blob: 344650405c1544a4ac126b77aaa9589848174993 [file] [log] [blame]
/*
* Copyright (c) 2010-2016, 2019, 2021 Arm Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __ARCH_ARM_TABLE_WALKER_HH__
#define __ARCH_ARM_TABLE_WALKER_HH__
#include <list>
#include "arch/arm/faults.hh"
#include "arch/arm/regs/misc.hh"
#include "arch/arm/system.hh"
#include "arch/arm/tlb.hh"
#include "arch/arm/types.hh"
#include "mem/packet_queue.hh"
#include "mem/qport.hh"
#include "mem/request.hh"
#include "params/ArmTableWalker.hh"
#include "sim/clocked_object.hh"
#include "sim/eventq.hh"
namespace gem5
{
class ThreadContext;
namespace ArmISA {
class Translation;
class TLB;
class MMU;
class TableWalker : public ClockedObject
{
public:
class WalkerState;
class DescriptorBase
{
public:
DescriptorBase() : lookupLevel(L0) {}
/** Current lookup level for this descriptor */
LookupLevel lookupLevel;
virtual Addr pfn() const = 0;
virtual TlbEntry::DomainType domain() const = 0;
virtual bool xn() const = 0;
virtual uint8_t ap() const = 0;
virtual bool global(WalkerState *currState) const = 0;
virtual uint8_t offsetBits() const = 0;
virtual bool secure(bool have_security, WalkerState *currState) const = 0;
virtual std::string dbgHeader() const = 0;
virtual uint64_t getRawData() const = 0;
virtual uint8_t texcb() const
{
panic("texcb() not implemented for this class\n");
}
virtual bool shareable() const
{
panic("shareable() not implemented for this class\n");
}
};
class L1Descriptor : public DescriptorBase
{
public:
/** Type of page table entry ARM DDI 0406B: B3-8*/
enum EntryType
{
Ignore,
PageTable,
Section,
Reserved
};
/** The raw bits of the entry */
uint32_t data;
/** This entry has been modified (access flag set) and needs to be
* written back to memory */
bool _dirty;
/** Default ctor */
L1Descriptor() : data(0), _dirty(false)
{
lookupLevel = L1;
}
virtual uint64_t getRawData() const
{
return (data);
}
virtual std::string dbgHeader() const
{
return "Inserting Section Descriptor into TLB\n";
}
virtual uint8_t offsetBits() const
{
return 20;
}
EntryType type() const
{
return (EntryType)(data & 0x3);
}
/** Is the page a Supersection (16 MiB)?*/
bool supersection() const
{
return bits(data, 18);
}
/** Return the physcal address of the entry, bits in position*/
Addr paddr() const
{
if (supersection())
panic("Super sections not implemented\n");
return mbits(data, 31, 20);
}
/** Return the physcal address of the entry, bits in position*/
Addr paddr(Addr va) const
{
if (supersection())
panic("Super sections not implemented\n");
return mbits(data, 31, 20) | mbits(va, 19, 0);
}
/** Return the physical frame, bits shifted right */
Addr pfn() const
{
if (supersection())
panic("Super sections not implemented\n");
return bits(data, 31, 20);
}
/** Is the translation global (no asid used)? */
bool global(WalkerState *currState) const
{
return !bits(data, 17);
}
/** Is the translation not allow execution? */
bool xn() const
{
return bits(data, 4);
}
/** Three bit access protection flags */
uint8_t ap() const
{
return (bits(data, 15) << 2) | bits(data, 11, 10);
}
/** Domain Client/Manager: ARM DDI 0406B: B3-31 */
TlbEntry::DomainType domain() const
{
return static_cast<TlbEntry::DomainType>(bits(data, 8, 5));
}
/** Address of L2 descriptor if it exists */
Addr l2Addr() const
{
return mbits(data, 31, 10);
}
/** Memory region attributes: ARM DDI 0406B: B3-32.
* These bits are largly ignored by M5 and only used to
* provide the illusion that the memory system cares about
* anything but cachable vs. uncachable.
*/
uint8_t texcb() const
{
return bits(data, 2) | bits(data, 3) << 1 | bits(data, 14, 12) << 2;
}
/** If the section is shareable. See texcb() comment. */
bool shareable() const
{
return bits(data, 16);
}
/** Set access flag that this entry has been touched. Mark
* the entry as requiring a writeback, in the future.
