| /* |
| * Copyright (c) 2011,2013,2016 ARM Limited |
| * Copyright (c) 2013 Advanced Micro Devices, Inc. |
| * All rights reserved. |
| * |
| * The license below extends only to copyright in the software and shall |
| * not be construed as granting a license to any other intellectual |
| * property including but not limited to intellectual property relating |
| * to a hardware implementation of the functionality of the software |
| * licensed hereunder. You may use the software subject to the license |
| * terms below provided that you ensure that this notice is replicated |
| * unmodified and in its entirety in all distributions of the software, |
| * modified or unmodified, in source code or in binary form. |
| * |
| * Copyright (c) 2004-2006 The Regents of The University of Michigan |
| * Copyright (c) 2009 The University of Edinburgh |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are |
| * met: redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer; |
| * redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution; |
| * neither the name of the copyright holders nor the names of its |
| * contributors may be used to endorse or promote products derived from |
| * this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| * Authors: Kevin Lim |
| * Timothy M. Jones |
| */ |
| |
| #ifndef __CPU_BASE_DYN_INST_HH__ |
| #define __CPU_BASE_DYN_INST_HH__ |
| |
| #include <array> |
| #include <bitset> |
| #include <deque> |
| #include <list> |
| #include <string> |
| |
| #include "arch/generic/tlb.hh" |
| #include "arch/utility.hh" |
| #include "base/trace.hh" |
| #include "config/the_isa.hh" |
| #include "cpu/checker/cpu.hh" |
| #include "cpu/exec_context.hh" |
| #include "cpu/exetrace.hh" |
| #include "cpu/inst_res.hh" |
| #include "cpu/inst_seq.hh" |
| #include "cpu/o3/comm.hh" |
| #include "cpu/op_class.hh" |
| #include "cpu/static_inst.hh" |
| #include "cpu/translation.hh" |
| #include "mem/packet.hh" |
| #include "mem/request.hh" |
| #include "sim/byteswap.hh" |
| #include "sim/system.hh" |
| |
| /** |
| * @file |
| * Defines a dynamic instruction context. |
| */ |
| |
| template <class Impl> |
| class BaseDynInst : public ExecContext, public RefCounted |
| { |
| public: |
| // Typedef for the CPU. |
| typedef typename Impl::CPUType ImplCPU; |
| typedef typename ImplCPU::ImplState ImplState; |
| using VecRegContainer = TheISA::VecRegContainer; |
| |
| // The DynInstPtr type. |
| typedef typename Impl::DynInstPtr DynInstPtr; |
| typedef RefCountingPtr<BaseDynInst<Impl> > BaseDynInstPtr; |
| |
| // The list of instructions iterator type. |
| typedef typename std::list<DynInstPtr>::iterator ListIt; |
| |
| enum { |
| MaxInstSrcRegs = TheISA::MaxInstSrcRegs, /// Max source regs |
| MaxInstDestRegs = TheISA::MaxInstDestRegs /// Max dest regs |
| }; |
| |
| protected: |
| enum Status { |
| IqEntry, /// Instruction is in the IQ |
| RobEntry, /// Instruction is in the ROB |
| LsqEntry, /// Instruction is in the LSQ |
| Completed, /// Instruction has completed |
| ResultReady, /// Instruction has its result |
| CanIssue, /// Instruction can issue and execute |
| Issued, /// Instruction has issued |
| Executed, /// Instruction has executed |
| CanCommit, /// Instruction can commit |
| AtCommit, /// Instruction has reached commit |
| Committed, /// Instruction has committed |
| Squashed, /// Instruction is squashed |
| SquashedInIQ, /// Instruction is squashed in the IQ |
| SquashedInLSQ, /// Instruction is squashed in the LSQ |
| SquashedInROB, /// Instruction is squashed in the ROB |
| RecoverInst, /// Is a recover instruction |
| BlockingInst, /// Is a blocking instruction |
| ThreadsyncWait, /// Is a thread synchronization instruction |
| SerializeBefore, /// Needs to serialize on |
| /// instructions ahead of it |
| SerializeAfter, /// Needs to serialize instructions behind it |
| SerializeHandled, /// Serialization has been handled |
| NumStatus |
| }; |
| |
| enum Flags { |
| NotAnInst, |
| TranslationStarted, |
| TranslationCompleted, |
| PossibleLoadViolation, |
| HitExternalSnoop, |
| EffAddrValid, |
| RecordResult, |
| Predicate, |
| PredTaken, |
| IsStrictlyOrdered, |
| ReqMade, |
| MemOpDone, |
| MaxFlags |
| }; |
| |
| public: |
| /** The sequence number of the instruction. */ |
| InstSeqNum seqNum; |
| |
| /** The StaticInst used by this BaseDynInst. */ |
| const StaticInstPtr staticInst; |
| |
| /** Pointer to the Impl's CPU object. */ |
| ImplCPU *cpu; |
| |
| BaseCPU *getCpuPtr() { return cpu; } |
| |
