blob: ab28f1a4bafd746e7a37f2d7fe799447e4854e80 [file] [log] [blame]
/*
* Copyright (c) 2012 ARM Limited
* All rights reserved.
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2007 The Hewlett-Packard Development Company
* All rights reserved.
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "arch/x86/pagetable_walker.hh"
#include <memory>
#include "arch/x86/faults.hh"
#include "arch/x86/pagetable.hh"
#include "arch/x86/tlb.hh"
#include "base/bitfield.hh"
#include "base/trie.hh"
#include "cpu/base.hh"
#include "cpu/thread_context.hh"
#include "debug/PageTableWalker.hh"
#include "mem/packet_access.hh"
#include "mem/request.hh"
namespace gem5
{
namespace X86ISA {
Fault
Walker::start(ThreadContext * _tc, BaseTLB::Translation *_translation,
const RequestPtr &_req, BaseTLB::Mode _mode)
{
// TODO: in timing mode, instead of blocking when there are other
// outstanding requests, see if this request can be coalesced with
// another one (i.e. either coalesce or start walk)
WalkerState * newState = new WalkerState(this, _translation, _req);
newState->initState(_tc, _mode, sys->isTimingMode());
if (currStates.size()) {
assert(newState->isTiming());
DPRINTF(PageTableWalker, "Walks in progress: %d\n", currStates.size());
currStates.push_back(newState);
return NoFault;
} else {
currStates.push_back(newState);
Fault fault = newState->startWalk();
if (!newState->isTiming()) {
currStates.pop_front();
delete newState;
}
return fault;
}
}
Fault
Walker::startFunctional(ThreadContext * _tc, Addr &addr, unsigned &logBytes,
BaseTLB::Mode _mode)
{
funcState.initState(_tc, _mode);
return funcState.startFunctional(addr, logBytes);
}
bool
Walker::WalkerPort::recvTimingResp(PacketPtr pkt)
{
return walker->recvTimingResp(pkt);
}
bool
Walker::recvTimingResp(PacketPtr pkt)
{
WalkerSenderState * senderState =
dynamic_cast<WalkerSenderState *>(pkt->popSenderState());
WalkerState * senderWalk = senderState->senderWalk;
bool walkComplete = senderWalk->recvPacket(pkt);
delete senderState;
if (walkComplete) {
std::list<WalkerState *>::iterator iter;
for (iter = currStates.begin(); iter != currStates.end(); iter++) {
WalkerState * walkerState = *(iter);
if (walkerState == senderWalk) {
iter = currStates.erase(iter);
break;
}
}
delete senderWalk;
// Since we block requests when another is outstanding, we
// need to check if there is a waiting request to be serviced
if (currStates.size() && !startWalkWrapperEvent.scheduled())
// delay sending any new requests until we are finished
// with the responses
schedule(startWalkWrapperEvent, clockEdge());
}
return true;
}
void
Walker::WalkerPort::recvReqRetry()
{
walker->recvReqRetry();
}
void
Walker::recvReqRetry()
{
std::list<WalkerState *>::iterator iter;
for (iter = currStates.begin(); iter != currStates.end(); iter++) {
WalkerState * walkerState = *(iter);
if (walkerState->isRetrying()) {
walkerState->retry();
}
}
}
bool Walker::sendTiming(WalkerState* sendingState, PacketPtr pkt)
{
WalkerSenderState* walker_state = new WalkerSenderState(sendingState);
pkt->pushSenderState(walker_state);
if (port.sendTimingReq(pkt)) {
return true;
} else {
// undo the adding of the sender state and delete it, as we
// will do it again the next time we attempt to send it
pkt->popSenderState();
delete walker_state;
return false;
}
}
Port &
Walker::getPort(const std::string &if_name, PortID idx)
{
if (if_name == "port")
return port;
else
return ClockedObject::getPort(if_name, idx);
}
void
Walker::WalkerState::initState(ThreadContext * _tc,
BaseTLB::Mode _mode, bool _isTiming)
{
assert(state == Ready);
started = false;
tc = _tc;
mode = _mode;
timing = _isTiming;
}
void
Walker::startWalkWrapper()
{
unsigned num_squashed = 0;
WalkerState *currState = currStates.front();
while ((num_squashed < numSquashable) && currState &&
currState->translation->squashed()) {
currStates.pop_front();
num_squashed++;
DPRINTF(PageTableWalker, "Squashing table walk for address %#x\n",
currState->req->getVaddr());
// finish the translation which will delete the translation object
currState->translation->finish(
std::make_shared<UnimpFault>("Squashed Inst"),
currState->req, currState->tc, currState->mode);
// delete the current request if there are no inflight packets.