*/
void setAp0()
{
data |= 1 << 10;
_dirty = true;
}
/** This entry needs to be written back to memory */
bool dirty() const
{
return _dirty;
}
/**
* Returns true if this entry targets the secure physical address
* map.
*/
bool secure(bool have_security, WalkerState *currState) const
{
if (have_security && currState->secureLookup) {
if (type() == PageTable)
return !bits(data, 3);
else
return !bits(data, 19);
}
return false;
}
};
/** Level 2 page table descriptor */
class L2Descriptor : public DescriptorBase
{
public:
/** The raw bits of the entry. */
uint32_t data;
L1Descriptor *l1Parent;
/** This entry has been modified (access flag set) and needs to be
* written back to memory */
bool _dirty;
/** Default ctor */
L2Descriptor() : data(0), l1Parent(nullptr), _dirty(false)
{
lookupLevel = L2;
}
L2Descriptor(L1Descriptor &parent) : data(0), l1Parent(&parent),
_dirty(false)
{
lookupLevel = L2;
}
virtual uint64_t getRawData() const
{
return (data);
}
virtual std::string dbgHeader() const
{
return "Inserting L2 Descriptor into TLB\n";
}
virtual TlbEntry::DomainType domain() const
{
return l1Parent->domain();
}
bool secure(bool have_security, WalkerState *currState) const
{
return l1Parent->secure(have_security, currState);
}
virtual uint8_t offsetBits() const
{
return large() ? 16 : 12;
}
/** Is the entry invalid */
bool invalid() const
{
return bits(data, 1, 0) == 0;
}
/** What is the size of the mapping? */
bool large() const
{
return bits(data, 1) == 0;
}
/** Is execution allowed on this mapping? */
bool xn() const
{
return large() ? bits(data, 15) : bits(data, 0);
}
/** Is the translation global (no asid used)? */
bool global(WalkerState *currState) const
{
return !bits(data, 11);
}
/** Three bit access protection flags */
uint8_t ap() const
{
return bits(data, 5, 4) | (bits(data, 9) << 2);
}
/** Memory region attributes: ARM DDI 0406B: B3-32 */
uint8_t texcb() const
{
return large() ?
(bits(data, 2) | (bits(data, 3) << 1) | (bits(data, 14, 12) << 2)) :
(bits(data, 2) | (bits(data, 3) << 1) | (bits(data, 8, 6) << 2));
}
/** Return the physical frame, bits shifted right */
Addr pfn() const
{
return large() ? bits(data, 31, 16) : bits(data, 31, 12);
}
/** Return complete physical address given a VA */
Addr paddr(Addr va) const
{
if (large())
return mbits(data, 31, 16) | mbits(va, 15, 0);
else
return mbits(data, 31, 12) | mbits(va, 11, 0);
}
/** If the section is shareable. See texcb() comment. */
bool shareable() const
{
return bits(data, 10);
}
/** Set access flag that this entry has been touched. Mark
* the entry as requiring a writeback, in the future.
*/
void setAp0()
{
data |= 1 << 4;
_dirty = true;
}
/** This entry needs to be written back to memory */
bool dirty() const
{
return _dirty;
}
};
// Granule sizes for AArch64 long descriptors
enum GrainSize
{
Grain4KB = 12,
Grain16KB = 14,
Grain64KB = 16,
ReservedGrain = 0
};
/** Long-descriptor format (LPAE) */
class LongDescriptor : public DescriptorBase
{
public:
/** Descriptor type */
enum EntryType
{
Invalid,
Table,
Block,
Page
};
LongDescriptor()
: data(0), _dirty(false), aarch64(false), grainSize(Grain4KB),
physAddrRange(0)
{}
/** The raw bits of the entry */
uint64_t data;
/** This entry has been modified (access flag set) and needs to be
* written back to memory */
bool _dirty;
/** True if the current lookup is performed in AArch64 state */
bool aarch64;
/** Width of the granule size in bits */
GrainSize grainSize;
uint8_t physAddrRange;
virtual uint64_t getRawData() const
{
return (data);
}
virtual std::string dbgHeader() const
{
if (type() == LongDescriptor::Page) {
assert(lookupLevel == L3);
return "Inserting Page descriptor into TLB\n";
} else {
assert(lookupLevel < L3);
return "Inserting Block descriptor into TLB\n";
}
}
/**
* Returns true if this entry targets the secure physical address
* map.
