| /* |
| * Copyright (c) 2020 ARM Limited |
| * All rights reserved |
| * |
| * The license below extends only to copyright in the software and shall |
| * not be construed as granting a license to any other intellectual |
| * property including but not limited to intellectual property relating |
| * to a hardware implementation of the functionality of the software |
| * licensed hereunder. You may use the software subject to the license |
| * terms below provided that you ensure that this notice is replicated |
| * unmodified and in its entirety in all distributions of the software, |
| * modified or unmodified, in source code or in binary form. |
| * |
| * Copyright (c) 2013 Mark D. Hill and David A. Wood |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are |
| * met: redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer; |
| * redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution; |
| * neither the name of the copyright holders nor the names of its |
| * contributors may be used to endorse or promote products derived from |
| * this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| machine(MachineType:L0Cache, "MESI Directory L0 Cache") |
| : HTMSequencer * sequencer; |
| CacheMemory * Icache; |
| CacheMemory * Dcache; |
| Cycles request_latency := 2; |
| Cycles response_latency := 2; |
| bool send_evictions; |
| |
| RubyPrefetcher * prefetcher; |
| bool enable_prefetch := "False"; |
| |
| // From this node's L0 cache to the network |
| MessageBuffer * bufferToL1, network="To"; |
| |
| // To this node's L0 cache FROM the network |
| MessageBuffer * bufferFromL1, network="From"; |
| |
| // Message queue between this controller and the processor |
| MessageBuffer * mandatoryQueue; |
| |
| // Request Buffer for prefetches |
| MessageBuffer * prefetchQueue; |
| { |
| // hardware transactional memory |
| bool htmTransactionalState, default="false"; |
| bool htmFailed, default="false"; |
| int htmUid, default=0; |
| HtmFailedInCacheReason htmFailedRc, default=HtmFailedInCacheReason_NO_FAIL; |
| |
| // STATES |
| state_declaration(State, desc="Cache states", default="L0Cache_State_I") { |
| // Base states |
| |
| // The cache entry has not been allocated. |
| I, AccessPermission:Invalid, desc="Invalid"; |
| |
| // The cache entry is in shared mode. The processor can read this entry |
| // but it cannot write to it. |
| S, AccessPermission:Read_Only, desc="Shared"; |
| |
| // The cache entry is in exclusive mode. The processor can read this |
| // entry. It can write to this entry without informing the directory. |
| // On writing, the entry moves to M state. |
| E, AccessPermission:Read_Only, desc="Exclusive"; |
| |
| // The processor has read and write permissions on this entry. |
| M, AccessPermission:Read_Write, desc="Modified"; |
| |
| // Transient States |
| |
| // The cache controller has requested an instruction. It will be stored |
| // in the shared state so that the processor can read it. |
| Inst_IS, AccessPermission:Busy, desc="Issued GETS, have not seen response yet"; |
| |
| // The cache controller has requested that this entry be fetched in |
| // shared state so that the processor can read it. |
| IS, AccessPermission:Busy, desc="Issued GETS, have not seen response yet"; |
| |
| // The cache controller has requested that this entry be fetched in |
| // modify state so that the processor can read/write it. |
| IM, AccessPermission:Busy, desc="Issued GETX, have not seen response yet"; |
| |
| // The cache controller had read permission over the entry. But now the |
| // processor needs to write to it. So, the controller has requested for |
| // write permission. |
| SM, AccessPermission:Read_Only, desc="Issued GETX, have not seen response yet"; |
| |
| // Transient states in which block is being prefetched |
| PF_Inst_IS, AccessPermission:Busy, desc="Issued GETS, have not seen response yet"; |
| PF_IS, AccessPermission:Busy, desc="Issued GETS, have not seen response yet"; |
| PF_IE, AccessPermission:Busy, desc="Issued GETX, have not seen response yet"; |
| } |
| |
| // EVENTS |
| enumeration(Event, desc="Cache events") { |
| // Events from core |
| Load, desc="Load request from the home processor"; |
| Ifetch, desc="I-fetch request from the home processor"; |
| Store, desc="Store request from the home processor"; |
| |
| // invalidations from L1 (due to self or other core) |
| InvOwn, desc="Invalidate request from L1 (own)"; |
| InvElse, desc="Invalidate request from L1 (else)"; |
| |
| // internal generated request |
| L0_Replacement, desc="L0 Replacement", format="!r"; |
| |
| // requests forwarded from other processors |
| Fwd_GETX, desc="GETX from other processor"; |
| Fwd_GETS, desc="GETS from other processor"; |
| Fwd_GET_INSTR, desc="GET_INSTR from other processor"; |
| |
| // data arrives from L1 cache |
| Data, desc="Data for processor"; |
| Data_Exclusive, desc="Data for processor"; |
| Data_Stale, desc="Data for processor, but not for storage"; |
| |
| Ack, desc="Ack for processor"; |
| |
| WB_Ack, desc="Ack for replacement"; |
| |
| Failed_SC, desc="Store conditional request that will fail"; |
| |
| // Prefetch events (generated by prefetcher) |
| PF_L0_Replacement, desc="L0 Replacement caused by pretcher", format="!pr"; |
| PF_Load, desc="Load request from prefetcher"; |
| PF_Ifetch, desc="Instruction fetch request from prefetcher"; |
| PF_Store, desc="Exclusive load request from prefetcher"; |
| PF_Bad_Addr, desc="Throw away prefetch request due to bad address generation"; |
| |
| // hardware transactional memory |
| HTM_Abort, desc="Abort HTM transaction and rollback cache to pre-transactional state"; |
| HTM_Start, desc="Place cache in HTM transactional state"; |
| HTM_Commit, desc="Commit speculative loads/stores and place cache in normal state"; |
| HTM_Cancel, desc="Fail HTM transaction explicitely without aborting"; |
| HTM_notifyCMD, desc="Notify core via HTM CMD that HTM transaction has failed"; |
| HTM_notifyLD, desc="Notify core via LD that HTM transaction has failed"; |
| HTM_notifyST, desc="Notify core via ST that HTM transaction has failed"; |
| } |
| |
| // TYPES |
| |
| // CacheEntry |
| structure(Entry, desc="...", interface="AbstractCacheEntry" ) { |
| State CacheState, desc="cache state"; |
| DataBlock DataBlk, desc="data for the block"; |
| bool Dirty, default="false", desc="data is dirty"; |
| bool isPrefetched, default="false", desc="Set if this block was prefetched"; |
| |
| // hardware transactional memory |
| // read/write set state |
| void setInHtmReadSet(bool), external="yes"; |
