheduled()) { |
| descheduleDeadlockEvent(); |
| } |
| |
| // |
| // If the RubyPort is not empty, then it needs to clear all outstanding |
| // requests before it should call signalDrainDone() |
| // |
| DPRINTF(Config, "outstanding count %d\n", outstandingCount()); |
| if (outstandingCount() > 0) { |
| DPRINTF(Drain, "RubyPort not drained\n"); |
| return DrainState::Draining; |
| } else { |
| return DrainState::Drained; |
| } |
| } |
| |
| void |
| RubyPort::MemSlavePort::hitCallback(PacketPtr pkt) |
| { |
| bool needsResponse = pkt->needsResponse(); |
| |
| // Unless specified at configuraiton, all responses except failed SC |
| // and Flush operations access M5 physical memory. |
| bool accessPhysMem = access_backing_store; |
| |
| if (pkt->isLLSC()) { |
| if (pkt->isWrite()) { |
| if (pkt->req->getExtraData() != 0) { |
| // |
| // Successful SC packets convert to normal writes |
| // |
| pkt->convertScToWrite(); |
| } else { |
| // |
| // Failed SC packets don't access physical memory and thus |
| // the RubyPort itself must convert it to a response. |
| // |
| accessPhysMem = false; |
| } |
| } else { |
| // |
| // All LL packets convert to normal loads so that M5 PhysMem does |
| // not lock the blocks. |
| // |
| pkt->convertLlToRead(); |
| } |
| } |
| |
| // Flush, acquire, release requests don't access physical memory |
| if (pkt->isFlush() || pkt->cmd == MemCmd::MemFenceReq) { |
| accessPhysMem = false; |
| } |
| |
| if (pkt->req->isKernel()) { |
| accessPhysMem = false; |
| needsResponse = true; |
| } |
| |
| DPRINTF(RubyPort, "Hit callback needs response %d\n", needsResponse); |
| |
| RubyPort *ruby_port = static_cast<RubyPort *>(&owner); |
| RubySystem *rs = ruby_port->m_ruby_system; |
| if (accessPhysMem) { |
| rs->getPhysMem()->access(pkt); |
| } else if (needsResponse) { |
| pkt->makeResponse(); |
| } |
| |
| // turn packet around to go back to requester if response expected |
| if (needsResponse) { |
| DPRINTF(RubyPort, "Sending packet back over port\n"); |
| // Send a response in the same cycle. There is no need to delay the |
| // response because the response latency is already incurred in the |
| // Ruby protocol. |
| schedTimingResp(pkt, curTick()); |
| } else { |
| delete pkt; |
| } |
| |
| DPRINTF(RubyPort, "Hit callback done!\n"); |
| } |
| |
| AddrRangeList |
| RubyPort::PioSlavePort::getAddrRanges() const |
| { |
| // at the moment the assumption is that the master does not care |
| AddrRangeList ranges; |
| RubyPort *ruby_port = static_cast<RubyPort *>(&owner); |
| |
| for (size_t i = 0; i < ruby_port->master_ports.size(); ++i) { |
| ranges.splice(ranges.begin(), |
| ruby_port->master_ports[i]->getAddrRanges()); |
| } |
| for (const auto M5_VAR_USED &r : ranges) |
| DPRINTF(RubyPort, "%s\n", r.to_string()); |
| return ranges; |
| } |
| |
| bool |
| RubyPort::MemSlavePort::isPhysMemAddress(Addr addr) const |
| { |
| RubyPort *ruby_port = static_cast<RubyPort *>(&owner); |
| return ruby_port->system->isMemAddr(addr); |
| } |
| |
| void |
| RubyPort::ruby_eviction_callback(Addr address) |
| { |
| DPRINTF(RubyPort, "Sending invalidations.\n"); |
| // Allocate the invalidate request and packet on the stack, as it is |
| // assumed they will not be modified or deleted by receivers. |
| // TODO: should this really be using funcMasterId? |
| auto request = std::make_shared<Request>( |
| address, RubySystem::getBlockSizeBytes(), 0, |
| Request::funcMasterId); |
| |
| // Use a single packet to signal all snooping ports of the invalidation. |
| // This assumes that snooping ports do NOT modify the packet/request |
| Packet pkt(request, MemCmd::InvalidateReq); |
| for (CpuPortIter p = slave_ports.begin(); p != slave_ports.end(); ++p) { |
| // check if the connected master port is snooping |
| if ((*p)->isSnooping()) { |
| // send as a snoop request |
| (*p)->sendTimingSnoopReq(&pkt); |
| } |
| } |
| } |
| |
| void |
| RubyPort::PioMasterPort::recvRangeChange() |
| { |
| RubyPort &r = static_cast<RubyPort &>(owner); |
| r.gotAddrRanges--; |
| if (r.gotAddrRanges == 0 && FullSystem) { |
| r.pioSlavePort.sendRangeChange(); |
| } |
| } |
| |
| |
| int |
| RubyPort::functionalWrite(Packet *func_pkt) |
| { |
| int num_written = 0; |
| for (auto port : slave_ports) { |
| if (port->trySatisfyFunctional(func_pkt)) { |
| num_written += 1; |
| } |
| } |
| return num_written; |
| } |