*/
bool secure(bool have_security, WalkerState *currState) const
{
assert(type() == Block || type() == Page);
return have_security && (currState->secureLookup && !bits(data, 5));
}
/** Return the descriptor type */
EntryType type() const
{
switch (bits(data, 1, 0)) {
case 0x1:
// In AArch64 blocks are not allowed at L0 for the
// 4 KiB granule and at L1 for 16/64 KiB granules
switch (grainSize) {
case Grain4KB:
if (lookupLevel == L0 || lookupLevel == L3)
return Invalid;
else
return Block;
case Grain16KB:
if (lookupLevel == L2)
return Block;
else
return Invalid;
case Grain64KB:
// With Armv8.2-LPA (52bit PA) L1 Block descriptors
// are allowed for 64KiB granule
if ((lookupLevel == L1 && physAddrRange == 52) ||
lookupLevel == L2)
return Block;
else
return Invalid;
default:
return Invalid;
}
case 0x3:
return lookupLevel == L3 ? Page : Table;
default:
return Invalid;
}
}
/** Return the bit width of the page/block offset */
uint8_t offsetBits() const
{
if (type() == Block) {
switch (grainSize) {
case Grain4KB:
return lookupLevel == L1 ? 30 /* 1 GiB */
: 21 /* 2 MiB */;
case Grain16KB:
return 25 /* 32 MiB */;
case Grain64KB:
return lookupLevel == L1 ? 42 /* 4 TiB */
: 29 /* 512 MiB */;
default:
panic("Invalid AArch64 VM granule size\n");
}
} else if (type() == Page) {
switch (grainSize) {
case Grain4KB:
case Grain16KB:
case Grain64KB:
return grainSize; /* enum -> uint okay */
default:
panic("Invalid AArch64 VM granule size\n");
}
} else {
panic("AArch64 page table entry must be block or page\n");
}
}
/** Return the physical frame, bits shifted right */
Addr pfn() const
{
return paddr() >> offsetBits();
}
/** Return the physical address of the entry */
Addr paddr() const
{
Addr addr = 0;
if (aarch64) {
addr = mbits(data, 47, offsetBits());
if (physAddrRange == 52 && grainSize == Grain64KB) {
addr |= bits(data, 15, 12) << 48;
}
} else {
addr = mbits(data, 39, offsetBits());
}
return addr;
}
/** Return the address of the next page table */
Addr nextTableAddr() const
{
assert(type() == Table);
Addr table_address = 0;
if (aarch64) {
table_address = mbits(data, 47, grainSize);
// Using 52bit if Armv8.2-LPA is implemented
if (physAddrRange == 52 && grainSize == Grain64KB)
table_address |= bits(data, 15, 12) << 48;
} else {
table_address = mbits(data, 39, 12);
}
return table_address;
}
/** Return the address of the next descriptor */
Addr nextDescAddr(Addr va) const
{
assert(type() == Table);
Addr pa = 0;
if (aarch64) {
int stride = grainSize - 3;
int va_lo = stride * (3 - (lookupLevel + 1)) + grainSize;
int va_hi = va_lo + stride - 1;
pa = nextTableAddr() | (bits(va, va_hi, va_lo) << 3);
} else {
if (lookupLevel == L1)
pa = nextTableAddr() | (bits(va, 29, 21) << 3);
else // lookupLevel == L2
pa = nextTableAddr() | (bits(va, 20, 12) << 3);
}
return pa;
}
/** Is execution allowed on this mapping? */
bool xn() const
{
assert(type() == Block || type() == Page);
return bits(data, 54);
}
/** Is privileged execution allowed on this mapping? (LPAE only) */
bool pxn() const
{
assert(type() == Block || type() == Page);
return bits(data, 53);
}
/** Contiguous hint bit. */
bool contiguousHint() const
{
assert(type() == Block || type() == Page);
return bits(data, 52);
}
/** Is the translation global (no asid used)? */
bool global(WalkerState *currState) const
{
assert(currState && (type() == Block || type() == Page));
if (!currState->aarch64 && (currState->isSecure &&
!currState->secureLookup)) {
return false; // ARM ARM issue C B3.6.3
} else if (currState->aarch64) {
if (currState->el == EL2 || currState->el == EL3) {
return true; // By default translations are treated as global
// in AArch64 EL2 and EL3
} else if (currState->isSecure && !currState->secureLookup) {
return false;
}
}
return !bits(data, 11);
}
/** Returns true if the access flag (AF) is set. */
bool af() const
{
assert(type() == Block || type() == Page);
return bits(data, 10);
}
/** 2-bit shareability field */
uint8_t sh() const