| void setInHtmWriteSet(bool), external="yes"; |
| bool getInHtmReadSet(), external="yes"; |
| bool getInHtmWriteSet(), external="yes"; |
| |
| // override invalidateEntry |
| void invalidateEntry() { |
| CacheState := State:I; |
| Dirty := false; |
| } |
| } |
| |
| // TBE fields |
| structure(TBE, desc="...") { |
| Addr addr, desc="Physical address for this TBE"; |
| State TBEState, desc="Transient state"; |
| DataBlock DataBlk, desc="Buffer for the data block"; |
| bool Dirty, default="false", desc="data is dirty"; |
| int pendingAcks, default="0", desc="number of pending acks"; |
| } |
| |
| structure(TBETable, external="yes") { |
| TBE lookup(Addr); |
| void allocate(Addr); |
| void deallocate(Addr); |
| bool isPresent(Addr); |
| TBE getNullEntry(); |
| } |
| |
| TBETable TBEs, template="<L0Cache_TBE>", constructor="m_number_of_TBEs"; |
| |
| Tick clockEdge(); |
| Cycles ticksToCycles(Tick t); |
| void set_cache_entry(AbstractCacheEntry a); |
| void unset_cache_entry(); |
| void set_tbe(TBE a); |
| void unset_tbe(); |
| void wakeUpBuffers(Addr a); |
| void wakeUpAllBuffers(Addr a); |
| void profileMsgDelay(int virtualNetworkType, Cycles c); |
| MachineID mapAddressToMachine(Addr addr, MachineType mtype); |
| |
| // inclusive cache returns L0 entries only |
| Entry getCacheEntry(Addr addr), return_by_pointer="yes" { |
| Entry Dcache_entry := static_cast(Entry, "pointer", Dcache[addr]); |
| if(is_valid(Dcache_entry)) { |
| return Dcache_entry; |
| } |
| |
| Entry Icache_entry := static_cast(Entry, "pointer", Icache[addr]); |
| return Icache_entry; |
| } |
| |
| Entry getDCacheEntry(Addr addr), return_by_pointer="yes" { |
| Entry Dcache_entry := static_cast(Entry, "pointer", Dcache[addr]); |
| return Dcache_entry; |
| } |
| |
| Entry getICacheEntry(Addr addr), return_by_pointer="yes" { |
| Entry Icache_entry := static_cast(Entry, "pointer", Icache[addr]); |
| return Icache_entry; |
| } |
| |
| State getState(TBE tbe, Entry cache_entry, Addr addr) { |
| assert((Dcache.isTagPresent(addr) && Icache.isTagPresent(addr)) == false); |
| |
| if(is_valid(tbe)) { |
| return tbe.TBEState; |
| } else if (is_valid(cache_entry)) { |
| return cache_entry.CacheState; |
| } |
| return State:I; |
| } |
| |
| void setState(TBE tbe, Entry cache_entry, Addr addr, State state) { |
| assert((Dcache.isTagPresent(addr) && Icache.isTagPresent(addr)) == false); |
| |
| // MUST CHANGE |
| if(is_valid(tbe)) { |
| tbe.TBEState := state; |
| } |
| |
| if (is_valid(cache_entry)) { |
| cache_entry.CacheState := state; |
| } |
| } |
| |
| AccessPermission getAccessPermission(Addr addr) { |
| TBE tbe := TBEs[addr]; |
| if(is_valid(tbe)) { |
| DPRINTF(RubySlicc, "%s\n", L0Cache_State_to_permission(tbe.TBEState)); |
| return L0Cache_State_to_permission(tbe.TBEState); |
| } |
| |
| Entry cache_entry := getCacheEntry(addr); |
| if(is_valid(cache_entry)) { |
| DPRINTF(RubySlicc, "%s\n", L0Cache_State_to_permission(cache_entry.CacheState)); |
| return L0Cache_State_to_permission(cache_entry.CacheState); |
| } |
| |
| DPRINTF(RubySlicc, "%s\n", AccessPermission:NotPresent); |
| return AccessPermission:NotPresent; |
| } |
| |
| void functionalRead(Addr addr, Packet *pkt) { |
| TBE tbe := TBEs[addr]; |
| if(is_valid(tbe)) { |
| testAndRead(addr, tbe.DataBlk, pkt); |
| } else { |
| testAndRead(addr, getCacheEntry(addr).DataBlk, pkt); |
| } |
| } |
| |
| int functionalWrite(Addr addr, Packet *pkt) { |
| int num_functional_writes := 0; |
| |
| TBE tbe := TBEs[addr]; |
| if(is_valid(tbe)) { |
| num_functional_writes := num_functional_writes + |
| testAndWrite(addr, tbe.DataBlk, pkt); |
| return num_functional_writes; |
| } |
| |
| num_functional_writes := num_functional_writes + |
| testAndWrite(addr, getCacheEntry(addr).DataBlk, pkt); |
| return num_functional_writes; |
| } |
| |
| void setAccessPermission(Entry cache_entry, Addr addr, State state) { |
| if (is_valid(cache_entry)) { |
| cache_entry.changePermission(L0Cache_State_to_permission(state)); |
| } |
| } |
| |
| Event mandatory_request_type_to_event(RubyRequestType type) { |
| if (type == RubyRequestType:LD) { |
| return Event:Load; |
| } else if (type == RubyRequestType:IFETCH) { |
| return Event:Ifetch; |
| } else if ((type == RubyRequestType:ST) || (type == RubyRequestType:ATOMIC) |
| || (type == RubyRequestType:Store_Conditional)) { |
| return Event:Store; |
| } else { |
| error("Invalid RubyRequestType"); |
| } |
| } |
| |
| Event prefetch_request_type_to_event(RubyRequestType type) { |
| if (type == RubyRequestType:LD) { |
| return Event:PF_Load; |
| } else if (type == RubyRequestType:IFETCH) { |
| return Event:PF_Ifetch; |
| } else if (type == RubyRequestType:ST) { |
| return Event:PF_Store; |
| } else { |
| error("Invalid RubyRequestType"); |
| } |
| } |
| |
| int getPendingAcks(TBE tbe) { |
| return tbe.pendingAcks; |
| } |
| |
| out_port(requestNetwork_out, CoherenceMsg, bufferToL1); |
| out_port(optionalQueue_out, RubyRequest, prefetchQueue); |
| |
| void enqueuePrefetch(Addr address, RubyRequestType type) { |
| enqueue(optionalQueue_out, RubyRequest, 1) { |
| out_msg.LineAddress := address; |
| out_msg.Type := type; |
| out_msg.Prefetch := PrefetchBit:Yes; |
| out_msg.AccessMode := RubyAccessMode:Supervisor; |
| } |
| } |
| |
| // Prefetch queue between the controller and the prefetcher |
| // As per Spracklen et al. (HPCA 2005), the prefetch queue should be |
| // implemented as a LIFO structure. The structure would allow for fast |
| // searches of all entries in the queue, not just the head msg. All |
| // msgs in the structure can be invalidated if a demand miss matches. |
| in_port(optionalQueue_in, RubyRequest, prefetchQueue, desc="...", rank = 2) { |
| if (optionalQueue_in.isReady(clockEdge())) { |
| peek(optionalQueue_in, RubyRequest) { |
| // first check for valid address |
| MachineID mid := mapAddressToMachine(in_msg.LineAddress, MachineType:Directory); |
| NodeID nid := machineIDToNodeID(mid); |
| int nidint := IDToInt(nid); |
| int numDirs := machineCount(MachineType:Directory); |
| if (nidint >= numDirs) { |
| Entry cache_entry := static_cast(Entry, "pointer", Dcache.getNullEntry()); |
| TBE tbe := TBEs.getNullEntry(); |
| trigger(Event:PF_Bad_Addr, in_msg.LineAddress, cache_entry, tbe); |
| } else if (in_msg.Type == RubyRequestType:IFETCH) { |
| // Instruction Prefetch |
| Entry icache_entry := getICacheEntry(in_msg.LineAddress); |
| if (is_valid(icache_entry)) { |
| // The block to be prefetched is already present in the |
| // cache. This request will be made benign and cause the |
| // prefetch queue to be popped. |
