| /* |
| * Copyright (c) 2011-2015 Advanced Micro Devices, Inc. |
| * All rights reserved. |
| * |
| * For use for simulation and test purposes only |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright notice, |
| * this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright notice, |
| * this list of conditions and the following disclaimer in the documentation |
| * and/or other materials provided with the distribution. |
| * |
| * 3. Neither the name of the copyright holder nor the names of its |
| * contributors may be used to endorse or promote products derived from this |
| * software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE |
| * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| * POSSIBILITY OF SUCH DAMAGE. |
| * |
| * Author: Blake Hechtman |
| */ |
| |
| machine(MachineType:TCP, "GPU TCP (L1 Data Cache)") |
| : VIPERCoalescer* coalescer; |
| Sequencer* sequencer; |
| bool use_seq_not_coal; |
| CacheMemory * L1cache; |
| bool WB; /*is this cache Writeback?*/ |
| bool disableL1; /* bypass L1 cache? */ |
| int TCC_select_num_bits; |
| Cycles issue_latency := 40; // time to send data down to TCC |
| Cycles l2_hit_latency := 18; |
| |
| MessageBuffer * requestFromTCP, network="To", virtual_network="1", vnet_type="request"; |
| MessageBuffer * responseFromTCP, network="To", virtual_network="3", vnet_type="response"; |
| MessageBuffer * unblockFromCore, network="To", virtual_network="5", vnet_type="unblock"; |
| |
| MessageBuffer * probeToTCP, network="From", virtual_network="1", vnet_type="request"; |
| MessageBuffer * responseToTCP, network="From", virtual_network="3", vnet_type="response"; |
| MessageBuffer * mandatoryQueue; |
| |
| { |
| state_declaration(State, desc="TCP Cache States", default="TCP_State_I") { |
| I, AccessPermission:Invalid, desc="Invalid"; |
| V, AccessPermission:Read_Only, desc="Valid"; |
| A, AccessPermission:Invalid, desc="Waiting on Atomic"; |
| } |
| |
| enumeration(Event, desc="TCP Events") { |
| // Core initiated |
| Load, desc="Load"; |
| Store, desc="Store to L1 (L1 is dirty)"; |
| StoreThrough, desc="Store directly to L2(L1 is clean)"; |
| Atomic, desc="Atomic"; |
| Flush, desc="Flush if dirty(wbL1 for Store Release)"; |
| Evict, desc="Evict if clean(invL1 for Load Acquire)"; |
| // Mem sys initiated |
| Repl, desc="Replacing block from cache"; |
| |
| // TCC initiated |
| TCC_Ack, desc="TCC Ack to Core Request"; |
| TCC_AckWB, desc="TCC Ack for WB"; |
| // Disable L1 cache |
| Bypass, desc="Bypass the entire L1 cache"; |
| } |
| |
| enumeration(RequestType, |
| desc="To communicate stats from transitions to recordStats") { |
| DataArrayRead, desc="Read the data array"; |
| DataArrayWrite, desc="Write the data array"; |
| TagArrayRead, desc="Read the data array"; |
| TagArrayWrite, desc="Write the data array"; |
| TagArrayFlash, desc="Flash clear the data array"; |
| } |
| |
| |
| structure(Entry, desc="...", interface="AbstractCacheEntry") { |
| State CacheState, desc="cache state"; |
| bool Dirty, desc="Is the data dirty (diff than memory)?"; |
| DataBlock DataBlk, desc="data for the block"; |
| bool FromL2, default="false", desc="block just moved from L2"; |
| WriteMask writeMask, desc="written bytes masks"; |
| } |
| |
| structure(TBE, desc="...") { |
| State TBEState, desc="Transient state"; |
| DataBlock DataBlk, desc="data for the block, required for concurrent writebacks"; |
| bool Dirty, desc="Is the data dirty (different than memory)?"; |