{
assert(type() == Block || type() == Page);
return bits(data, 9, 8);
}
/** 2-bit access protection flags */
uint8_t ap() const
{
assert(type() == Block || type() == Page);
// Long descriptors only support the AP[2:1] scheme
return bits(data, 7, 6);
}
/** Read/write access protection flag */
bool rw() const
{
assert(type() == Block || type() == Page);
return !bits(data, 7);
}
/** User/privileged level access protection flag */
bool user() const
{
assert(type() == Block || type() == Page);
return bits(data, 6);
}
/** Return the AP bits as compatible with the AP[2:0] format. Utility
* function used to simplify the code in the TLB for performing
* permission checks. */
static uint8_t ap(bool rw, bool user)
{
return ((!rw) << 2) | (user << 1);
}
TlbEntry::DomainType domain() const
{
// Long-desc. format only supports Client domain
assert(type() == Block || type() == Page);
return TlbEntry::DomainType::Client;
}
/** Attribute index */
uint8_t attrIndx() const
{
assert(type() == Block || type() == Page);
return bits(data, 4, 2);
}
/** Memory attributes, only used by stage 2 translations */
uint8_t memAttr() const
{
assert(type() == Block || type() == Page);
return bits(data, 5, 2);
}
/** Set access flag that this entry has been touched. Mark the entry as
* requiring a writeback, in the future. */
void setAf()
{
data |= 1 << 10;
_dirty = true;
}
/** This entry needs to be written back to memory */
bool dirty() const
{
return _dirty;
}
/** Whether the subsequent levels of lookup are secure */
bool secureTable() const
{
assert(type() == Table);
return !bits(data, 63);
}
/** Two bit access protection flags for subsequent levels of lookup */
uint8_t apTable() const
{
assert(type() == Table);
return bits(data, 62, 61);
}
/** R/W protection flag for subsequent levels of lookup */
uint8_t rwTable() const
{
assert(type() == Table);
return !bits(data, 62);
}
/** User/privileged mode protection flag for subsequent levels of
* lookup */
uint8_t userTable() const
{
assert(type() == Table);
return !bits(data, 61);
}
/** Is execution allowed on subsequent lookup levels? */
bool xnTable() const
{
assert(type() == Table);
return bits(data, 60);
}
/** Is privileged execution allowed on subsequent lookup levels? */
bool pxnTable() const
{
assert(type() == Table);
return bits(data, 59);
}
};
class WalkerState
{
public:
/** Thread context that we're doing the walk for */
ThreadContext *tc;
/** If the access is performed in AArch64 state */
bool aarch64;
/** Current exception level */
ExceptionLevel el;
/** Current physical address range in bits */
int physAddrRange;
/** Request that is currently being serviced */
RequestPtr req;
/** ASID that we're servicing the request under */
uint16_t asid;
vmid_t vmid;
bool isHyp;
/** Translation state for delayed requests */
TLB::Translation *transState;
/** The fault that we are going to return */
Fault fault;
/** The virtual address that is being translated with tagging removed.*/
Addr vaddr;
/** The virtual address that is being translated */
Addr vaddr_tainted;
/** Cached copy of the sctlr as it existed when translation began */
SCTLR sctlr;
/** Cached copy of the scr as it existed when translation began */
SCR scr;
/** Cached copy of the cpsr as it existed when translation began */
CPSR cpsr;
/** Cached copy of ttbcr/tcr as it existed when translation began */
union
{
TTBCR ttbcr; // AArch32 translations
TCR tcr; // AArch64 translations
};
/** Cached copy of the htcr as it existed when translation began. */
HTCR htcr;
/** Cached copy of the htcr as it existed when translation began. */
HCR hcr;
/** Cached copy of the vtcr as it existed when translation began. */
VTCR_t vtcr;
/** If the access is a write */
bool isWrite;
/** If the access is a fetch (for execution, and no-exec) must be checked?*/
bool isFetch;
/** If the access comes from the secure state. */
bool isSecure;
/** True if table walks are uncacheable (for table descriptors) */