| trigger(prefetch_request_type_to_event(in_msg.Type), |
| in_msg.LineAddress, |
| icache_entry, TBEs[in_msg.LineAddress]); |
| } |
| |
| // Check to see if it is in the L0-D |
| Entry cache_entry := getDCacheEntry(in_msg.LineAddress); |
| if (is_valid(cache_entry)) { |
| // The block is in the wrong L0 cache. We should drop |
| // this request. |
| trigger(prefetch_request_type_to_event(in_msg.Type), |
| in_msg.LineAddress, |
| cache_entry, TBEs[in_msg.LineAddress]); |
| } |
| |
| if (Icache.cacheAvail(in_msg.LineAddress)) { |
| // L0-I does't have the line, but we have space for it |
| // in the L0-I so let's see if the L1 has it |
| trigger(prefetch_request_type_to_event(in_msg.Type), |
| in_msg.LineAddress, |
| icache_entry, TBEs[in_msg.LineAddress]); |
| } else { |
| // No room in the L0-I, so we need to make room in the L0-I |
| Addr addr := Icache.cacheProbe(in_msg.LineAddress); |
| check_on_cache_probe(optionalQueue_in, addr); |
| |
| trigger(Event:PF_L0_Replacement, addr, |
| getICacheEntry(addr), |
| TBEs[addr]); |
| } |
| } else { |
| // Data prefetch |
| Entry cache_entry := getDCacheEntry(in_msg.LineAddress); |
| if (is_valid(cache_entry)) { |
| // The block to be prefetched is already present in the |
| // cache. This request will be made benign and cause the |
| // prefetch queue to be popped. |
| trigger(prefetch_request_type_to_event(in_msg.Type), |
| in_msg.LineAddress, |
| cache_entry, TBEs[in_msg.LineAddress]); |
| } |
| |
| // Check to see if it is in the L0-I |
| Entry icache_entry := getICacheEntry(in_msg.LineAddress); |
| if (is_valid(icache_entry)) { |
| // The block is in the wrong L0. Just drop the prefetch |
| // request. |
| trigger(prefetch_request_type_to_event(in_msg.Type), |
| in_msg.LineAddress, |
| icache_entry, TBEs[in_msg.LineAddress]); |
| } |
| |
| if (Dcache.cacheAvail(in_msg.LineAddress)) { |
| // L0-D does't have the line, but we have space for it in |
| // the L0-D let's see if the L1 has it |
| trigger(prefetch_request_type_to_event(in_msg.Type), |
| in_msg.LineAddress, |
| cache_entry, TBEs[in_msg.LineAddress]); |
| } else { |
| // No room in the L0-D, so we need to make room in the L0-D |
| Addr addr := Dcache.cacheProbe(in_msg.LineAddress); |
| check_on_cache_probe(optionalQueue_in, addr); |
| |
| trigger(Event:PF_L0_Replacement, addr, |
| getDCacheEntry(addr), |
| TBEs[addr]); |
| } |
| } |
| } |
| } |
| } |
| |
| // Messages for this L0 cache from the L1 cache |
| in_port(messgeBuffer_in, CoherenceMsg, bufferFromL1, rank = 1) { |
| if (messgeBuffer_in.isReady(clockEdge())) { |
| peek(messgeBuffer_in, CoherenceMsg, block_on="addr") { |
| assert(in_msg.Dest == machineID); |
| |
| Entry cache_entry := getCacheEntry(in_msg.addr); |
| TBE tbe := TBEs[in_msg.addr]; |
| |
| if(in_msg.Class == CoherenceClass:DATA_EXCLUSIVE) { |
| trigger(Event:Data_Exclusive, in_msg.addr, cache_entry, tbe); |
| } else if(in_msg.Class == CoherenceClass:DATA) { |
| trigger(Event:Data, in_msg.addr, cache_entry, tbe); |
| } else if(in_msg.Class == CoherenceClass:STALE_DATA) { |
| trigger(Event:Data_Stale, in_msg.addr, cache_entry, tbe); |
| } else if (in_msg.Class == CoherenceClass:ACK) { |
| trigger(Event:Ack, in_msg.addr, cache_entry, tbe); |
| } else if (in_msg.Class == CoherenceClass:WB_ACK) { |
| trigger(Event:WB_Ack, in_msg.addr, cache_entry, tbe); |
| } else if (in_msg.Class == CoherenceClass:INV_OWN) { |
| trigger(Event:InvOwn, in_msg.addr, cache_entry, tbe); |
| } else if (in_msg.Class == CoherenceClass:INV_ELSE) { |
| trigger(Event:InvElse, in_msg.addr, cache_entry, tbe); |
| } else if (in_msg.Class == CoherenceClass:GETX || |
| in_msg.Class == CoherenceClass:UPGRADE) { |
| // upgrade transforms to GETX due to race |
| trigger(Event:Fwd_GETX, in_msg.addr, cache_entry, tbe); |
| } else if (in_msg.Class == CoherenceClass:GETS) { |
| trigger(Event:Fwd_GETS, in_msg.addr, cache_entry, tbe); |
| } else if (in_msg.Class == CoherenceClass:GET_INSTR) { |
| trigger(Event:Fwd_GET_INSTR, in_msg.addr, cache_entry, tbe); |
| } else { |
| error("Invalid forwarded request type"); |
| } |
| } |
| } |
| } |
| |
| // Mandatory Queue betweens Node's CPU and it's L0 caches |
| in_port(mandatoryQueue_in, RubyRequest, mandatoryQueue, desc="...", rank = 0) { |
| if (mandatoryQueue_in.isReady(clockEdge())) { |
| peek(mandatoryQueue_in, RubyRequest, block_on="LineAddress") { |
| |
| // hardware transactional memory support begins here |
| |
| // If this cache controller is in a transactional state/mode, |
| // ensure that its failure status is something recognisable. |
| if (htmFailed) { |
| assert(htmFailedRc == HtmFailedInCacheReason:FAIL_SELF || |
| htmFailedRc == HtmFailedInCacheReason:FAIL_REMOTE || |
| htmFailedRc == HtmFailedInCacheReason:FAIL_OTHER); |
| } |
| |
| // HTM_Start commands set a new htmUid |
| // This is used for debugging and sanity checks |
| if (in_msg.Type == RubyRequestType:HTM_Start) { |
| assert (htmUid != in_msg.htmTransactionUid); |
| htmUid := in_msg.htmTransactionUid; |
| } |
| |
| // If the incoming memory request was generated within a transaction, |
| // ensure that the request's htmUid matches the htmUid of this |
| // cache controller. A mismatch here is fatal and implies there was |
| // a reordering that should never have taken place. |
| if (in_msg.htmFromTransaction && |
| (htmUid != in_msg.htmTransactionUid)) { |
| DPRINTF(HtmMem, |
| "mandatoryQueue_in: (%u) 0x%lx mismatch between cache htmUid=%u and message htmUid=%u\n", |
| in_msg.Type, in_msg.LineAddress, htmUid, in_msg.htmTransactionUid); |
| } |
| |
| // special/rare case which hopefully won't occur |
| if (htmFailed && in_msg.Type == RubyRequestType:HTM_Start) { |
| error("cannot handle this special HTM case yet"); |
| } |
| |
| // The transaction is to be aborted-- |
| // Aborting a transaction returns the cache to a non-transactional |
| // state/mode, resets the read/write sets, and invalidates any |
| // speculatively written lines. |
| if (in_msg.Type == RubyRequestType:HTM_Abort) { |
| Entry cache_entry := static_cast(Entry, "pointer", Dcache.getNullEntry()); |
| TBE tbe := TBEs.getNullEntry(); |
| trigger(Event:HTM_Abort, in_msg.LineAddress, cache_entry, tbe); |
| } |
| // The transaction has failed but not yet aborted-- |
| // case 1: |
| // If memory request is transactional but the transaction has failed, |
| // it is necessary to inform the CPU of the failure. |
| // case 2: |
| // If load/store memory request is transactional and cache is not |
| // in transactional state, it's likely that the transaction aborted |
| // and Ruby is still receiving scheduled memory operations. |