// if there is something in flight, delete when the packets are
// received and inflight is zero.
if (currState->numInflight() == 0) {
delete currState;
} else {
currState->squash();
}
// check the next translation request, if it exists
if (currStates.size())
currState = currStates.front();
else
currState = NULL;
}
if (currState && !currState->wasStarted())
currState->startWalk();
}
Fault
Walker::WalkerState::startWalk()
{
Fault fault = NoFault;
assert(!started);
started = true;
setupWalk(req->getVaddr());
if (timing) {
nextState = state;
state = Waiting;
timingFault = NoFault;
sendPackets();
} else {
do {
walker->port.sendAtomic(read);
PacketPtr write = NULL;
fault = stepWalk(write);
assert(fault == NoFault || read == NULL);
state = nextState;
nextState = Ready;
if (write)
walker->port.sendAtomic(write);
} while (read);
state = Ready;
nextState = Waiting;
}
return fault;
}
Fault
Walker::WalkerState::startFunctional(Addr &addr, unsigned &logBytes)
{
Fault fault = NoFault;
assert(!started);
started = true;
setupWalk(addr);
do {
walker->port.sendFunctional(read);
// On a functional access (page table lookup), writes should
// not happen so this pointer is ignored after stepWalk
PacketPtr write = NULL;
fault = stepWalk(write);
assert(fault == NoFault || read == NULL);
state = nextState;
nextState = Ready;
} while (read);
logBytes = entry.logBytes;
addr = entry.paddr;
return fault;
}
Fault
Walker::WalkerState::stepWalk(PacketPtr &write)
{
assert(state != Ready && state != Waiting);
Fault fault = NoFault;
write = NULL;
PageTableEntry pte;
if (dataSize == 8)
pte = read->getLE<uint64_t>();
else
pte = read->getLE<uint32_t>();
VAddr vaddr = entry.vaddr;
bool uncacheable = pte.pcd;
Addr nextRead = 0;
bool doWrite = false;
bool doTLBInsert = false;
bool doEndWalk = false;
bool badNX = pte.nx && mode == BaseTLB::Execute && enableNX;
switch(state) {
case LongPML4:
DPRINTF(PageTableWalker,
"Got long mode PML4 entry %#016x.\n", (uint64_t)pte);
nextRead = ((uint64_t)pte & (mask(40) << 12)) + vaddr.longl3 * dataSize;
doWrite = !pte.a;
pte.a = 1;
entry.writable = pte.w;
entry.user = pte.u;
if (badNX || !pte.p) {
doEndWalk = true;
fault = pageFault(pte.p);
break;
}
entry.noExec = pte.nx;
nextState = LongPDP;
break;
case LongPDP:
DPRINTF(PageTableWalker,
"Got long mode PDP entry %#016x.\n", (uint64_t)pte);
nextRead = ((uint64_t)pte & (mask(40) << 12)) + vaddr.longl2 * dataSize;
doWrite = !pte.a;
pte.a = 1;
entry.writable = entry.writable && pte.w;
entry.user = entry.user && pte.u;
if (badNX || !pte.p) {
doEndWalk = true;
fault = pageFault(pte.p);
break;
}
nextState = LongPD;
break;
case LongPD:
DPRINTF(PageTableWalker,