| int NumPendingMsgs,desc="Number of acks/data messages that this processor is waiting for"; |
| bool Shared, desc="Victim hit by shared probe"; |
| } |
| |
| structure(TBETable, external="yes") { |
| TBE lookup(Addr); |
| void allocate(Addr); |
| void deallocate(Addr); |
| bool isPresent(Addr); |
| } |
| |
| TBETable TBEs, template="<TCP_TBE>", constructor="m_number_of_TBEs"; |
| int TCC_select_low_bit, default="RubySystem::getBlockSizeBits()"; |
| int WTcnt, default="0"; |
| int Fcnt, default="0"; |
| bool inFlush, default="false"; |
| |
| void set_cache_entry(AbstractCacheEntry b); |
| void unset_cache_entry(); |
| void set_tbe(TBE b); |
| void unset_tbe(); |
| void wakeUpAllBuffers(); |
| void wakeUpBuffers(Addr a); |
| Cycles curCycle(); |
| |
| // Internal functions |
| Tick clockEdge(); |
| Tick cyclesToTicks(Cycles c); |
| Entry getCacheEntry(Addr address), return_by_pointer="yes" { |
| Entry cache_entry := static_cast(Entry, "pointer", L1cache.lookup(address)); |
| return cache_entry; |
| } |
| |
| DataBlock getDataBlock(Addr addr), return_by_ref="yes" { |
| TBE tbe := TBEs.lookup(addr); |
| if(is_valid(tbe)) { |
| return tbe.DataBlk; |
| } else { |
| return getCacheEntry(addr).DataBlk; |
| } |
| } |
| |
| State getState(TBE tbe, Entry cache_entry, Addr addr) { |
| if (is_valid(tbe)) { |
| return tbe.TBEState; |
| } else if (is_valid(cache_entry)) { |
| return cache_entry.CacheState; |
| } |
| return State:I; |
| } |
| |
| void setState(TBE tbe, Entry cache_entry, Addr addr, State state) { |
| if (is_valid(tbe)) { |
| tbe.TBEState := state; |
| } |
| |
| if (is_valid(cache_entry)) { |
| cache_entry.CacheState := state; |
| } |
| } |
| |
| void functionalRead(Addr addr, Packet *pkt) { |
| TBE tbe := TBEs.lookup(addr); |
| if(is_valid(tbe)) { |
| testAndRead(addr, tbe.DataBlk, pkt); |
| } else { |
| functionalMemoryRead(pkt); |
| } |
| } |
| |
| int functionalWrite(Addr addr, Packet *pkt) { |
| int num_functional_writes := 0; |
| |
| TBE tbe := TBEs.lookup(addr); |
| if(is_valid(tbe)) { |
| num_functional_writes := num_functional_writes + |
| testAndWrite(addr, tbe.DataBlk, pkt); |
| } |
| |
| num_functional_writes := num_functional_writes + |
| functionalMemoryWrite(pkt); |
| return num_functional_writes; |
| } |
| |
| AccessPermission getAccessPermission(Addr addr) { |
| TBE tbe := TBEs.lookup(addr); |
| if(is_valid(tbe)) { |
| return TCP_State_to_permission(tbe.TBEState); |
| } |
| |
| Entry cache_entry := getCacheEntry(addr); |
| if(is_valid(cache_entry)) { |
| return TCP_State_to_permission(cache_entry.CacheState); |
| } |
| |
| return AccessPermission:NotPresent; |
| } |
| |
| bool isValid(Addr addr) { |
| AccessPermission perm := getAccessPermission(addr); |
| if (perm == AccessPermission:NotPresent || |
| perm == AccessPermission:Invalid || |
| perm == AccessPermission:Busy) { |
| return false; |
| } else { |
| return true; |
| } |
| } |
| |
| void setAccessPermission(Entry cache_entry, Addr addr, State state) { |
| if (is_valid(cache_entry)) { |
| cache_entry.changePermission(TCP_State_to_permission(state)); |
| } |
| } |
| |
| void recordRequestType(RequestType request_type, Addr addr) { |
| if (request_type == RequestType:DataArrayRead) { |
| L1cache.recordRequestType(CacheRequestType:DataArrayRead, addr); |
| } else if (request_type == RequestType:DataArrayWrite) { |
| L1cache.recordRequestType(CacheRequestType:DataArrayWrite, addr); |