| // The solution is to make these requests benign. |
| else if ((in_msg.htmFromTransaction && htmFailed) || (in_msg.htmFromTransaction && !isHtmCmdRequest(in_msg.Type) && !htmTransactionalState)) { |
| if (isHtmCmdRequest(in_msg.Type)) { |
| Entry cache_entry := static_cast(Entry, "pointer", Dcache.getNullEntry()); |
| TBE tbe := TBEs.getNullEntry(); |
| trigger(Event:HTM_notifyCMD, in_msg.LineAddress, cache_entry, tbe); |
| } else if (isDataReadRequest(in_msg.Type)) { |
| Entry cache_entry := getDCacheEntry(in_msg.LineAddress); |
| TBE tbe := TBEs[in_msg.LineAddress]; |
| trigger(Event:HTM_notifyLD, in_msg.LineAddress, cache_entry, tbe); |
| } else if (isWriteRequest(in_msg.Type)) { |
| Entry cache_entry := getDCacheEntry(in_msg.LineAddress); |
| TBE tbe := TBEs[in_msg.LineAddress]; |
| trigger(Event:HTM_notifyST, in_msg.LineAddress, cache_entry, tbe); |
| } else { |
| error("unknown message type"); |
| } |
| } |
| // The transaction has not failed and this is |
| // one of three HTM commands-- |
| // (1) start a transaction |
| // (2) commit a transaction |
| // (3) cancel/fail a transaction (but don't yet abort it) |
| else if (isHtmCmdRequest(in_msg.Type) && in_msg.Type != RubyRequestType:HTM_Abort) { |
| Entry cache_entry := static_cast(Entry, "pointer", Dcache.getNullEntry()); |
| TBE tbe := TBEs.getNullEntry(); |
| if (in_msg.Type == RubyRequestType:HTM_Start) { |
| DPRINTF(HtmMem, |
| "mandatoryQueue_in: Starting htm transaction htmUid=%u\n", |
| htmUid); |
| trigger(Event:HTM_Start, in_msg.LineAddress, cache_entry, tbe); |
| } else if (in_msg.Type == RubyRequestType:HTM_Commit) { |
| DPRINTF(HtmMem, |
| "mandatoryQueue_in: Committing transaction htmUid=%d\n", |
| htmUid); |
| trigger(Event:HTM_Commit, in_msg.LineAddress, cache_entry, tbe); |
| } else if (in_msg.Type == RubyRequestType:HTM_Cancel) { |
| DPRINTF(HtmMem, |
| "mandatoryQueue_in: Cancelling transaction htmUid=%d\n", |
| htmUid); |
| trigger(Event:HTM_Cancel, in_msg.LineAddress, cache_entry, tbe); |
| } |
| } |
| // end: hardware transactional memory |
| else if (in_msg.Type == RubyRequestType:IFETCH) { |
| // Check for data access to blocks in I-cache and ifetchs to blocks in D-cache |
| // ** INSTRUCTION ACCESS *** |
| |
| Entry Icache_entry := getICacheEntry(in_msg.LineAddress); |
| if (is_valid(Icache_entry)) { |
| // The tag matches for the L0, so the L0 asks the L2 for it. |
| trigger(mandatory_request_type_to_event(in_msg.Type), in_msg.LineAddress, |
| Icache_entry, TBEs[in_msg.LineAddress]); |
| } else { |
| |
| // Check to see if it is in the OTHER L0 |
| Entry Dcache_entry := getDCacheEntry(in_msg.LineAddress); |
| if (is_valid(Dcache_entry)) { |
| // The block is in the wrong L0, put the request on the queue to the shared L2 |
| trigger(Event:L0_Replacement, in_msg.LineAddress, |
| Dcache_entry, TBEs[in_msg.LineAddress]); |
| } |
| |
| if (Icache.cacheAvail(in_msg.LineAddress)) { |
| // L0 does't have the line, but we have space for it |
| // in the L0 so let's see if the L2 has it |
| trigger(mandatory_request_type_to_event(in_msg.Type), in_msg.LineAddress, |
| Icache_entry, TBEs[in_msg.LineAddress]); |
| } else { |
| // No room in the L0, so we need to make room in the L0 |
| // Check if the line we want to evict is not locked |
| Addr addr := Icache.cacheProbe(in_msg.LineAddress); |
| check_on_cache_probe(mandatoryQueue_in, addr); |
| trigger(Event:L0_Replacement, addr, |
| getICacheEntry(addr), |
| TBEs[addr]); |
| } |
| } |
| } else { |
| // *** DATA ACCESS *** |
| Entry Dcache_entry := getDCacheEntry(in_msg.LineAddress); |
| |
| // early out for failed store conditionals |
| |
| if (in_msg.Type == RubyRequestType:Store_Conditional) { |
| if (!sequencer.llscCheckMonitor(in_msg.LineAddress)) { |
| trigger(Event:Failed_SC, in_msg.LineAddress, |
| Dcache_entry, TBEs[in_msg.LineAddress]); |
| } |
| } |
| |
| if (is_valid(Dcache_entry)) { |
| // The tag matches for the L0, so the L0 ask the L1 for it |
| trigger(mandatory_request_type_to_event(in_msg.Type), in_msg.LineAddress, |
| Dcache_entry, TBEs[in_msg.LineAddress]); |
| } else { |
| // if the request is not valid, the store conditional will fail |
| if (in_msg.Type == RubyRequestType:Store_Conditional) { |
| // if the line is not valid, it can't be locked |
| trigger(Event:Failed_SC, in_msg.LineAddress, |
| Dcache_entry, TBEs[in_msg.LineAddress]); |
| } else { |
| // Check to see if it is in the OTHER L0 |
| Entry Icache_entry := getICacheEntry(in_msg.LineAddress); |
| if (is_valid(Icache_entry)) { |
| // The block is in the wrong L0, put the request on the queue to the private L1 |
| trigger(Event:L0_Replacement, in_msg.LineAddress, |
| Icache_entry, TBEs[in_msg.LineAddress]); |
| } |
| |
| if (Dcache.cacheAvail(in_msg.LineAddress)) { |
| // L1 does't have the line, but we have space for it |
| // in the L0 let's see if the L1 has it |
| trigger(mandatory_request_type_to_event(in_msg.Type), in_msg.LineAddress, |
| Dcache_entry, TBEs[in_msg.LineAddress]); |
| } else { |
| // No room in the L1, so we need to make room in the L0 |
| // Check if the line we want to evict is not locked |
| Addr addr := Dcache.cacheProbe(in_msg.LineAddress); |
| check_on_cache_probe(mandatoryQueue_in, addr); |
| trigger(Event:L0_Replacement, addr, |
| getDCacheEntry(addr), |
| TBEs[addr]); |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| // ACTIONS |
| action(a_issueGETS, "a", desc="Issue GETS") { |
| peek(mandatoryQueue_in, RubyRequest) { |
| enqueue(requestNetwork_out, CoherenceMsg, request_latency) { |
| out_msg.addr := address; |
| out_msg.Class := CoherenceClass:GETS; |
| out_msg.Sender := machineID; |
| out_msg.Dest := createMachineID(MachineType:L1Cache, version); |
| DPRINTF(RubySlicc, "address: %#x, destination: %s\n", |
| address, out_msg.Dest); |
| out_msg.MessageSize := MessageSizeType:Control; |
| out_msg.AccessMode := in_msg.AccessMode; |
| } |
| } |
| } |
| |
| action(b_issueGETX, "b", desc="Issue GETX") { |
| peek(mandatoryQueue_in, RubyRequest) { |
| enqueue(requestNetwork_out, CoherenceMsg, request_latency) { |
| out_msg.addr := address; |
| out_msg.Class := CoherenceClass:GETX; |
| out_msg.Sender := machineID; |
| DPRINTF(RubySlicc, "%s\n", machineID); |
| out_msg.Dest := createMachineID(MachineType:L1Cache, version); |
| |
| DPRINTF(RubySlicc, "address: %#x, destination: %s\n", |
| address, out_msg.Dest); |
| out_msg.MessageSize := MessageSizeType:Control; |
| out_msg.AccessMode := in_msg.AccessMode; |
| } |
| } |
| } |
| |
| action(c_issueUPGRADE, "c", desc="Issue GETX") { |
| peek(mandatoryQueue_in, RubyRequest) { |