| /** Pointer to the thread state. */ |
| ImplState *thread; |
| |
| /** The kind of fault this instruction has generated. */ |
| Fault fault; |
| |
| /** InstRecord that tracks this instructions. */ |
| Trace::InstRecord *traceData; |
| |
| protected: |
| /** The result of the instruction; assumes an instruction can have many |
| * destination registers. |
| */ |
| std::queue<InstResult> instResult; |
| |
| /** PC state for this instruction. */ |
| TheISA::PCState pc; |
| |
| /* An amalgamation of a lot of boolean values into one */ |
| std::bitset<MaxFlags> instFlags; |
| |
| /** The status of this BaseDynInst. Several bits can be set. */ |
| std::bitset<NumStatus> status; |
| |
| /** Whether or not the source register is ready. |
| * @todo: Not sure this should be here vs the derived class. |
| */ |
| std::bitset<MaxInstSrcRegs> _readySrcRegIdx; |
| |
| public: |
| /** The thread this instruction is from. */ |
| ThreadID threadNumber; |
| |
| /** Iterator pointing to this BaseDynInst in the list of all insts. */ |
| ListIt instListIt; |
| |
| ////////////////////// Branch Data /////////////// |
| /** Predicted PC state after this instruction. */ |
| TheISA::PCState predPC; |
| |
| /** The Macroop if one exists */ |
| const StaticInstPtr macroop; |
| |
| /** How many source registers are ready. */ |
| uint8_t readyRegs; |
| |
| public: |
| /////////////////////// Load Store Data ////////////////////// |
| /** The effective virtual address (lds & stores only). */ |
| Addr effAddr; |
| |
| /** The effective physical address. */ |
| Addr physEffAddrLow; |
| |
| /** The effective physical address |
| * of the second request for a split request |
| */ |
| Addr physEffAddrHigh; |
| |
| /** The memory request flags (from translation). */ |
| unsigned memReqFlags; |
| |
| /** data address space ID, for loads & stores. */ |
| short asid; |
| |
| /** The size of the request */ |
| uint8_t effSize; |
| |
| /** Pointer to the data for the memory access. */ |
| uint8_t *memData; |
| |
| /** Load queue index. */ |
| int16_t lqIdx; |
| |
| /** Store queue index. */ |
| int16_t sqIdx; |
| |
| |
| /////////////////////// TLB Miss ////////////////////// |
| /** |
| * Saved memory requests (needed when the DTB address translation is |
| * delayed due to a hw page table walk). |
| */ |
| RequestPtr savedReq; |
| RequestPtr savedSreqLow; |
| RequestPtr savedSreqHigh; |
| |
| /////////////////////// Checker ////////////////////// |
| // Need a copy of main request pointer to verify on writes. |
| RequestPtr reqToVerify; |
| |
| protected: |
| /** Flattened register index of the destination registers of this |
| * instruction. |
| */ |
| std::array<RegId, TheISA::MaxInstDestRegs> _flatDestRegIdx; |
| |
| /** Physical register index of the destination registers of this |
| * instruction. |
| */ |
| std::array<PhysRegIdPtr, TheISA::MaxInstDestRegs> _destRegIdx; |
| |
| /** Physical register index of the source registers of this |
| * instruction. |
| */ |
| std::array<PhysRegIdPtr, TheISA::MaxInstSrcRegs> _srcRegIdx; |
| |
| /** Physical register index of the previous producers of the |
| * architected destinations. |
| */ |
| std::array<PhysRegIdPtr, TheISA::MaxInstDestRegs> _prevDestRegIdx; |
| |
| |
| public: |
| /** Records changes to result? */ |
| void recordResult(bool f) { instFlags[RecordResult] = f; } |
| |
| /** Is the effective virtual address valid. */ |
| bool effAddrValid() const { return instFlags[EffAddrValid]; } |
| |
| /** Whether or not the memory operation is done. */ |
| bool memOpDone() const { return instFlags[MemOpDone]; } |
| void memOpDone(bool f) { instFlags[MemOpDone] = f; } |
| |
| bool notAnInst() const { return instFlags[NotAnInst]; } |
| void setNotAnInst() { instFlags[NotAnInst] = true; } |
| |
| |
| //////////////////////////////////////////// |
| // |
| // INSTRUCTION EXECUTION |
| // |
| //////////////////////////////////////////// |
| |
| void demapPage(Addr vaddr, uint64_t asn) |
| { |
| cpu->demapPage(vaddr, asn); |
| } |
| void demapInstPage(Addr vaddr, uint64_t asn) |
| { |
| cpu->demapPage(vaddr, asn); |
| } |
| void demapDataPage(Addr vaddr, uint64_t asn) |
| { |
| cpu->demapPage(vaddr, asn); |
| } |
| |
| Fault initiateMemRead(Addr addr, unsigned size, Request::Flags flags); |
| |
| Fault writeMem(uint8_t *data, unsigned size, Addr addr, |
| Request::Flags flags, uint64_t *res); |
| |
| /** Splits a request in two if it crosses a dcache block. */ |
| void splitRequest(const RequestPtr &req, RequestPtr &sreqLow, |