| } else if (request_type == RequestType:TagArrayRead) { |
| L1cache.recordRequestType(CacheRequestType:TagArrayRead, addr); |
| } else if (request_type == RequestType:TagArrayFlash) { |
| L1cache.recordRequestType(CacheRequestType:TagArrayRead, addr); |
| } else if (request_type == RequestType:TagArrayWrite) { |
| L1cache.recordRequestType(CacheRequestType:TagArrayWrite, addr); |
| } |
| } |
| |
| bool checkResourceAvailable(RequestType request_type, Addr addr) { |
| if (request_type == RequestType:DataArrayRead) { |
| return L1cache.checkResourceAvailable(CacheResourceType:DataArray, addr); |
| } else if (request_type == RequestType:DataArrayWrite) { |
| return L1cache.checkResourceAvailable(CacheResourceType:DataArray, addr); |
| } else if (request_type == RequestType:TagArrayRead) { |
| return L1cache.checkResourceAvailable(CacheResourceType:TagArray, addr); |
| } else if (request_type == RequestType:TagArrayWrite) { |
| return L1cache.checkResourceAvailable(CacheResourceType:TagArray, addr); |
| } else if (request_type == RequestType:TagArrayFlash) { |
| // FIXME should check once per cache, rather than once per cacheline |
| return L1cache.checkResourceAvailable(CacheResourceType:TagArray, addr); |
| } else { |
| error("Invalid RequestType type in checkResourceAvailable"); |
| return true; |
| } |
| } |
| |
| // Out Ports |
| |
| out_port(requestNetwork_out, CPURequestMsg, requestFromTCP); |
| |
| // In Ports |
| |
| in_port(responseToTCP_in, ResponseMsg, responseToTCP) { |
| if (responseToTCP_in.isReady(clockEdge())) { |
| peek(responseToTCP_in, ResponseMsg, block_on="addr") { |
| Entry cache_entry := getCacheEntry(in_msg.addr); |
| TBE tbe := TBEs.lookup(in_msg.addr); |
| if (in_msg.Type == CoherenceResponseType:TDSysResp) { |
| // disable L1 cache |
| if (disableL1) { |
| trigger(Event:Bypass, in_msg.addr, cache_entry, tbe); |
| } else { |
| if (is_valid(cache_entry) || L1cache.cacheAvail(in_msg.addr)) { |
| trigger(Event:TCC_Ack, in_msg.addr, cache_entry, tbe); |
| } else { |
| Addr victim := L1cache.cacheProbe(in_msg.addr); |
| trigger(Event:Repl, victim, getCacheEntry(victim), TBEs.lookup(victim)); |
| } |
| } |
| } else if (in_msg.Type == CoherenceResponseType:TDSysWBAck || |
| in_msg.Type == CoherenceResponseType:NBSysWBAck) { |
| trigger(Event:TCC_AckWB, in_msg.addr, cache_entry, tbe); |
| } else { |
| error("Unexpected Response Message to Core"); |
| } |
| } |
| } |
| } |
| |
| in_port(mandatoryQueue_in, RubyRequest, mandatoryQueue, desc="...") { |
| if (mandatoryQueue_in.isReady(clockEdge())) { |
| peek(mandatoryQueue_in, RubyRequest, block_on="LineAddress") { |
| Entry cache_entry := getCacheEntry(in_msg.LineAddress); |
| TBE tbe := TBEs.lookup(in_msg.LineAddress); |
| DPRINTF(RubySlicc, "%s\n", in_msg); |
| if (in_msg.Type == RubyRequestType:LD) { |
| trigger(Event:Load, in_msg.LineAddress, cache_entry, tbe); |
| } else if (in_msg.Type == RubyRequestType:ATOMIC || |
| in_msg.Type == RubyRequestType:ATOMIC_RETURN || |
| in_msg.Type == RubyRequestType:ATOMIC_NO_RETURN) { |
| trigger(Event:Atomic, in_msg.LineAddress, cache_entry, tbe); |
| } else if (in_msg.Type == RubyRequestType:ST) { |
| if(disableL1) { |
| trigger(Event:StoreThrough, in_msg.LineAddress, cache_entry, tbe); |
| } else { |
| if (is_valid(cache_entry) || L1cache.cacheAvail(in_msg.LineAddress)) { |
| trigger(Event:StoreThrough, in_msg.LineAddress, cache_entry, tbe); |
| } else { |
| Addr victim := L1cache.cacheProbe(in_msg.LineAddress); |