| enqueue(requestNetwork_out, CoherenceMsg, request_latency) { |
| out_msg.addr := address; |
| out_msg.Class := CoherenceClass:UPGRADE; |
| out_msg.Sender := machineID; |
| out_msg.Dest := createMachineID(MachineType:L1Cache, version); |
| |
| DPRINTF(RubySlicc, "address: %#x, destination: %s\n", |
| address, out_msg.Dest); |
| out_msg.MessageSize := MessageSizeType:Control; |
| out_msg.AccessMode := in_msg.AccessMode; |
| } |
| } |
| } |
| |
| action(f_sendDataToL1, "f", desc="Send data to the L1 cache") { |
| // hardware transactional memory |
| // Cannot write speculative data to L1 cache |
| if (cache_entry.getInHtmWriteSet()) { |
| // If in HTM write set then send NAK to L1 |
| enqueue(requestNetwork_out, CoherenceMsg, response_latency) { |
| assert(is_valid(cache_entry)); |
| out_msg.addr := address; |
| out_msg.Class := CoherenceClass:NAK; |
| out_msg.Sender := machineID; |
| out_msg.Dest := createMachineID(MachineType:L1Cache, version); |
| out_msg.MessageSize := MessageSizeType:Response_Control; |
| } |
| } else { |
| enqueue(requestNetwork_out, CoherenceMsg, response_latency) { |
| assert(is_valid(cache_entry)); |
| out_msg.addr := address; |
| out_msg.Class := CoherenceClass:INV_DATA; |
| out_msg.DataBlk := cache_entry.DataBlk; |
| out_msg.Dirty := cache_entry.Dirty; |
| out_msg.Sender := machineID; |
| out_msg.Dest := createMachineID(MachineType:L1Cache, version); |
| out_msg.MessageSize := MessageSizeType:Writeback_Data; |
| } |
| cache_entry.Dirty := false; |
| } |
| } |
| |
| action(fi_sendInvAck, "fi", desc="Send data to the L1 cache") { |
| peek(messgeBuffer_in, CoherenceMsg) { |
| enqueue(requestNetwork_out, CoherenceMsg, response_latency) { |
| out_msg.addr := address; |
| out_msg.Class := CoherenceClass:INV_ACK; |
| out_msg.Sender := machineID; |
| out_msg.Dest := createMachineID(MachineType:L1Cache, version); |
| out_msg.MessageSize := MessageSizeType:Response_Control; |
| } |
| } |
| } |
| |
| action(forward_eviction_to_cpu, "\cc", desc="Send eviction information to the processor") { |
| if (send_evictions) { |
| DPRINTF(RubySlicc, "Sending invalidation for %#x to the CPU\n", address); |
| sequencer.evictionCallback(address); |
| } |
| } |
| |
| action(g_issuePUTE, "\ge", desc="Relinquish line to the L1 cache") { |
| enqueue(requestNetwork_out, CoherenceMsg, response_latency) { |
| assert(is_valid(cache_entry)); |
| out_msg.addr := address; |
| out_msg.Class := CoherenceClass:PUTX; |
| out_msg.Dirty := cache_entry.Dirty; |
| out_msg.Sender:= machineID; |
| out_msg.Dest := createMachineID(MachineType:L1Cache, version); |
| out_msg.MessageSize := MessageSizeType:Writeback_Control; |
| } |
| } |
| |
| action(g_issuePUTM, "\gm", desc="Send modified line to the L1 cache") { |
| if (!cache_entry.getInHtmWriteSet()) { |
| enqueue(requestNetwork_out, CoherenceMsg, response_latency) { |
| assert(is_valid(cache_entry)); |
| out_msg.addr := address; |
| out_msg.Class := CoherenceClass:PUTX; |
| out_msg.Dirty := cache_entry.Dirty; |
| out_msg.Sender:= machineID; |
| out_msg.Dest := createMachineID(MachineType:L1Cache, version); |
| out_msg.MessageSize := MessageSizeType:Writeback_Data; |
| out_msg.DataBlk := cache_entry.DataBlk; |
| } |
| } |
| } |
| |
| action(h_load_hit, "hd", desc="Notify sequencer the load completed (cache hit)") { |
| assert(is_valid(cache_entry)); |
| DPRINTF(RubySlicc, "%s\n", cache_entry.DataBlk); |
| Dcache.setMRU(cache_entry); |
| sequencer.readCallback(address, cache_entry.DataBlk); |
| } |
| |
| action(h_ifetch_hit, "hi", desc="Notify sequencer the ifetch completed (cache hit)") { |
| assert(is_valid(cache_entry)); |
| DPRINTF(RubySlicc, "%s\n", cache_entry.DataBlk); |
| Icache.setMRU(cache_entry); |
| sequencer.readCallback(address, cache_entry.DataBlk); |
| } |
| |
| // The action name uses a counterintuitive _hit prefix when it is only |
| // called due to a cache miss. It is technically now a hit after having |
| // serviced the miss. |
| action(hx_load_hit, "hxd", desc="Notify sequencer the load completed (cache miss)") { |
| assert(is_valid(cache_entry)); |
| DPRINTF(RubySlicc, "%s\n", cache_entry.DataBlk); |
| Dcache.setMRU(cache_entry); |
| sequencer.readCallback(address, cache_entry.DataBlk, true); |
| } |
| |
| // The action name uses a counterintuitive _hit prefix when it is only |
| // called due to a cache miss. It is technically now a hit after having |
| // serviced the miss. |
| action(hx_ifetch_hit, "hxi", desc="Notify sequencer the ifetch completed (cache miss)") { |
| assert(is_valid(cache_entry)); |
| DPRINTF(RubySlicc, "%s\n", cache_entry.DataBlk); |
| Icache.setMRU(cache_entry); |
| sequencer.readCallback(address, cache_entry.DataBlk, true); |
| } |
| |
| action(hh_store_hit, "\h", desc="Notify sequencer that store completed (cache hit)") { |
| assert(is_valid(cache_entry)); |
| DPRINTF(RubySlicc, "%s\n", cache_entry.DataBlk); |
| Dcache.setMRU(cache_entry); |
| sequencer.writeCallback(address, cache_entry.DataBlk); |
| cache_entry.Dirty := true; |
| } |
| |
| // The action name uses a counterintuitive _hit prefix when it is only |
| // called due to a cache miss. It is technically now a hit after having |
| // serviced the miss. |
| action(hhx_store_hit, "\hx", desc="Notify sequencer that store completed (cache miss)") { |
| assert(is_valid(cache_entry)); |
| DPRINTF(RubySlicc, "%s\n", cache_entry.DataBlk); |
| Dcache.setMRU(cache_entry); |
| sequencer.writeCallback(address, cache_entry.DataBlk, true); |
| cache_entry.Dirty := true; |
| } |
| |
| action(i_allocateTBE, "i", desc="Allocate TBE (number of invalidates=0)") { |
| check_allocate(TBEs); |
| assert(is_valid(cache_entry)); |
| TBEs.allocate(address); |
| set_tbe(TBEs[address]); |
| tbe.Dirty := cache_entry.Dirty; |
| tbe.DataBlk := cache_entry.DataBlk; |
| } |
| |
| action(k_popMandatoryQueue, "k", desc="Pop mandatory queue") { |
| mandatoryQueue_in.dequeue(clockEdge()); |
| } |
| |
| action(l_popRequestQueue, "l", |
| desc="Pop incoming request queue and profile the delay within this virtual network") { |
| Tick delay := messgeBuffer_in.dequeue(clockEdge()); |
| profileMsgDelay(2, ticksToCycles(delay)); |
| } |
| |
| action(o_popIncomingResponseQueue, "o", |
| desc="Pop Incoming Response queue and profile the delay within this virtual network") { |
| Tick delay := messgeBuffer_in.dequeue(clockEdge()); |
| profileMsgDelay(1, ticksToCycles(delay)); |
| } |
| |
| action(s_deallocateTBE, "s", desc="Deallocate TBE") { |
| TBEs.deallocate(address); |
| unset_tbe(); |
| } |
| |
| action(u_writeDataToCache, "u", desc="Write data to cache") { |
| peek(messgeBuffer_in, CoherenceMsg) { |