| RequestPtr &sreqHigh); |
| |
| /** Initiate a DTB address translation. */ |
| void initiateTranslation(const RequestPtr &req, const RequestPtr &sreqLow, |
| const RequestPtr &sreqHigh, uint64_t *res, |
| BaseTLB::Mode mode); |
| |
| /** Finish a DTB address translation. */ |
| void finishTranslation(WholeTranslationState *state); |
| |
| /** True if the DTB address translation has started. */ |
| bool translationStarted() const { return instFlags[TranslationStarted]; } |
| void translationStarted(bool f) { instFlags[TranslationStarted] = f; } |
| |
| /** True if the DTB address translation has completed. */ |
| bool translationCompleted() const { return instFlags[TranslationCompleted]; } |
| void translationCompleted(bool f) { instFlags[TranslationCompleted] = f; } |
| |
| /** True if this address was found to match a previous load and they issued |
| * out of order. If that happend, then it's only a problem if an incoming |
| * snoop invalidate modifies the line, in which case we need to squash. |
| * If nothing modified the line the order doesn't matter. |
| */ |
| bool possibleLoadViolation() const { return instFlags[PossibleLoadViolation]; } |
| void possibleLoadViolation(bool f) { instFlags[PossibleLoadViolation] = f; } |
| |
| /** True if the address hit a external snoop while sitting in the LSQ. |
| * If this is true and a older instruction sees it, this instruction must |
| * reexecute |
| */ |
| bool hitExternalSnoop() const { return instFlags[HitExternalSnoop]; } |
| void hitExternalSnoop(bool f) { instFlags[HitExternalSnoop] = f; } |
| |
| /** |
| * Returns true if the DTB address translation is being delayed due to a hw |
| * page table walk. |
| */ |
| bool isTranslationDelayed() const |
| { |
| return (translationStarted() && !translationCompleted()); |
| } |
| |
| public: |
| #ifdef DEBUG |
| void dumpSNList(); |
| #endif |
| |
| /** Returns the physical register index of the i'th destination |
| * register. |
| */ |
| PhysRegIdPtr renamedDestRegIdx(int idx) const |
| { |
| return _destRegIdx[idx]; |
| } |
| |
| /** Returns the physical register index of the i'th source register. */ |
| PhysRegIdPtr renamedSrcRegIdx(int idx) const |
| { |
| assert(TheISA::MaxInstSrcRegs > idx); |
| return _srcRegIdx[idx]; |
| } |
| |
| /** Returns the flattened register index of the i'th destination |
| * register. |
| */ |
| const RegId& flattenedDestRegIdx(int idx) const |
| { |
| return _flatDestRegIdx[idx]; |
| } |
| |
| /** Returns the physical register index of the previous physical register |
| * that remapped to the same logical register index. |
| */ |
| PhysRegIdPtr prevDestRegIdx(int idx) const |
| { |
| return _prevDestRegIdx[idx]; |
| } |
| |
| /** Renames a destination register to a physical register. Also records |
| * the previous physical register that the logical register mapped to. |
| */ |
| void renameDestReg(int idx, |
| PhysRegIdPtr renamed_dest, |
| PhysRegIdPtr previous_rename) |
| { |
| _destRegIdx[idx] = renamed_dest; |
| _prevDestRegIdx[idx] = previous_rename; |
| } |
| |
| /** Renames a source logical register to the physical register which |
| * has/will produce that logical register's result. |
| * @todo: add in whether or not the source register is ready. |
| */ |
| void renameSrcReg(int idx, PhysRegIdPtr renamed_src) |
| { |
| _srcRegIdx[idx] = renamed_src; |
| } |
| |
| /** Flattens a destination architectural register index into a logical |
| * index. |
| */ |
| void flattenDestReg(int idx, const RegId& flattened_dest) |
| { |
| _flatDestRegIdx[idx] = flattened_dest; |
| } |
| /** BaseDynInst constructor given a binary instruction. |
| * @param staticInst A StaticInstPtr to the underlying instruction. |
| * @param pc The PC state for the instruction. |
| * @param predPC The predicted next PC state for the instruction. |
| * @param seq_num The sequence number of the instruction. |
| * @param cpu Pointer to the instruction's CPU. |
| */ |
| BaseDynInst(const StaticInstPtr &staticInst, const StaticInstPtr ¯oop, |
| TheISA::PCState pc, TheISA::PCState predPC, |
| InstSeqNum seq_num, ImplCPU *cpu); |
| |
| /** BaseDynInst constructor given a StaticInst pointer. |
| * @param _staticInst The StaticInst for this BaseDynInst. |
| */ |
| BaseDynInst(const StaticInstPtr &staticInst, const StaticInstPtr ¯oop); |
| |
| /** BaseDynInst destructor. */ |
| ~BaseDynInst(); |
| |
| private: |
| /** Function to initialize variables in the constructors. */ |
| void initVars(); |
| |
| public: |
| /** Dumps out contents of this BaseDynInst. */ |