"Got long mode PD entry %#016x.\n", (uint64_t)pte);
doWrite = !pte.a;
pte.a = 1;
entry.writable = entry.writable && pte.w;
entry.user = entry.user && pte.u;
if (badNX || !pte.p) {
doEndWalk = true;
fault = pageFault(pte.p);
break;
}
if (!pte.ps) {
// 4 KB page
entry.logBytes = 12;
nextRead =
((uint64_t)pte & (mask(40) << 12)) + vaddr.longl1 * dataSize;
nextState = LongPTE;
break;
} else {
// 2 MB page
entry.logBytes = 21;
entry.paddr = (uint64_t)pte & (mask(31) << 21);
entry.uncacheable = uncacheable;
entry.global = pte.g;
entry.patBit = bits(pte, 12);
entry.vaddr = entry.vaddr & ~((2 * (1 << 20)) - 1);
doTLBInsert = true;
doEndWalk = true;
break;
}
case LongPTE:
DPRINTF(PageTableWalker,
"Got long mode PTE entry %#016x.\n", (uint64_t)pte);
doWrite = !pte.a;
pte.a = 1;
entry.writable = entry.writable && pte.w;
entry.user = entry.user && pte.u;
if (badNX || !pte.p) {
doEndWalk = true;
fault = pageFault(pte.p);
break;
}
entry.paddr = (uint64_t)pte & (mask(40) << 12);
entry.uncacheable = uncacheable;
entry.global = pte.g;
entry.patBit = bits(pte, 12);
entry.vaddr = entry.vaddr & ~((4 * (1 << 10)) - 1);
doTLBInsert = true;
doEndWalk = true;
break;
case PAEPDP:
DPRINTF(PageTableWalker,
"Got legacy mode PAE PDP entry %#08x.\n", (uint32_t)pte);
nextRead = ((uint64_t)pte & (mask(40) << 12)) + vaddr.pael2 * dataSize;
if (!pte.p) {
doEndWalk = true;
fault = pageFault(pte.p);
break;
}
nextState = PAEPD;
break;
case PAEPD:
DPRINTF(PageTableWalker,
"Got legacy mode PAE PD entry %#08x.\n", (uint32_t)pte);
doWrite = !pte.a;
pte.a = 1;
entry.writable = pte.w;
entry.user = pte.u;
if (badNX || !pte.p) {
doEndWalk = true;
fault = pageFault(pte.p);
break;
}
if (!pte.ps) {
// 4 KB page
entry.logBytes = 12;
nextRead = ((uint64_t)pte & (mask(40) << 12)) + vaddr.pael1 * dataSize;
nextState = PAEPTE;
break;
} else {
// 2 MB page
entry.logBytes = 21;
entry.paddr = (uint64_t)pte & (mask(31) << 21);
entry.uncacheable = uncacheable;
entry.global = pte.g;
entry.patBit = bits(pte, 12);
entry.vaddr = entry.vaddr & ~((2 * (1 << 20)) - 1);
doTLBInsert = true;
doEndWalk = true;
break;
}
case PAEPTE:
DPRINTF(PageTableWalker,
"Got legacy mode PAE PTE entry %#08x.\n", (uint32_t)pte);
doWrite = !pte.a;
pte.a = 1;
entry.writable = entry.writable && pte.w;
entry.user = entry.user && pte.u;
if (badNX || !pte.p) {
doEndWalk = true;
fault = pageFault(pte.p);
break;
}
entry.paddr = (uint64_t)pte & (mask(40) << 12);
entry.uncacheable = uncacheable;
entry.global = pte.g;
entry.patBit = bits(pte, 7);
entry.vaddr = entry.vaddr & ~((4 * (1 << 10)) - 1);
doTLBInsert = true;
doEndWalk = true;
break;
case PSEPD:
DPRINTF(PageTableWalker,
"Got legacy mode PSE PD entry %#08x.\n", (uint32_t)pte);