| trigger(Event:Repl, victim, getCacheEntry(victim), TBEs.lookup(victim)); |
| } |
| } // end if (disableL1) |
| } else if (in_msg.Type == RubyRequestType:FLUSH) { |
| trigger(Event:Flush, in_msg.LineAddress, cache_entry, tbe); |
| } else if (in_msg.Type == RubyRequestType:REPLACEMENT){ |
| trigger(Event:Evict, in_msg.LineAddress, cache_entry, tbe); |
| } else { |
| error("Unexpected Request Message from VIC"); |
| } |
| } |
| } |
| } |
| |
| // Actions |
| |
| action(ic_invCache, "ic", desc="invalidate cache") { |
| if(is_valid(cache_entry)) { |
| cache_entry.writeMask.clear(); |
| L1cache.deallocate(address); |
| } |
| unset_cache_entry(); |
| } |
| |
| action(n_issueRdBlk, "n", desc="Issue RdBlk") { |
| enqueue(requestNetwork_out, CPURequestMsg, issue_latency) { |
| out_msg.addr := address; |
| out_msg.Type := CoherenceRequestType:RdBlk; |
| out_msg.Requestor := machineID; |
| out_msg.Destination.add(mapAddressToRange(address,MachineType:TCC, |
| TCC_select_low_bit, TCC_select_num_bits)); |
| out_msg.MessageSize := MessageSizeType:Request_Control; |
| out_msg.InitialRequestTime := curCycle(); |
| } |
| } |
| |
| action(rb_bypassDone, "rb", desc="bypass L1 of read access") { |
| peek(responseToTCP_in, ResponseMsg) { |
| DataBlock tmp:= in_msg.DataBlk; |
| if (use_seq_not_coal) { |
| sequencer.readCallback(address, tmp, false, MachineType:L1Cache); |
| } else { |
| coalescer.readCallback(address, MachineType:L1Cache, tmp); |
| } |
| if(is_valid(cache_entry)) { |
| unset_cache_entry(); |
| } |
| } |
| } |
| |
| action(wab_bypassDone, "wab", desc="bypass L1 of write access") { |
| peek(responseToTCP_in, ResponseMsg) { |
| DataBlock tmp := in_msg.DataBlk; |
| if (use_seq_not_coal) { |
| sequencer.writeCallback(address, tmp, false, MachineType:L1Cache); |
| } else { |
| coalescer.writeCallback(address, MachineType:L1Cache, tmp); |
| } |
| } |
| } |
| |
| action(norl_issueRdBlkOrloadDone, "norl", desc="local load done") { |
| peek(mandatoryQueue_in, RubyRequest){ |
| if (cache_entry.writeMask.cmpMask(in_msg.writeMask)) { |
| if (use_seq_not_coal) { |
| sequencer.readCallback(address, cache_entry.DataBlk, false, MachineType:L1Cache); |
| } else { |
| coalescer.readCallback(address, MachineType:L1Cache, cache_entry.DataBlk); |
| } |
| } else { |
| enqueue(requestNetwork_out, CPURequestMsg, issue_latency) { |
| out_msg.addr := address; |
| out_msg.Type := CoherenceRequestType:RdBlk; |
| out_msg.Requestor := machineID; |
| out_msg.Destination.add(mapAddressToRange(address,MachineType:TCC, |
| TCC_select_low_bit, TCC_select_num_bits)); |
| out_msg.MessageSize := MessageSizeType:Request_Control; |
| out_msg.InitialRequestTime := curCycle(); |
| } |
| } |
| } |
| } |
| |
| action(wt_writeThrough, "wt", desc="Flush dirty data") { |
| WTcnt := WTcnt + 1; |
| APPEND_TRANSITION_COMMENT("write++ = "); |
| APPEND_TRANSITION_COMMENT(WTcnt); |
| enqueue(requestNetwork_out, CPURequestMsg, issue_latency) { |
| out_msg.addr := address; |
| out_msg.Requestor := machineID; |
| assert(is_valid(cache_entry)); |
| out_msg.DataBlk := cache_entry.DataBlk; |
| out_msg.writeMask.clear(); |
| out_msg.writeMask.orMask(cache_entry.writeMask); |
| out_msg.Destination.add(mapAddressToRange(address,MachineType:TCC, |
| TCC_select_low_bit, TCC_select_num_bits)); |
| out_msg.MessageSize := MessageSizeType:Data; |
| out_msg.Type := CoherenceRequestType:WriteThrough; |
| out_msg.InitialRequestTime := curCycle(); |
| out_msg.Shared := false; |