| void dump(); |
| |
| /** Dumps out contents of this BaseDynInst into given string. */ |
| void dump(std::string &outstring); |
| |
| /** Read this CPU's ID. */ |
| int cpuId() const { return cpu->cpuId(); } |
| |
| /** Read this CPU's Socket ID. */ |
| uint32_t socketId() const { return cpu->socketId(); } |
| |
| /** Read this CPU's data requestor ID */ |
| MasterID masterId() const { return cpu->dataMasterId(); } |
| |
| /** Read this context's system-wide ID **/ |
| ContextID contextId() const { return thread->contextId(); } |
| |
| /** Returns the fault type. */ |
| Fault getFault() const { return fault; } |
| |
| /** Checks whether or not this instruction has had its branch target |
| * calculated yet. For now it is not utilized and is hacked to be |
| * always false. |
| * @todo: Actually use this instruction. |
| */ |
| bool doneTargCalc() { return false; } |
| |
| /** Set the predicted target of this current instruction. */ |
| void setPredTarg(const TheISA::PCState &_predPC) |
| { |
| predPC = _predPC; |
| } |
| |
| const TheISA::PCState &readPredTarg() { return predPC; } |
| |
| /** Returns the predicted PC immediately after the branch. */ |
| Addr predInstAddr() { return predPC.instAddr(); } |
| |
| /** Returns the predicted PC two instructions after the branch */ |
| Addr predNextInstAddr() { return predPC.nextInstAddr(); } |
| |
| /** Returns the predicted micro PC after the branch */ |
| Addr predMicroPC() { return predPC.microPC(); } |
| |
| /** Returns whether the instruction was predicted taken or not. */ |
| bool readPredTaken() |
| { |
| return instFlags[PredTaken]; |
| } |
| |
| void setPredTaken(bool predicted_taken) |
| { |
| instFlags[PredTaken] = predicted_taken; |
| } |
| |
| /** Returns whether the instruction mispredicted. */ |
| bool mispredicted() |
| { |
| TheISA::PCState tempPC = pc; |
| TheISA::advancePC(tempPC, staticInst); |
| return !(tempPC == predPC); |
| } |
| |
| // |
| // Instruction types. Forward checks to StaticInst object. |
| // |
| bool isNop() const { return staticInst->isNop(); } |
| bool isMemRef() const { return staticInst->isMemRef(); } |
| bool isLoad() const { return staticInst->isLoad(); } |
| bool isStore() const { return staticInst->isStore(); } |
| bool isAtomic() const { return staticInst->isAtomic(); } |
| bool isStoreConditional() const |
| { return staticInst->isStoreConditional(); } |
| bool isInstPrefetch() const { return staticInst->isInstPrefetch(); } |
| bool isDataPrefetch() const { return staticInst->isDataPrefetch(); } |
| bool isInteger() const { return staticInst->isInteger(); } |
| bool isFloating() const { return staticInst->isFloating(); } |
| bool isVector() const { return staticInst->isVector(); } |
| bool isControl() const { return staticInst->isControl(); } |
| bool isCall() const { return staticInst->isCall(); } |
| bool isReturn() const { return staticInst->isReturn(); } |
| bool isDirectCtrl() const { return staticInst->isDirectCtrl(); } |
| bool isIndirectCtrl() const { return staticInst->isIndirectCtrl(); } |
| bool isCondCtrl() const { return staticInst->isCondCtrl(); } |
| bool isUncondCtrl() const { return staticInst->isUncondCtrl(); } |
| bool isCondDelaySlot() const { return staticInst->isCondDelaySlot(); } |
| bool isThreadSync() const { return staticInst->isThreadSync(); } |
| bool isSerializing() const { return staticInst->isSerializing(); } |
| bool isSerializeBefore() const |
| { return staticInst->isSerializeBefore() || status[SerializeBefore]; } |
| bool isSerializeAfter() const |
| { return staticInst->isSerializeAfter() || status[SerializeAfter]; } |
| bool isSquashAfter() const { return staticInst->isSquashAfter(); } |
| bool isMemBarrier() const { return staticInst->isMemBarrier(); } |
| bool isWriteBarrier() const { return staticInst->isWriteBarrier(); } |
| bool isNonSpeculative() const { return staticInst->isNonSpeculative(); } |
| bool isQuiesce() const { return staticInst->isQuiesce(); } |
| bool isIprAccess() const { return staticInst->isIprAccess(); } |
| bool isUnverifiable() const { return staticInst->isUnverifiable(); } |
| bool isSyscall() const { return staticInst->isSyscall(); } |
| bool isMacroop() const { return staticInst->isMacroop(); } |
| bool isMicroop() const { return staticInst->isMicroop(); } |
| bool isDelayedCommit() const { return staticInst->isDelayedCommit(); } |
| bool isLastMicroop() const { return staticInst->isLastMicroop(); } |
| bool isFirstMicroop() const { return staticInst->isFirstMicroop(); } |