| assert(is_valid(cache_entry)); |
| cache_entry.DataBlk := in_msg.DataBlk; |
| } |
| } |
| |
| action(u_writeInstToCache, "ui", desc="Write data to cache") { |
| peek(messgeBuffer_in, CoherenceMsg) { |
| assert(is_valid(cache_entry)); |
| cache_entry.DataBlk := in_msg.DataBlk; |
| } |
| } |
| |
| action(ff_deallocateCacheBlock, "\f", |
| desc="Deallocate L1 cache block.") { |
| if (Dcache.isTagPresent(address)) { |
| Dcache.deallocate(address); |
| } else { |
| Icache.deallocate(address); |
| } |
| unset_cache_entry(); |
| } |
| |
| action(oo_allocateDCacheBlock, "\o", desc="Set L1 D-cache tag equal to tag of block B") { |
| if (is_invalid(cache_entry)) { |
| set_cache_entry(Dcache.allocate(address, new Entry)); |
| } |
| } |
| |
| action(pp_allocateICacheBlock, "\p", desc="Set L1 I-cache tag equal to tag of block B") { |
| if (is_invalid(cache_entry)) { |
| set_cache_entry(Icache.allocate(address, new Entry)); |
| } |
| } |
| |
| action(z_stallAndWaitMandatoryQueue, "\z", desc="Stall cpu request queue") { |
| stall_and_wait(mandatoryQueue_in, address); |
| } |
| |
| action(kd_wakeUpDependents, "kd", desc="Wake-up dependents") { |
| wakeUpAllBuffers(address); |
| } |
| |
| action(uu_profileInstMiss, "\ui", desc="Profile the demand miss") { |
| ++Icache.demand_misses; |
| } |
| |
| action(uu_profileInstHit, "\uih", desc="Profile the demand hit") { |
| ++Icache.demand_hits; |
| } |
| |
| action(uu_profileDataMiss, "\ud", desc="Profile the demand miss") { |
| ++Dcache.demand_misses; |
| } |
| |
| action(uu_profileDataHit, "\udh", desc="Profile the demand hit") { |
| ++Dcache.demand_hits; |
| } |
| |
| // store conditionals |
| |
| action(hhc_storec_fail, "\hc", |
| desc="Notify sequencer that store conditional failed") { |
| sequencer.writeCallbackScFail(address, cache_entry.DataBlk); |
| } |
| |
| // prefetching |
| |
| action(pa_issuePfGETS, "pa", desc="Issue prefetch GETS") { |
| peek(optionalQueue_in, RubyRequest) { |
| enqueue(requestNetwork_out, CoherenceMsg, request_latency) { |
| out_msg.addr := address; |
| out_msg.Class := CoherenceClass:GETS; |
| out_msg.Sender := machineID; |
| out_msg.Dest := createMachineID(MachineType:L1Cache, version); |
| DPRINTF(RubySlicc, "address: %#x, destination: %s\n", |
| address, out_msg.Dest); |
| out_msg.MessageSize := MessageSizeType:Control; |
| out_msg.Prefetch := in_msg.Prefetch; |
| out_msg.AccessMode := in_msg.AccessMode; |
| } |
| } |
| } |
| |
| action(pb_issuePfGETX, "pb", desc="Issue prefetch GETX") { |
| peek(optionalQueue_in, RubyRequest) { |
| enqueue(requestNetwork_out, CoherenceMsg, request_latency) { |
| out_msg.addr := address; |
| out_msg.Class := CoherenceClass:GETX; |
| out_msg.Sender := machineID; |
| DPRINTF(RubySlicc, "%s\n", machineID); |
| out_msg.Dest := createMachineID(MachineType:L1Cache, version); |
| |
| DPRINTF(RubySlicc, "address: %#x, destination: %s\n", |
| address, out_msg.Dest); |
| out_msg.MessageSize := MessageSizeType:Control; |
| out_msg.Prefetch := in_msg.Prefetch; |
| out_msg.AccessMode := in_msg.AccessMode; |
| } |
| } |
| } |
| |
| action(pq_popPrefetchQueue, "\pq", desc="Pop the prefetch request queue") { |
| optionalQueue_in.dequeue(clockEdge()); |
| } |
| |
| action(mp_markPrefetched, "mp", desc="Write data from response queue to cache") { |
| assert(is_valid(cache_entry)); |
| cache_entry.isPrefetched := true; |
| } |
| |
| action(po_observeMiss, "\po", desc="Inform the prefetcher about a cache miss") { |
| peek(mandatoryQueue_in, RubyRequest) { |
| if (enable_prefetch) { |
| prefetcher.observeMiss(in_msg.LineAddress, in_msg.Type); |
| } |
| } |
| } |
| |
| action(ppm_observePfMiss, "\ppm", |
| desc="Inform the prefetcher about a cache miss with in-flight prefetch") { |
| peek(mandatoryQueue_in, RubyRequest) { |
| prefetcher.observePfMiss(in_msg.LineAddress); |
| } |
| } |
| |
| action(pph_observePfHit, "\pph", |
| desc="Inform the prefetcher if a cache hit was the result of a prefetch") { |
| peek(mandatoryQueue_in, RubyRequest) { |
| if (cache_entry.isPrefetched) { |
| prefetcher.observePfHit(in_msg.LineAddress); |
| cache_entry.isPrefetched := false; |
| } |
| } |
| } |
| |
| action(z_stallAndWaitOptionalQueue, "\pz", desc="recycle prefetch request queue") { |
| stall_and_wait(optionalQueue_in, address); |
| } |
| |
| // hardware transactional memory |
| |
| action(hars_htmAddToReadSet, "\hars", desc="add to HTM read set") { |
| peek(mandatoryQueue_in, RubyRequest) { |
| if (htmTransactionalState && in_msg.htmFromTransaction) { |
| assert(!htmFailed); |
| if (!cache_entry.getInHtmReadSet()) { |
| DPRINTF(HtmMem, |
| "Adding 0x%lx to transactional read set htmUid=%u.\n", |
| address, htmUid); |
| cache_entry.setInHtmReadSet(true); |
| } |
| } |
| } |
| } |
| |
| action(haws_htmAddToWriteSet, "\haws", desc="add to HTM write set") { |
| peek(mandatoryQueue_in, RubyRequest) { |
| if (htmTransactionalState && in_msg.htmFromTransaction) { |
| assert(!htmFailed); |
| assert(!((cache_entry.getInHtmWriteSet() == false) && |
| (cache_entry.CacheState == State:IM))); |
| assert(!((cache_entry.getInHtmWriteSet() == false) && |
| (cache_entry.CacheState == State:SM))); |
| // ON DEMAND write-back |
| // if modified and not in write set, |
| // write back and retain M state |
| if((cache_entry.CacheState == State:M) && |
| !cache_entry.getInHtmWriteSet()) { |
| // code copied from issuePUTX |
| enqueue(requestNetwork_out, CoherenceMsg, response_latency) { |
| assert(is_valid(cache_entry)); |
| out_msg.addr := address; |
| out_msg.Class := CoherenceClass:PUTX_COPY; |
| out_msg.DataBlk := cache_entry.DataBlk; |
| out_msg.Dirty := cache_entry.Dirty; |
| out_msg.Sender:= machineID; |
| out_msg.Dest := createMachineID(MachineType:L1Cache, version); |
| out_msg.MessageSize := MessageSizeType:Writeback_Data; |
| } |
| } |
| if (!cache_entry.getInHtmWriteSet()) { |
| DPRINTF(HtmMem, |
| "Adding 0x%lx to transactional write set htmUid=%u.\n", |
| address, htmUid); |
| cache_entry.setInHtmWriteSet(true); |
| } |
| } |
| } |
| } |
| |
| action(hfts_htmFailTransactionSize, "\hfts^", |
| desc="Fail transaction due to cache associativity/capacity conflict") { |
| if (htmTransactionalState && |
| (cache_entry.getInHtmReadSet() || cache_entry.getInHtmWriteSet())) { |
| DPRINTF(HtmMem, |
| "Failure of a transaction due to cache associativity/capacity: rs=%s, ws=%s, addr=0x%lx, htmUid=%u\n", |
| cache_entry.getInHtmReadSet(), cache_entry.getInHtmWriteSet(), |
| address, htmUid); |
| htmFailed := true; |
| htmFailedRc := HtmFailedInCacheReason:FAIL_SELF; |
| } |
| } |
| |