doWrite = !pte.a;
pte.a = 1;
entry.writable = pte.w;
entry.user = pte.u;
if (!pte.p) {
doEndWalk = true;
fault = pageFault(pte.p);
break;
}
if (!pte.ps) {
// 4 KB page
entry.logBytes = 12;
nextRead =
((uint64_t)pte & (mask(20) << 12)) + vaddr.norml2 * dataSize;
nextState = PTE;
break;
} else {
// 4 MB page
entry.logBytes = 21;
entry.paddr = bits(pte, 20, 13) << 32 | bits(pte, 31, 22) << 22;
entry.uncacheable = uncacheable;
entry.global = pte.g;
entry.patBit = bits(pte, 12);
entry.vaddr = entry.vaddr & ~((4 * (1 << 20)) - 1);
doTLBInsert = true;
doEndWalk = true;
break;
}
case PD:
DPRINTF(PageTableWalker,
"Got legacy mode PD entry %#08x.\n", (uint32_t)pte);
doWrite = !pte.a;
pte.a = 1;
entry.writable = pte.w;
entry.user = pte.u;
if (!pte.p) {
doEndWalk = true;
fault = pageFault(pte.p);
break;
}
// 4 KB page
entry.logBytes = 12;
nextRead = ((uint64_t)pte & (mask(20) << 12)) + vaddr.norml2 * dataSize;
nextState = PTE;
break;
case PTE:
DPRINTF(PageTableWalker,
"Got legacy mode PTE entry %#08x.\n", (uint32_t)pte);
doWrite = !pte.a;
pte.a = 1;
entry.writable = pte.w;
entry.user = pte.u;
if (!pte.p) {
doEndWalk = true;
fault = pageFault(pte.p);
break;
}
entry.paddr = (uint64_t)pte & (mask(20) << 12);
entry.uncacheable = uncacheable;
entry.global = pte.g;
entry.patBit = bits(pte, 7);
entry.vaddr = entry.vaddr & ~((4 * (1 << 10)) - 1);
doTLBInsert = true;
doEndWalk = true;
break;
default:
panic("Unknown page table walker state %d!\n");
}
if (doEndWalk) {
if (doTLBInsert)
if (!functional)
walker->tlb->insert(entry.vaddr, entry);
endWalk();
} else {
PacketPtr oldRead = read;
//If we didn't return, we're setting up another read.
Request::Flags flags = oldRead->req->getFlags();
flags.set(Request::UNCACHEABLE, uncacheable);
RequestPtr request = std::make_shared<Request>(
nextRead, oldRead->getSize(), flags, walker->requestorId);
read = new Packet(request, MemCmd::ReadReq);
read->allocate();
// If we need to write, adjust the read packet to write the modified
// value back to memory.
if (doWrite) {
write = oldRead;
write->setLE<uint64_t>(pte);
write->cmd = MemCmd::WriteReq;
} else {
write = NULL;
delete oldRead;
}
}
return fault;
}
void
Walker::WalkerState::endWalk()
{
nextState = Ready;
delete read;
read = NULL;
}
void
Walker::WalkerState::setupWalk(Addr vaddr)
{
VAddr addr = vaddr;
CR3 cr3 = tc->readMiscRegNoEffect(MISCREG_CR3);
// Check if we're in long mode or not
Efer efer = tc->readMiscRegNoEffect(MISCREG_EFER);
dataSize = 8;
Addr topAddr;
if (efer.lma) {
// Do long mode.
state = LongPML4;
topAddr = (cr3.longPdtb << 12) + addr.longl4 * dataSize;
enableNX = efer.nxe;
} else {
// We're in some flavor of legacy mode.