| bool isMicroBranch() const { return staticInst->isMicroBranch(); } |
| |
| /** Temporarily sets this instruction as a serialize before instruction. */ |
| void setSerializeBefore() { status.set(SerializeBefore); } |
| |
| /** Clears the serializeBefore part of this instruction. */ |
| void clearSerializeBefore() { status.reset(SerializeBefore); } |
| |
| /** Checks if this serializeBefore is only temporarily set. */ |
| bool isTempSerializeBefore() { return status[SerializeBefore]; } |
| |
| /** Temporarily sets this instruction as a serialize after instruction. */ |
| void setSerializeAfter() { status.set(SerializeAfter); } |
| |
| /** Clears the serializeAfter part of this instruction.*/ |
| void clearSerializeAfter() { status.reset(SerializeAfter); } |
| |
| /** Checks if this serializeAfter is only temporarily set. */ |
| bool isTempSerializeAfter() { return status[SerializeAfter]; } |
| |
| /** Sets the serialization part of this instruction as handled. */ |
| void setSerializeHandled() { status.set(SerializeHandled); } |
| |
| /** Checks if the serialization part of this instruction has been |
| * handled. This does not apply to the temporary serializing |
| * state; it only applies to this instruction's own permanent |
| * serializing state. |
| */ |
| bool isSerializeHandled() { return status[SerializeHandled]; } |
| |
| /** Returns the opclass of this instruction. */ |
| OpClass opClass() const { return staticInst->opClass(); } |
| |
| /** Returns the branch target address. */ |
| TheISA::PCState branchTarget() const |
| { return staticInst->branchTarget(pc); } |
| |
| /** Returns the number of source registers. */ |
| int8_t numSrcRegs() const { return staticInst->numSrcRegs(); } |
| |
| /** Returns the number of destination registers. */ |
| int8_t numDestRegs() const { return staticInst->numDestRegs(); } |
| |
| // the following are used to track physical register usage |
| // for machines with separate int & FP reg files |
| int8_t numFPDestRegs() const { return staticInst->numFPDestRegs(); } |
| int8_t numIntDestRegs() const { return staticInst->numIntDestRegs(); } |
| int8_t numCCDestRegs() const { return staticInst->numCCDestRegs(); } |
| int8_t numVecDestRegs() const { return staticInst->numVecDestRegs(); } |
| int8_t numVecElemDestRegs() const { |
| return staticInst->numVecElemDestRegs(); |
| } |
| |
| /** Returns the logical register index of the i'th destination register. */ |
| const RegId& destRegIdx(int i) const { return staticInst->destRegIdx(i); } |
| |
| /** Returns the logical register index of the i'th source register. */ |
| const RegId& srcRegIdx(int i) const { return staticInst->srcRegIdx(i); } |
| |
| /** Return the size of the instResult queue. */ |
| uint8_t resultSize() { return instResult.size(); } |
| |
| /** Pops a result off the instResult queue. |
| * If the result stack is empty, return the default value. |
| * */ |
| InstResult popResult(InstResult dflt = InstResult()) |
| { |
| if (!instResult.empty()) { |
| InstResult t = instResult.front(); |
| instResult.pop(); |
| return t; |
| } |
| return dflt; |
| } |
| |
| /** Pushes a result onto the instResult queue. */ |
| /** @{ */ |
| /** Scalar result. */ |
| template<typename T> |
| void setScalarResult(T&& t) |
| { |
| if (instFlags[RecordResult]) { |
| instResult.push(InstResult(std::forward<T>(t), |
| InstResult::ResultType::Scalar)); |
| } |
| } |
| |
| /** Full vector result. */ |
| template<typename T> |
| void setVecResult(T&& t) |
| { |
| if (instFlags[RecordResult]) { |
| instResult.push(InstResult(std::forward<T>(t), |
| InstResult::ResultType::VecReg)); |
| } |
| } |
| |
| /** Vector element result. */ |
| template<typename T> |
| void setVecElemResult(T&& t) |
| { |
| if (instFlags[RecordResult]) { |
| instResult.push(InstResult(std::forward<T>(t), |
| InstResult::ResultType::VecElem)); |
| } |
| } |
| /** @} */ |
| |
| /** Records an integer register being set to a value. */ |
| void setIntRegOperand(const StaticInst *si, int idx, IntReg val) |
| { |
| setScalarResult(val); |
| } |
| |
| /** Records a CC register being set to a value. */ |
| void setCCRegOperand(const StaticInst *si, int idx, CCReg val) |
| { |
| setScalarResult(val); |
| } |
| |
| /** Record a vector register being set to a value */ |
| void setVecRegOperand(const StaticInst *si, int idx, |
| const VecRegContainer& val) |
| { |
| setVecResult(val); |
| } |
| |
| /** Records an fp register being set to an integer value. */ |
| void |