| action(hftm_htmFailTransactionMem, "\hftm^", |
| desc="Fail transaction due to memory conflict") { |
| if (htmTransactionalState && |
| (cache_entry.getInHtmReadSet() || cache_entry.getInHtmWriteSet())) { |
| DPRINTF(HtmMem, |
| "Failure of a transaction due to memory conflict: rs=%s, ws=%s, addr=0x%lx, htmUid=%u\n", |
| cache_entry.getInHtmReadSet(), cache_entry.getInHtmWriteSet(), |
| address, htmUid); |
| htmFailed := true; |
| htmFailedRc := HtmFailedInCacheReason:FAIL_REMOTE; |
| } |
| } |
| |
| action(hvu_htmVerifyUid, "\hvu", |
| desc="Ensure cache htmUid is equivalent to message htmUid") { |
| peek(mandatoryQueue_in, RubyRequest) { |
| if (htmUid != in_msg.htmTransactionUid) { |
| DPRINTF(HtmMem, "cache's htmUid=%u and request's htmUid=%u\n", |
| htmUid, in_msg.htmTransactionUid); |
| error("mismatch between cache's htmUid and request's htmUid"); |
| } |
| } |
| } |
| |
| action(hcs_htmCommandSucceed, "\hcs", |
| desc="Notify sequencer HTM command succeeded") { |
| peek(mandatoryQueue_in, RubyRequest) { |
| assert(is_invalid(cache_entry) && is_invalid(tbe)); |
| DPRINTF(RubySlicc, "htm command successful\n"); |
| sequencer.htmCallback(in_msg.LineAddress, |
| HtmCallbackMode:HTM_CMD, HtmFailedInCacheReason:NO_FAIL); |
| } |
| } |
| |
| action(hcs_htmCommandFail, "\hcf", |
| desc="Notify sequencer HTM command failed") { |
| peek(mandatoryQueue_in, RubyRequest) { |
| assert(is_invalid(cache_entry) && is_invalid(tbe)); |
| DPRINTF(RubySlicc, "htm command failure\n"); |
| sequencer.htmCallback(in_msg.LineAddress, |
| HtmCallbackMode:HTM_CMD, htmFailedRc); |
| } |
| } |
| |
| action(hcs_htmLoadFail, "\hlf", |
| desc="Notify sequencer HTM transactional load failed") { |
| peek(mandatoryQueue_in, RubyRequest) { |
| DPRINTF(RubySlicc, "htm transactional load failure\n"); |
| sequencer.htmCallback(in_msg.LineAddress, |
| HtmCallbackMode:LD_FAIL, htmFailedRc); |
| } |
| } |
| |
| action(hcs_htmStoreFail, "\hsf", |
| desc="Notify sequencer HTM transactional store failed") { |
| peek(mandatoryQueue_in, RubyRequest) { |
| DPRINTF(RubySlicc, "htm transactional store failure\n"); |
| sequencer.htmCallback(in_msg.LineAddress, |
| HtmCallbackMode:ST_FAIL, htmFailedRc); |
| } |
| } |
| |
| action(hat_htmAbortTransaction, "\hat", |
| desc="Abort HTM transaction and rollback cache to pre-transactional state") { |
| assert(is_invalid(cache_entry) && is_invalid(tbe)); |
| assert (htmTransactionalState); |
| Dcache.htmAbortTransaction(); |
| htmTransactionalState := false; |
| htmFailed := false; |
| sequencer.llscClearLocalMonitor(); |
| DPRINTF(RubySlicc, "Aborted htm transaction\n"); |
| } |
| |
| action(hst_htmStartTransaction, "\hst", |
| desc="Place cache in HTM transactional state") { |
| assert(is_invalid(cache_entry) && is_invalid(tbe)); |
| assert (!htmTransactionalState); |
| htmTransactionalState := true; |
| htmFailedRc := HtmFailedInCacheReason:NO_FAIL; |
| sequencer.llscClearLocalMonitor(); |
| DPRINTF(RubySlicc, "Started htm transaction\n"); |
| } |
| |
| action(hct_htmCommitTransaction, "\hct", |
| desc="Commit speculative loads/stores and place cache in normal state") { |
| assert(is_invalid(cache_entry) && is_invalid(tbe)); |
| assert (htmTransactionalState); |
| assert (!htmFailed); |
| Dcache.htmCommitTransaction(); |
| sequencer.llscClearLocalMonitor(); |
| htmTransactionalState := false; |
| DPRINTF(RubySlicc, "Committed htm transaction\n"); |
| } |
| |
| action(hcnt_htmCancelTransaction, "\hcnt", |
| desc="Fail HTM transaction explicitely without aborting") { |
| assert(is_invalid(cache_entry) && is_invalid(tbe)); |
| assert (htmTransactionalState); |
| htmFailed := true; |
| htmFailedRc := HtmFailedInCacheReason:FAIL_OTHER; |
| DPRINTF(RubySlicc, "Cancelled htm transaction\n"); |
| } |
| |
| //***************************************************** |
| // TRANSITIONS |
| //***************************************************** |
| |
| // Transitions for Load/Store/Replacement/WriteBack from transient states |
| transition({Inst_IS, IS, IM, SM}, {Load, Ifetch, Store, L0_Replacement}) { |
| z_stallAndWaitMandatoryQueue; |
| } |
| |
| // Transitions from Idle |
| transition(I, Load, IS) { |
| oo_allocateDCacheBlock; |
| i_allocateTBE; |
| hars_htmAddToReadSet; |
| a_issueGETS; |
| uu_profileDataMiss; |
| po_observeMiss; |
| k_popMandatoryQueue; |
| } |
| |
| transition(I, Ifetch, Inst_IS) { |
| pp_allocateICacheBlock; |
| i_allocateTBE; |
| a_issueGETS; |
| uu_profileInstMiss; |
| po_observeMiss; |
| k_popMandatoryQueue; |
| } |
| |
| transition(I, Store, IM) { |
| oo_allocateDCacheBlock; |
| i_allocateTBE; |
| haws_htmAddToWriteSet; |
| b_issueGETX; |
| uu_profileDataMiss; |
| po_observeMiss; |
| k_popMandatoryQueue; |
| } |
| |
| transition({I, Inst_IS}, {InvOwn, InvElse}) { |
| forward_eviction_to_cpu; |
| fi_sendInvAck; |
| l_popRequestQueue; |
| } |
| |
| transition({IS, IM}, InvOwn) { |
| hfts_htmFailTransactionSize; |
| forward_eviction_to_cpu; |
| fi_sendInvAck; |
| l_popRequestQueue; |
| } |
| |
| transition({IS, IM}, InvElse) { |
| hftm_htmFailTransactionMem; |
| forward_eviction_to_cpu; |
| fi_sendInvAck; |
| l_popRequestQueue; |
| } |
| |
| transition(SM, InvOwn, IM) { |
| hfts_htmFailTransactionSize; |
| forward_eviction_to_cpu; |
| fi_sendInvAck; |
| l_popRequestQueue; |
| } |
| |
| transition(SM, InvElse, IM) { |
| hftm_htmFailTransactionMem; |
| forward_eviction_to_cpu; |
| fi_sendInvAck; |
| l_popRequestQueue; |
| } |
| |
| // Transitions from Shared |
| transition({S,E,M}, Load) { |
| hars_htmAddToReadSet; |
| h_load_hit; |
| uu_profileDataHit; |
| pph_observePfHit; |
| k_popMandatoryQueue; |
| } |
| |
| transition({S,E,M}, Ifetch) { |
| h_ifetch_hit; |
| uu_profileInstHit; |
| pph_observePfHit; |
| k_popMandatoryQueue; |
| } |
| |
| transition(S, Store, SM) { |
| i_allocateTBE; |
| haws_htmAddToWriteSet; |
| c_issueUPGRADE; |
| uu_profileDataMiss; |
| k_popMandatoryQueue; |
| } |
| |
| transition(S, {L0_Replacement,PF_L0_Replacement}, I) { |
| hfts_htmFailTransactionSize; |
| forward_eviction_to_cpu; |
| ff_deallocateCacheBlock; |
| } |
| |
| transition(S, InvOwn, I) { |
| hfts_htmFailTransactionSize; |
| forward_eviction_to_cpu; |
| fi_sendInvAck; |
| ff_deallocateCacheBlock; |
| l_popRequestQueue; |
| } |
| |
| transition(S, InvElse, I) { |
| hftm_htmFailTransactionMem; |
| forward_eviction_to_cpu; |
| fi_sendInvAck; |
| ff_deallocateCacheBlock; |
| l_popRequestQueue; |
| } |
| |
| // Transitions from Exclusive |
| transition({E,M}, Store, M) { |
| haws_htmAddToWriteSet; |
| hh_store_hit; |
| uu_profileDataHit; |
| pph_observePfHit; |
| k_popMandatoryQueue; |