CR4 cr4 = tc->readMiscRegNoEffect(MISCREG_CR4);
if (cr4.pae) {
// Do legacy PAE.
state = PAEPDP;
topAddr = (cr3.paePdtb << 5) + addr.pael3 * dataSize;
enableNX = efer.nxe;
} else {
dataSize = 4;
topAddr = (cr3.pdtb << 12) + addr.norml2 * dataSize;
if (cr4.pse) {
// Do legacy PSE.
state = PSEPD;
} else {
// Do legacy non PSE.
state = PD;
}
enableNX = false;
}
}
nextState = Ready;
entry.vaddr = vaddr;
Request::Flags flags = Request::PHYSICAL;
if (cr3.pcd)
flags.set(Request::UNCACHEABLE);
RequestPtr request = std::make_shared<Request>(
topAddr, dataSize, flags, walker->requestorId);
read = new Packet(request, MemCmd::ReadReq);
read->allocate();
}
bool
Walker::WalkerState::recvPacket(PacketPtr pkt)
{
assert(pkt->isResponse());
assert(inflight);
assert(state == Waiting);
inflight--;
if (squashed) {
// if were were squashed, return true once inflight is zero and
// this WalkerState will be freed there.
return (inflight == 0);
}
if (pkt->isRead()) {
// should not have a pending read it we also had one outstanding
assert(!read);
// @todo someone should pay for this
pkt->headerDelay = pkt->payloadDelay = 0;
state = nextState;
nextState = Ready;
PacketPtr write = NULL;
read = pkt;
timingFault = stepWalk(write);
state = Waiting;
assert(timingFault == NoFault || read == NULL);
if (write) {
writes.push_back(write);
}
sendPackets();
} else {
sendPackets();
}
if (inflight == 0 && read == NULL && writes.size() == 0) {
state = Ready;
nextState = Waiting;
if (timingFault == NoFault) {
/*
* Finish the translation. Now that we know the right entry is
* in the TLB, this should work with no memory accesses.
* There could be new faults unrelated to the table walk like
* permissions violations, so we'll need the return value as
* well.
*/
bool delayedResponse;
Fault fault = walker->tlb->translate(req, tc, NULL, mode,
delayedResponse, true);
assert(!delayedResponse);
// Let the CPU continue.
translation->finish(fault, req, tc, mode);
} else {
// There was a fault during the walk. Let the CPU know.
translation->finish(timingFault, req, tc, mode);
}
return true;
}
return false;
}
void
Walker::WalkerState::sendPackets()
{
//If we're already waiting for the port to become available, just return.
if (retrying)
return;
//Reads always have priority
if (read) {
PacketPtr pkt = read;
read = NULL;
inflight++;
if (!walker->sendTiming(this, pkt)) {
retrying = true;
read = pkt;
inflight--;
return;
}
}
//Send off as many of the writes as we can.
while (writes.size()) {
PacketPtr write = writes.back();
writes.pop_back();
inflight++;
if (!walker->sendTiming(this, write)) {
retrying = true;
writes.push_back(write);
inflight--;
return;
}
}
}
unsigned
Walker::WalkerState::numInflight() const
{
return inflight;
}
bool
Walker::WalkerState::isRetrying()
{
return retrying;
}
bool
Walker::WalkerState::isTiming()
{
return timing;
}
bool
Walker::WalkerState::wasStarted()
{
return started;
}
void
Walker::WalkerState::squash()
{
squashed = true;
}
void
Walker::WalkerState::retry()
{
retrying = false;
sendPackets();
}
Fault
Walker::WalkerState::pageFault(bool present)
{
DPRINTF(PageTableWalker, "Raising page fault.\n");
HandyM5Reg m5reg = tc->readMiscRegNoEffect(MISCREG_M5_REG);
if (mode == BaseTLB::Execute && !enableNX)
mode = BaseTLB::Read;
return std::make_shared<PageFault>(entry.vaddr, present, mode,
m5reg.cpl == 3, false);
}
} // namespace X86ISA
} // namespace gem5