| setFloatRegOperandBits(const StaticInst *si, int idx, FloatRegBits val) |
| { |
| setScalarResult(val); |
| } |
| |
| /** Record a vector register being set to a value */ |
| void setVecElemOperand(const StaticInst *si, int idx, const VecElem val) |
| { |
| setVecElemResult(val); |
| } |
| |
| /** Records that one of the source registers is ready. */ |
| void markSrcRegReady(); |
| |
| /** Marks a specific register as ready. */ |
| void markSrcRegReady(RegIndex src_idx); |
| |
| /** Returns if a source register is ready. */ |
| bool isReadySrcRegIdx(int idx) const |
| { |
| return this->_readySrcRegIdx[idx]; |
| } |
| |
| /** Sets this instruction as completed. */ |
| void setCompleted() { status.set(Completed); } |
| |
| /** Returns whether or not this instruction is completed. */ |
| bool isCompleted() const { return status[Completed]; } |
| |
| /** Marks the result as ready. */ |
| void setResultReady() { status.set(ResultReady); } |
| |
| /** Returns whether or not the result is ready. */ |
| bool isResultReady() const { return status[ResultReady]; } |
| |
| /** Sets this instruction as ready to issue. */ |
| void setCanIssue() { status.set(CanIssue); } |
| |
| /** Returns whether or not this instruction is ready to issue. */ |
| bool readyToIssue() const { return status[CanIssue]; } |
| |
| /** Clears this instruction being able to issue. */ |
| void clearCanIssue() { status.reset(CanIssue); } |
| |
| /** Sets this instruction as issued from the IQ. */ |
| void setIssued() { status.set(Issued); } |
| |
| /** Returns whether or not this instruction has issued. */ |
| bool isIssued() const { return status[Issued]; } |
| |
| /** Clears this instruction as being issued. */ |
| void clearIssued() { status.reset(Issued); } |
| |
| /** Sets this instruction as executed. */ |
| void setExecuted() { status.set(Executed); } |
| |
| /** Returns whether or not this instruction has executed. */ |
| bool isExecuted() const { return status[Executed]; } |
| |
| /** Sets this instruction as ready to commit. */ |
| void setCanCommit() { status.set(CanCommit); } |
| |
| /** Clears this instruction as being ready to commit. */ |
| void clearCanCommit() { status.reset(CanCommit); } |
| |
| /** Returns whether or not this instruction is ready to commit. */ |
| bool readyToCommit() const { return status[CanCommit]; } |
| |
| void setAtCommit() { status.set(AtCommit); } |
| |
| bool isAtCommit() { return status[AtCommit]; } |
| |
| /** Sets this instruction as committed. */ |
| void setCommitted() { status.set(Committed); } |
| |
| /** Returns whether or not this instruction is committed. */ |
| bool isCommitted() const { return status[Committed]; } |
| |
| /** Sets this instruction as squashed. */ |
| void setSquashed() { status.set(Squashed); } |
| |
| /** Returns whether or not this instruction is squashed. */ |
| bool isSquashed() const { return status[Squashed]; } |
| |
| //Instruction Queue Entry |
| //----------------------- |
| /** Sets this instruction as a entry the IQ. */ |
| void setInIQ() { status.set(IqEntry); } |
| |
| /** Sets this instruction as a entry the IQ. */ |
| void clearInIQ() { status.reset(IqEntry); } |
| |
| /** Returns whether or not this instruction has issued. */ |
| bool isInIQ() const { return status[IqEntry]; } |
| |
| /** Sets this instruction as squashed in the IQ. */ |
| void setSquashedInIQ() { status.set(SquashedInIQ); status.set(Squashed);} |
| |
| /** Returns whether or not this instruction is squashed in the IQ. */ |
| bool isSquashedInIQ() const { return status[SquashedInIQ]; } |
| |
| |
| //Load / Store Queue Functions |
| //----------------------- |
| /** Sets this instruction as a entry the LSQ. */ |
| void setInLSQ() { status.set(LsqEntry); } |
| |
| /** Sets this instruction as a entry the LSQ. */ |
| void removeInLSQ() { status.reset(LsqEntry); } |
| |
| /** Returns whether or not this instruction is in the LSQ. */ |
| bool isInLSQ() const { return status[LsqEntry]; } |
| |
| /** Sets this instruction as squashed in the LSQ. */ |
| void setSquashedInLSQ() { status.set(SquashedInLSQ);} |
| |
| /** Returns whether or not this instruction is squashed in the LSQ. */ |
| bool isSquashedInLSQ() const { return status[SquashedInLSQ]; } |
| |
| |
| //Reorder Buffer Functions |
| //----------------------- |
| /** Sets this instruction as a entry the ROB. */ |
| void setInROB() { status.set(RobEntry); } |
| |
| /** Sets this instruction as a entry the ROB. */ |
| void clearInROB() { status.reset(RobEntry); } |
| |