| |
| // forward inst sequence number to lower TCC |
| peek(mandatoryQueue_in, RubyRequest) { |
| out_msg.instSeqNum := in_msg.instSeqNum; |
| } |
| } |
| } |
| |
| action(at_atomicThrough, "at", desc="send Atomic") { |
| peek(mandatoryQueue_in, RubyRequest) { |
| enqueue(requestNetwork_out, CPURequestMsg, issue_latency) { |
| out_msg.addr := address; |
| out_msg.Requestor := machineID; |
| out_msg.writeMask.clear(); |
| out_msg.writeMask.orMask(in_msg.writeMask); |
| out_msg.Destination.add(mapAddressToRange(address,MachineType:TCC, |
| TCC_select_low_bit, TCC_select_num_bits)); |
| out_msg.MessageSize := MessageSizeType:Data; |
| out_msg.Type := CoherenceRequestType:Atomic; |
| out_msg.InitialRequestTime := curCycle(); |
| out_msg.Shared := false; |
| } |
| } |
| } |
| |
| action(a_allocate, "a", desc="allocate block") { |
| if (is_invalid(cache_entry)) { |
| set_cache_entry(L1cache.allocate(address, new Entry)); |
| } |
| cache_entry.writeMask.clear(); |
| } |
| |
| action(t_allocateTBE, "t", desc="allocate TBE Entry") { |
| check_allocate(TBEs); |
| TBEs.allocate(address); |
| set_tbe(TBEs.lookup(address)); |
| } |
| |
| action(d_deallocateTBE, "d", desc="Deallocate TBE") { |
| TBEs.deallocate(address); |
| unset_tbe(); |
| } |
| |
| action(sf_setFlush, "sf", desc="set flush") { |
| inFlush := true; |
| APPEND_TRANSITION_COMMENT(" inFlush is true"); |
| } |
| |
| action(p_popMandatoryQueue, "pm", desc="Pop Mandatory Queue") { |
| mandatoryQueue_in.dequeue(clockEdge()); |
| } |
| |
| action(pr_popResponseQueue, "pr", desc="Pop Response Queue") { |
| responseToTCP_in.dequeue(clockEdge()); |
| } |
| |
| action(l_loadDone, "l", desc="local load done") { |
| assert(is_valid(cache_entry)); |
| if (use_seq_not_coal) { |
| sequencer.readCallback(address, cache_entry.DataBlk, false, MachineType:L1Cache); |
| } else { |
| coalescer.readCallback(address, MachineType:L1Cache, cache_entry.DataBlk); |
| } |
| } |
| |
| action(ad_atomicDone, "ad", desc="atomic done") { |
| assert(is_valid(cache_entry)); |
| coalescer.atomicCallback(address, MachineType:L1Cache, cache_entry.DataBlk); |
| } |
| |
| action(s_storeDone, "s", desc="local store done") { |
| assert(is_valid(cache_entry)); |
| |
| if (use_seq_not_coal) { |
| sequencer.writeCallback(address, cache_entry.DataBlk, false, MachineType:L1Cache); |
| } else { |
| coalescer.writeCallback(address, MachineType:L1Cache, cache_entry.DataBlk); |
| } |
| cache_entry.Dirty := true; |
| } |
| |
| action(inv_invDone, "inv", desc="local inv done") { |
| if (use_seq_not_coal) { |
| DPRINTF(RubySlicc, "Sequencer does not define invCallback!\n"); |
| assert(false); |
| } else { |
| coalescer.invTCPCallback(address); |
| } |
| } |
| |
| action(wd_wtDone, "wd", desc="writethrough done") { |
| if (use_seq_not_coal) { |
| DPRINTF(RubySlicc, "Sequencer does not define writeCompleteCallback!\n"); |
| assert(false); |
| } else { |
| peek(responseToTCP_in, ResponseMsg) { |
| coalescer.writeCompleteCallback(address, in_msg.instSeqNum); |
| } |
| } |
| } |
| |
| action(dw_dirtyWrite, "dw", desc="update write mask"){ |
| peek(mandatoryQueue_in, RubyRequest) { |
| cache_entry.DataBlk.copyPartial(in_msg.WTData,in_msg.writeMask); |
| cache_entry.writeMask.orMask(in_msg.writeMask); |
| } |
| } |
| action(w_writeCache, "w", desc="write data to cache") { |
| peek(responseToTCP_in, ResponseMsg) { |
| assert(is_valid(cache_entry)); |
| DataBlock tmp := in_msg.DataBlk; |