| } |
| |
| transition(E, {L0_Replacement,PF_L0_Replacement}, I) { |
| hfts_htmFailTransactionSize; |
| forward_eviction_to_cpu; |
| g_issuePUTE; |
| ff_deallocateCacheBlock; |
| } |
| |
| transition(E, {InvElse, Fwd_GETX}, I) { |
| hftm_htmFailTransactionMem; |
| // don't send data |
| forward_eviction_to_cpu; |
| fi_sendInvAck; |
| ff_deallocateCacheBlock; |
| l_popRequestQueue; |
| } |
| |
| transition(E, InvOwn, I) { |
| hfts_htmFailTransactionSize; |
| // don't send data |
| forward_eviction_to_cpu; |
| fi_sendInvAck; |
| ff_deallocateCacheBlock; |
| l_popRequestQueue; |
| } |
| |
| transition(E, {Fwd_GETS, Fwd_GET_INSTR}, S) { |
| f_sendDataToL1; |
| l_popRequestQueue; |
| } |
| |
| // Transitions from Modified |
| transition(M, {L0_Replacement,PF_L0_Replacement}, I) { |
| hfts_htmFailTransactionSize; |
| forward_eviction_to_cpu; |
| g_issuePUTM; |
| ff_deallocateCacheBlock; |
| } |
| |
| transition(M, InvOwn, I) { |
| hfts_htmFailTransactionSize; |
| forward_eviction_to_cpu; |
| f_sendDataToL1; |
| ff_deallocateCacheBlock; |
| l_popRequestQueue; |
| } |
| |
| transition(M, {InvElse, Fwd_GETX}, I) { |
| hftm_htmFailTransactionMem; |
| forward_eviction_to_cpu; |
| f_sendDataToL1; |
| ff_deallocateCacheBlock; |
| l_popRequestQueue; |
| } |
| |
| transition(M, {Fwd_GETS, Fwd_GET_INSTR}, S) { |
| hftm_htmFailTransactionMem; |
| f_sendDataToL1; |
| l_popRequestQueue; |
| } |
| |
| transition(IS, Data, S) { |
| u_writeDataToCache; |
| hx_load_hit; |
| s_deallocateTBE; |
| o_popIncomingResponseQueue; |
| kd_wakeUpDependents; |
| } |
| |
| transition(IS, Data_Exclusive, E) { |
| u_writeDataToCache; |
| hx_load_hit; |
| s_deallocateTBE; |
| o_popIncomingResponseQueue; |
| kd_wakeUpDependents; |
| } |
| |
| transition(IS, Data_Stale, I) { |
| hftm_htmFailTransactionMem; |
| u_writeDataToCache; |
| forward_eviction_to_cpu; |
| hx_load_hit; |
| s_deallocateTBE; |
| ff_deallocateCacheBlock; |
| o_popIncomingResponseQueue; |
| kd_wakeUpDependents; |
| } |
| |
| transition(Inst_IS, Data, S) { |
| u_writeInstToCache; |
| hx_ifetch_hit; |
| s_deallocateTBE; |
| o_popIncomingResponseQueue; |
| kd_wakeUpDependents; |
| } |
| |
| transition(Inst_IS, Data_Exclusive, E) { |
| u_writeInstToCache; |
| hx_ifetch_hit; |
| s_deallocateTBE; |
| o_popIncomingResponseQueue; |
| kd_wakeUpDependents; |
| } |
| |
| transition(Inst_IS, Data_Stale, I) { |
| u_writeInstToCache; |
| hx_ifetch_hit; |
| s_deallocateTBE; |
| ff_deallocateCacheBlock; |
| o_popIncomingResponseQueue; |
| kd_wakeUpDependents; |
| } |
| |
| transition({IM,SM}, Data_Exclusive, M) { |
| u_writeDataToCache; |
| hhx_store_hit; |
| s_deallocateTBE; |
| o_popIncomingResponseQueue; |
| kd_wakeUpDependents; |
| } |
| |
| // store conditionals |
| |
| transition({I,S,E,M}, Failed_SC) { |
| // IS,IM,SM don't handle store conditionals |
| hhc_storec_fail; |
| k_popMandatoryQueue; |
| } |
| |
| // prefetcher |
| |
| transition({Inst_IS, IS, IM, SM, PF_Inst_IS, PF_IS, PF_IE}, PF_L0_Replacement) { |
| z_stallAndWaitOptionalQueue; |
| } |
| |
| transition({PF_Inst_IS, PF_IS}, {Store, L0_Replacement}) { |
| z_stallAndWaitMandatoryQueue; |
| } |
| |
| transition({PF_IE}, {Load, Ifetch, L0_Replacement}) { |
| z_stallAndWaitMandatoryQueue; |
| } |
| |
| transition({S,E,M,Inst_IS,IS,IM,SM,PF_Inst_IS,PF_IS,PF_IE}, |
| {PF_Load, PF_Store, PF_Ifetch}) { |
| pq_popPrefetchQueue; |
| } |
| |
| transition(I, PF_Load, PF_IS) { |
| oo_allocateDCacheBlock; |
| i_allocateTBE; |
| pa_issuePfGETS; |
| pq_popPrefetchQueue; |
| } |
| |
| transition(PF_IS, Load, IS) { |
| hars_htmAddToReadSet; |
| uu_profileDataMiss; |
| ppm_observePfMiss; |
| k_popMandatoryQueue; |
| } |
| |
| transition(I, PF_Ifetch, PF_Inst_IS) { |
| pp_allocateICacheBlock; |
| i_allocateTBE; |
| pa_issuePfGETS; |
| pq_popPrefetchQueue; |
| } |
| |
| transition(PF_Inst_IS, Ifetch, Inst_IS) { |
| uu_profileInstMiss; |
| ppm_observePfMiss; |
| k_popMandatoryQueue; |
| } |
| |
| transition(I, PF_Store, PF_IE) { |
| oo_allocateDCacheBlock; |
| i_allocateTBE; |
| pb_issuePfGETX; |
| pq_popPrefetchQueue; |
| } |
| |
| transition(PF_IE, Store, IM) { |
| haws_htmAddToWriteSet; |
| uu_profileDataMiss; |
| ppm_observePfMiss; |
| k_popMandatoryQueue; |
| } |
| |
| transition({PF_Inst_IS, PF_IS, PF_IE}, {InvOwn, InvElse}) { |
| fi_sendInvAck; |
| l_popRequestQueue; |
| } |
| |
| transition(PF_IS, Data, S) { |
| u_writeDataToCache; |
| s_deallocateTBE; |
| mp_markPrefetched; |
| o_popIncomingResponseQueue; |
| kd_wakeUpDependents; |
| } |
| |
| transition(PF_IS, Data_Exclusive, E) { |
| u_writeDataToCache; |
| s_deallocateTBE; |
| mp_markPrefetched; |
| o_popIncomingResponseQueue; |
| kd_wakeUpDependents; |
| } |
| |
| transition(PF_IS, Data_Stale, I) { |
| u_writeDataToCache; |
| s_deallocateTBE; |
| mp_markPrefetched; |
| ff_deallocateCacheBlock; |
| o_popIncomingResponseQueue; |
| kd_wakeUpDependents; |
| } |
| |
| transition(PF_Inst_IS, Data, S) { |
| u_writeInstToCache; |
| s_deallocateTBE; |
| mp_markPrefetched; |
| o_popIncomingResponseQueue; |
| kd_wakeUpDependents; |
| } |
| |
| transition(PF_Inst_IS, Data_Exclusive, E) { |
| u_writeInstToCache; |
| s_deallocateTBE; |
| mp_markPrefetched; |
| o_popIncomingResponseQueue; |
| kd_wakeUpDependents; |
| } |
| |
| transition(PF_IE, Data_Exclusive, E) { |
| u_writeDataToCache; |
| s_deallocateTBE; |
| mp_markPrefetched; |
| o_popIncomingResponseQueue; |
| kd_wakeUpDependents; |
| } |
| |
| transition(I, PF_Bad_Addr) { |
| pq_popPrefetchQueue; |
| } |
| |
| // hardware transactional memory |
| |
| transition(I, HTM_Abort) { |
| hvu_htmVerifyUid; |
| hat_htmAbortTransaction; |
| hcs_htmCommandSucceed; |
| k_popMandatoryQueue; |
| } |
| |
| transition(I, HTM_Start) { |
| hvu_htmVerifyUid; |
| hst_htmStartTransaction; |
| hcs_htmCommandSucceed; |
| k_popMandatoryQueue; |
| } |
| |
| transition(I, HTM_Commit) { |
| hvu_htmVerifyUid; |
| hct_htmCommitTransaction; |
| hcs_htmCommandSucceed; |
| k_popMandatoryQueue; |
| } |
| |
| transition(I, HTM_Cancel) { |
| hvu_htmVerifyUid; |
| hcnt_htmCancelTransaction; |
| hcs_htmCommandSucceed; |
| k_popMandatoryQueue; |
| } |
| |
| transition(I, HTM_notifyCMD) { |
| hvu_htmVerifyUid; |
| hcs_htmCommandFail; |
| k_popMandatoryQueue; |
| } |
| |
| transition({I,S,E,M,IS,IM,SM,PF_IS,PF_IE}, HTM_notifyLD) { |
| hvu_htmVerifyUid; |
| hcs_htmLoadFail; |
| k_popMandatoryQueue; |
| } |
| |
| transition({I,S,E,M,IS,IM,SM,PF_IS,PF_IE}, HTM_notifyST) { |
| hvu_htmVerifyUid; |
| hcs_htmStoreFail; |
| k_popMandatoryQueue; |
| } |
| |
| transition(I, {L0_Replacement,PF_L0_Replacement}) { |
| ff_deallocateCacheBlock; |
| } |
| } |