| /** Returns whether or not this instruction is in the ROB. */ |
| bool isInROB() const { return status[RobEntry]; } |
| |
| /** Sets this instruction as squashed in the ROB. */ |
| void setSquashedInROB() { status.set(SquashedInROB); } |
| |
| /** Returns whether or not this instruction is squashed in the ROB. */ |
| bool isSquashedInROB() const { return status[SquashedInROB]; } |
| |
| /** Read the PC state of this instruction. */ |
| TheISA::PCState pcState() const { return pc; } |
| |
| /** Set the PC state of this instruction. */ |
| void pcState(const TheISA::PCState &val) { pc = val; } |
| |
| /** Read the PC of this instruction. */ |
| Addr instAddr() const { return pc.instAddr(); } |
| |
| /** Read the PC of the next instruction. */ |
| Addr nextInstAddr() const { return pc.nextInstAddr(); } |
| |
| /**Read the micro PC of this instruction. */ |
| Addr microPC() const { return pc.microPC(); } |
| |
| bool readPredicate() const |
| { |
| return instFlags[Predicate]; |
| } |
| |
| void setPredicate(bool val) |
| { |
| instFlags[Predicate] = val; |
| |
| if (traceData) { |
| traceData->setPredicate(val); |
| } |
| } |
| |
| /** Sets the ASID. */ |
| void setASID(short addr_space_id) { asid = addr_space_id; } |
| |
| /** Sets the thread id. */ |
| void setTid(ThreadID tid) { threadNumber = tid; } |
| |
| /** Sets the pointer to the thread state. */ |
| void setThreadState(ImplState *state) { thread = state; } |
| |
| /** Returns the thread context. */ |
| ThreadContext *tcBase() { return thread->getTC(); } |
| |
| public: |
| /** Returns whether or not the eff. addr. source registers are ready. */ |
| bool eaSrcsReady() const; |
| |
| /** Is this instruction's memory access strictly ordered? */ |
| bool strictlyOrdered() const { return instFlags[IsStrictlyOrdered]; } |
| |
| /** Has this instruction generated a memory request. */ |
| bool hasRequest() const { return instFlags[ReqMade]; } |
| |
| /** Returns iterator to this instruction in the list of all insts. */ |
| ListIt &getInstListIt() { return instListIt; } |
| |
| /** Sets iterator for this instruction in the list of all insts. */ |
| void setInstListIt(ListIt _instListIt) { instListIt = _instListIt; } |
| |
| public: |
| /** Returns the number of consecutive store conditional failures. */ |
| unsigned int readStCondFailures() const |
| { return thread->storeCondFailures; } |
| |
| /** Sets the number of consecutive store conditional failures. */ |
| void setStCondFailures(unsigned int sc_failures) |
| { thread->storeCondFailures = sc_failures; } |
| |
| public: |
| // monitor/mwait funtions |
| void armMonitor(Addr address) { cpu->armMonitor(threadNumber, address); } |
| bool mwait(PacketPtr pkt) { return cpu->mwait(threadNumber, pkt); } |
| void mwaitAtomic(ThreadContext *tc) |
| { return cpu->mwaitAtomic(threadNumber, tc, cpu->dtb); } |
| AddressMonitor *getAddrMonitor() |
| { return cpu->getCpuAddrMonitor(threadNumber); } |
| }; |
| |
| template<class Impl> |
| Fault |
| BaseDynInst<Impl>::initiateMemRead(Addr addr, unsigned size, |
| Request::Flags flags) |
| { |
| instFlags[ReqMade] = true; |
| RequestPtr req = NULL; |
| RequestPtr sreqLow = NULL; |
| RequestPtr sreqHigh = NULL; |
| |
| if (instFlags[ReqMade] && translationStarted()) { |
| req = savedReq; |
| sreqLow = savedSreqLow; |
| sreqHigh = savedSreqHigh; |
| } else { |
| req = std::make_shared<Request>( |
| asid, addr, size, flags, masterId(), |
| this->pc.instAddr(), thread->contextId()); |
| |
| req->taskId(cpu->taskId()); |
| |
| // Only split the request if the ISA supports unaligned accesses. |
| if (TheISA::HasUnalignedMemAcc) { |
| splitRequest(req, sreqLow, sreqHigh); |
| } |
| initiateTranslation(req, sreqLow, sreqHigh, NULL, BaseTLB::Read); |
| } |
| |
| if (translationCompleted()) { |
| if (fault == NoFault) { |
| effAddr = req->getVaddr(); |
| effSize = size; |
| instFlags[EffAddrValid] = true; |
| |
| if (cpu->checker) { |
| reqToVerify = std::make_shared<Request>(*req); |
| } |
| fault = cpu->read(req, sreqLow, sreqHigh, lqIdx); |
| } else { |
| // Commit will have to clean up whatever happened. Set this |
| // instruction as executed. |
| this->setExecuted(); |
| } |
| } |
| |
| if (traceData) |
| traceData->setMem(addr, size, flags); |
| |
| return fault; |
| } |
| |
| template<class Impl> |
| Fault |
| BaseDynInst<Impl>::writeMem(uint8_t *data, unsigned size, Addr addr, |
| Request::Flags flags, uint64_t *res) |
| { |
| if (traceData) |
| traceData->setMem(addr, size, flags); |
| |