| tmp.copyPartial(cache_entry.DataBlk,cache_entry.writeMask); |
| cache_entry.DataBlk := tmp; |
| } |
| } |
| |
| action(mru_updateMRU, "mru", desc="Touch block for replacement policy") { |
| L1cache.setMRU(address); |
| } |
| |
| // action(zz_recycleMandatoryQueue, "\z", desc="recycle mandatory queue") { |
| // mandatoryQueue_in.recycle(clockEdge(), cyclesToTicks(recycle_latency)); |
| // } |
| |
| action(z_stall, "z", desc="stall; built-in") { |
| // built-int action |
| } |
| |
| // added for profiling |
| action(uu_profileDataMiss, "\udm", desc="Profile the demand miss"){ |
| ++L1cache.demand_misses; |
| } |
| |
| action(uu_profileDataHit, "\udh", desc="Profile the demand hit"){ |
| ++L1cache.demand_hits; |
| } |
| |
| |
| // Transitions |
| // ArrayRead/Write assumptions: |
| // All requests read Tag Array |
| // TBE allocation write the TagArray to I |
| // TBE only checked on misses |
| // Stores will also write dirty bits in the tag |
| // WriteThroughs still need to use cache entry as staging buffer for wavefront |
| |
| // Stalling transitions do NOT check the tag array...and if they do, |
| // they can cause a resource stall deadlock! |
| |
| transition({A}, {Load, Atomic, StoreThrough}) { //TagArrayRead} { |
| z_stall; |
| } |
| |
| transition(I, Load) {TagArrayRead} { |
| n_issueRdBlk; |
| uu_profileDataMiss; |
| p_popMandatoryQueue; |
| } |
| |
| transition(V, Load) {TagArrayRead, DataArrayRead} { |
| l_loadDone; |
| mru_updateMRU; |
| uu_profileDataHit; |
| p_popMandatoryQueue; |
| } |
| |
| transition({V, I}, Atomic, A) {TagArrayRead, TagArrayWrite} { |
| t_allocateTBE; |
| mru_updateMRU; |
| at_atomicThrough; |
| p_popMandatoryQueue; |
| } |
| |
| transition(I, StoreThrough) {TagArrayRead, TagArrayWrite, DataArrayWrite} { |
| a_allocate; |
| dw_dirtyWrite; |
| s_storeDone; |
| uu_profileDataMiss; |
| wt_writeThrough; |
| ic_invCache; |
| p_popMandatoryQueue; |
| } |
| |
| transition(V, StoreThrough, I) {TagArrayRead, TagArrayWrite, DataArrayWrite} { |
| dw_dirtyWrite; |
| s_storeDone; |
| uu_profileDataHit; |
| wt_writeThrough; |
| ic_invCache; |
| p_popMandatoryQueue; |
| } |
| |
| transition(I, TCC_Ack, V) {TagArrayRead, TagArrayWrite, DataArrayRead, DataArrayWrite} { |
| a_allocate; |
| w_writeCache; |
| l_loadDone; |
| pr_popResponseQueue; |
| } |
| |
| transition(I, Bypass, I) { |
| rb_bypassDone; |
| pr_popResponseQueue; |
| } |
| |
| transition(A, Bypass, I){ |
| d_deallocateTBE; |
| wab_bypassDone; |
| pr_popResponseQueue; |
| } |
| |
| transition(A, TCC_Ack, I) {TagArrayRead, DataArrayRead, DataArrayWrite} { |
| d_deallocateTBE; |
| a_allocate; |
| w_writeCache; |
| ad_atomicDone; |
| pr_popResponseQueue; |
| ic_invCache; |
| } |
| |
| transition(V, TCC_Ack, V) {TagArrayRead, DataArrayRead, DataArrayWrite} { |
| w_writeCache; |
| l_loadDone; |
| pr_popResponseQueue; |
| } |
| |
| transition({I, V}, Repl, I) {TagArrayRead, TagArrayWrite} { |
| ic_invCache; |
| } |
| |
| transition({A}, Repl) {TagArrayRead, TagArrayWrite} { |
| ic_invCache; |
| } |
| |
| transition({V, I, A},Flush) {TagArrayFlash} { |
| sf_setFlush; |
| p_popMandatoryQueue; |
| } |
| |
| transition({I, V}, Evict, I) {TagArrayFlash} { |
| inv_invDone; |
| p_popMandatoryQueue; |
| ic_invCache; |
| } |
| |
| transition(A, Evict) {TagArrayFlash} { |
| inv_invDone; |
| p_popMandatoryQueue; |
| } |
| |
| // TCC_AckWB only snoops TBE |
| transition({V, I, A}, TCC_AckWB) { |
| wd_wtDone; |
| pr_popResponseQueue; |
| } |
| } |