bool isUncacheable;
/** Helper variables used to implement hierarchical access permissions
* when the long-desc. format is used (LPAE only) */
bool secureLookup;
bool rwTable;
bool userTable;
bool xnTable;
bool pxnTable;
/** Hierarchical access permission disable */
bool hpd;
/** Flag indicating if a second stage of lookup is required */
bool stage2Req;
/** A pointer to the stage 2 translation that's in progress */
TLB::Translation *stage2Tran;
/** If the mode is timing or atomic */
bool timing;
/** If the atomic mode should be functional */
bool functional;
/** Save mode for use in delayed response */
BaseTLB::Mode mode;
/** The translation type that has been requested */
TLB::ArmTranslationType tranType;
/** Short-format descriptors */
L1Descriptor l1Desc;
L2Descriptor l2Desc;
/** Long-format descriptor (LPAE and AArch64) */
LongDescriptor longDesc;
/** Whether the response is delayed in timing mode due to additional
* lookups */
bool delayed;
TableWalker *tableWalker;
/** Timestamp for calculating elapsed time in service (for stats) */
Tick startTime;
/** Page entries walked during service (for stats) */
unsigned levels;
void doL1Descriptor();
void doL2Descriptor();
void doLongDescriptor();
WalkerState();
std::string name() const { return tableWalker->name(); }
};
class TableWalkerState : public Packet::SenderState
{
public:
Tick delay = 0;
Event *event = nullptr;
};
class Port : public QueuedRequestPort
{
public:
Port(TableWalker* _walker, RequestorID id);
void sendFunctionalReq(Addr desc_addr, int size,
uint8_t *data, Request::Flags flag);
void sendAtomicReq(Addr desc_addr, int size,
uint8_t *data, Request::Flags flag, Tick delay);
void sendTimingReq(Addr desc_addr, int size,
uint8_t *data, Request::Flags flag, Tick delay,
Event *event);
bool recvTimingResp(PacketPtr pkt) override;
private:
void handleRespPacket(PacketPtr pkt, Tick delay=0);
void handleResp(TableWalkerState *state, Addr addr,
Addr size, Tick delay=0);
PacketPtr createPacket(Addr desc_addr, int size,
uint8_t *data, Request::Flags flag,
Tick delay, Event *event);
private:
/** Packet queue used to store outgoing requests. */
ReqPacketQueue reqQueue;
/** Packet queue used to store outgoing snoop responses. */
SnoopRespPacketQueue snoopRespQueue;
/** Cached requestorId of the table walker */
RequestorID requestorId;
};
/** This translation class is used to trigger the data fetch once a timing
translation returns the translated physical address */
class Stage2Walk : public BaseTLB::Translation
{
private:
uint8_t *data;
int numBytes;
RequestPtr req;
Event *event;
TableWalker &parent;
Addr oVAddr;
public:
Fault fault;
Stage2Walk(TableWalker &_parent, uint8_t *_data, Event *_event,
Addr vaddr);
void markDelayed() {}
void finish(const Fault &fault, const RequestPtr &req,
ThreadContext *tc, BaseTLB::Mode mode);
void
setVirt(Addr vaddr, int size, Request::Flags flags,
int requestorId)
{
numBytes = size;
req->setVirt(vaddr, size, flags, requestorId, 0);
}
void translateTiming(ThreadContext *tc);
};
Fault readDataUntimed(ThreadContext *tc, Addr vaddr, Addr desc_addr,
uint8_t *data, int num_bytes, Request::Flags flags,
bool functional);
void readDataTimed(ThreadContext *tc, Addr desc_addr,
Stage2Walk *translation, int num_bytes,
Request::Flags flags);
protected:
/** Queues of requests for all the different lookup levels */
std::list<WalkerState *> stateQueues[MAX_LOOKUP_LEVELS];
/** Queue of requests that have passed are waiting because the walker is
* currently busy. */
std::list<WalkerState *> pendingQueue;
/** The MMU to forward second stage look upts to */
MMU *mmu;
/** Requestor id assigned by the MMU. */
RequestorID requestorId;
/** Port shared by the two table walkers. */
Port* port;
/** Indicates whether this table walker is part of the stage 2 mmu */
const bool isStage2;
/** TLB that is initiating these table walks */
TLB *tlb;
/** Cached copy of the sctlr as it existed when translation began */
SCTLR sctlr;