| instFlags[ReqMade] = true; |
| RequestPtr req = NULL; |
| RequestPtr sreqLow = NULL; |
| RequestPtr sreqHigh = NULL; |
| |
| if (instFlags[ReqMade] && translationStarted()) { |
| req = savedReq; |
| sreqLow = savedSreqLow; |
| sreqHigh = savedSreqHigh; |
| } else { |
| req = std::make_shared<Request>( |
| asid, addr, size, flags, masterId(), |
| this->pc.instAddr(), thread->contextId()); |
| |
| req->taskId(cpu->taskId()); |
| |
| // Only split the request if the ISA supports unaligned accesses. |
| if (TheISA::HasUnalignedMemAcc) { |
| splitRequest(req, sreqLow, sreqHigh); |
| } |
| initiateTranslation(req, sreqLow, sreqHigh, res, BaseTLB::Write); |
| } |
| |
| if (fault == NoFault && translationCompleted()) { |
| effAddr = req->getVaddr(); |
| effSize = size; |
| instFlags[EffAddrValid] = true; |
| |
| if (cpu->checker) { |
| reqToVerify = std::make_shared<Request>(*req); |
| } |
| fault = cpu->write(req, sreqLow, sreqHigh, data, sqIdx); |
| } |
| |
| return fault; |
| } |
| |
| template<class Impl> |
| inline void |
| BaseDynInst<Impl>::splitRequest(const RequestPtr &req, RequestPtr &sreqLow, |
| RequestPtr &sreqHigh) |
| { |
| // Check to see if the request crosses the next level block boundary. |
| unsigned block_size = cpu->cacheLineSize(); |
| Addr addr = req->getVaddr(); |
| Addr split_addr = roundDown(addr + req->getSize() - 1, block_size); |
| assert(split_addr <= addr || split_addr - addr < block_size); |
| |
| // Spans two blocks. |
| if (split_addr > addr) { |
| req->splitOnVaddr(split_addr, sreqLow, sreqHigh); |
| } |
| } |
| |
| template<class Impl> |
| inline void |
| BaseDynInst<Impl>::initiateTranslation(const RequestPtr &req, |
| const RequestPtr &sreqLow, |
| const RequestPtr &sreqHigh, |
| uint64_t *res, |
| BaseTLB::Mode mode) |
| { |
| translationStarted(true); |
| |
| if (!TheISA::HasUnalignedMemAcc || sreqLow == NULL) { |
| WholeTranslationState *state = |
| new WholeTranslationState(req, NULL, res, mode); |
| |
| // One translation if the request isn't split. |
| DataTranslation<BaseDynInstPtr> *trans = |
| new DataTranslation<BaseDynInstPtr>(this, state); |
| |
| cpu->dtb->translateTiming(req, thread->getTC(), trans, mode); |
| |
| if (!translationCompleted()) { |
| // The translation isn't yet complete, so we can't possibly have a |
| // fault. Overwrite any existing fault we might have from a previous |
| // execution of this instruction (e.g. an uncachable load that |
| // couldn't execute because it wasn't at the head of the ROB). |
| fault = NoFault; |
| |
| // Save memory requests. |
| savedReq = state->mainReq; |
| savedSreqLow = state->sreqLow; |
| savedSreqHigh = state->sreqHigh; |
| } |
| } else { |
| WholeTranslationState *state = |
| new WholeTranslationState(req, sreqLow, sreqHigh, NULL, res, mode); |
| |
| // Two translations when the request is split. |
| DataTranslation<BaseDynInstPtr> *stransLow = |
| new DataTranslation<BaseDynInstPtr>(this, state, 0); |
| DataTranslation<BaseDynInstPtr> *stransHigh = |
| new DataTranslation<BaseDynInstPtr>(this, state, 1); |
| |
| cpu->dtb->translateTiming(sreqLow, thread->getTC(), stransLow, mode); |
| cpu->dtb->translateTiming(sreqHigh, thread->getTC(), stransHigh, mode); |
| |
| if (!translationCompleted()) { |
| // The translation isn't yet complete, so we can't possibly have a |
| // fault. Overwrite any existing fault we might have from a previous |
| // execution of this instruction (e.g. an uncachable load that |
| // couldn't execute because it wasn't at the head of the ROB). |
| fault = NoFault; |
| |
| // Save memory requests. |
| savedReq = state->mainReq; |
| savedSreqLow = state->sreqLow; |
| savedSreqHigh = state->sreqHigh; |
| } |
| } |
| } |
| |
| template<class Impl> |
| inline void |
| BaseDynInst<Impl>::finishTranslation(WholeTranslationState *state) |
| { |
| fault = state->getFault(); |
| |
| instFlags[IsStrictlyOrdered] = state->isStrictlyOrdered(); |
| |
| if (fault == NoFault) { |
| // save Paddr for a single req |
| physEffAddrLow = state->getPaddr(); |
| |
| // case for the request that has been split |
| if (state->isSplit) { |
| physEffAddrLow = state->sreqLow->getPaddr(); |
| physEffAddrHigh = state->sreqHigh->getPaddr(); |
| } |
| |
| memReqFlags = state->getFlags(); |
| |
| if (state->mainReq->isCondSwap()) { |
| assert(state->res); |
| state->mainReq->setExtraData(*state->res); |
| } |
| |
| } else { |
| state->deleteReqs(); |
| } |
| delete state; |
| |
| translationCompleted(true); |
| } |
| |
| #endif // __CPU_BASE_DYN_INST_HH__ |