WalkerState *currState;
/** If a timing translation is currently in progress */
bool pending;
/** The number of walks belonging to squashed instructions that can be
* removed from the pendingQueue per cycle. */
unsigned numSquashable;
/** Cached copies of system-level properties */
bool haveSecurity;
bool _haveLPAE;
bool _haveVirtualization;
uint8_t _physAddrRange;
bool _haveLargeAsid64;
/** Statistics */
struct TableWalkerStats : public statistics::Group
{
TableWalkerStats(statistics::Group *parent);
statistics::Scalar walks;
statistics::Scalar walksShortDescriptor;
statistics::Scalar walksLongDescriptor;
statistics::Vector walksShortTerminatedAtLevel;
statistics::Vector walksLongTerminatedAtLevel;
statistics::Scalar squashedBefore;
statistics::Scalar squashedAfter;
statistics::Histogram walkWaitTime;
statistics::Histogram walkServiceTime;
// Essentially "L" of queueing theory
statistics::Histogram pendingWalks;
statistics::Vector pageSizes;
statistics::Vector2d requestOrigin;
} stats;
mutable unsigned pendingReqs;
mutable Tick pendingChangeTick;
static const unsigned REQUESTED = 0;
static const unsigned COMPLETED = 1;
public:
PARAMS(ArmTableWalker);
TableWalker(const Params &p);
virtual ~TableWalker();
bool haveLPAE() const { return _haveLPAE; }
bool haveVirtualization() const { return _haveVirtualization; }
bool haveLargeAsid64() const { return _haveLargeAsid64; }
uint8_t physAddrRange() const { return _physAddrRange; }
/** Checks if all state is cleared and if so, completes drain */
void completeDrain();
DrainState drain() override;
void drainResume() override;
gem5::Port &getPort(const std::string &if_name,
PortID idx=InvalidPortID) override;
Port &getTableWalkerPort();
Fault walk(const RequestPtr &req, ThreadContext *tc,
uint16_t asid, vmid_t _vmid,
bool _isHyp, TLB::Mode mode, TLB::Translation *_trans,
bool timing, bool functional, bool secure,
TLB::ArmTranslationType tranType, bool _stage2Req);
void setMmu(MMU *_mmu) { mmu = _mmu; }
void setTlb(TLB *_tlb) { tlb = _tlb; }
TLB* getTlb() { return tlb; }
void memAttrs(ThreadContext *tc, TlbEntry &te, SCTLR sctlr,
uint8_t texcb, bool s);
void memAttrsLPAE(ThreadContext *tc, TlbEntry &te,
LongDescriptor &lDescriptor);
void memAttrsAArch64(ThreadContext *tc, TlbEntry &te,
LongDescriptor &lDescriptor);
static LookupLevel toLookupLevel(uint8_t lookup_level_as_int);
private:
void doL1Descriptor();
void doL1DescriptorWrapper();
EventFunctionWrapper doL1DescEvent;
void doL2Descriptor();
void doL2DescriptorWrapper();
EventFunctionWrapper doL2DescEvent;
void doLongDescriptor();
void doL0LongDescriptorWrapper();
EventFunctionWrapper doL0LongDescEvent;
void doL1LongDescriptorWrapper();
EventFunctionWrapper doL1LongDescEvent;
void doL2LongDescriptorWrapper();
EventFunctionWrapper doL2LongDescEvent;
void doL3LongDescriptorWrapper();
EventFunctionWrapper doL3LongDescEvent;
void doLongDescriptorWrapper(LookupLevel curr_lookup_level);
Event* LongDescEventByLevel[4];
bool fetchDescriptor(Addr descAddr, uint8_t *data, int numBytes,
Request::Flags flags, int queueIndex, Event *event,
void (TableWalker::*doDescriptor)());
Fault generateLongDescFault(ArmFault::FaultSource src);
void insertTableEntry(DescriptorBase &descriptor, bool longDescriptor);
Fault processWalk();
Fault processWalkLPAE();
bool checkVAddrSizeFaultAArch64(Addr addr, int top_bit,
GrainSize granule, int tsz, bool low_range);
/// Returns true if the address exceeds the range permitted by the
/// system-wide setting or by the TCR_ELx IPS/PS setting
bool checkAddrSizeFaultAArch64(Addr addr, int pa_range);
Fault processWalkAArch64();
void processWalkWrapper();
EventFunctionWrapper doProcessEvent;
void nextWalk(ThreadContext *tc);
void pendingChange();
static uint8_t pageSizeNtoStatBin(uint8_t N);
Fault testWalk(Addr pa, Addr size, TlbEntry::DomainType domain,
LookupLevel lookup_level);
};
} // namespace ArmISA
} // namespace gem5
#endif //__ARCH_ARM_TABLE_WALKER_HH__