blob: 9b0f098f7d53e4017711fc067355bd35d6142312 [file] [log] [blame] [edit]
/*
* Copyright (c) 2007 MIPS Technologies, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "arch/mips/dsp.hh"
#include "arch/mips/isa_traits.hh"
#include "base/bitfield.hh"
#include "base/logging.hh"
#include "cpu/static_inst.hh"
#include "sim/serialize.hh"
using namespace MipsISA;
using namespace std;
int32_t
MipsISA::bitrev(int32_t value)
{
int32_t result = 0;
int shift;
for (int i = 0; i < 16; i++) {
shift = 2 * i - 15;
if (shift < 0)
result |= (value & 1 << i) << -shift;
else
result |= (value & 1 << i) >> shift;
}
return result;
}
uint64_t
MipsISA::dspSaturate(uint64_t value, int32_t fmt, int32_t sign,
uint32_t *overflow)
{
int64_t svalue = (int64_t)value;
switch (sign) {
case SIGNED:
if (svalue > (int64_t)FIXED_SMAX[fmt]) {
*overflow = 1;
svalue = (int64_t)FIXED_SMAX[fmt];
} else if (svalue < (int64_t)FIXED_SMIN[fmt]) {
*overflow = 1;
svalue = (int64_t)FIXED_SMIN[fmt];
}
break;
case UNSIGNED:
if (svalue > (int64_t)FIXED_UMAX[fmt]) {
*overflow = 1;
svalue = FIXED_UMAX[fmt];
} else if (svalue < (int64_t)FIXED_UMIN[fmt]) {
*overflow = 1;
svalue = FIXED_UMIN[fmt];
}
break;
}
return (uint64_t)svalue;
}
uint64_t
MipsISA::checkOverflow(uint64_t value, int32_t fmt, int32_t sign,
uint32_t *overflow)
{
int64_t svalue = (int64_t)value;
switch (sign)
{
case SIGNED:
if (svalue > (int64_t)FIXED_SMAX[fmt] ||
svalue < (int64_t)FIXED_SMIN[fmt])
*overflow = 1;
break;
case UNSIGNED:
if (svalue > (int64_t)FIXED_UMAX[fmt] ||
svalue < (int64_t)FIXED_UMIN[fmt])
*overflow = 1;
break;
}
return (uint64_t)svalue;
}
uint64_t
MipsISA::signExtend(uint64_t value, int32_t fmt)
{
int32_t signpos = SIMD_NBITS[fmt];
uint64_t sign = uint64_t(1) << (signpos - 1);
uint64_t ones = ~(0ULL);
if (value & sign)
value |= (ones << signpos); // extend with ones
else
value &= (ones >> (64 - signpos)); // extend with zeros
return value;
}
uint64_t
MipsISA::addHalfLsb(uint64_t value, int32_t lsbpos)
{
return value += ULL(1) << (lsbpos - 1);
}
int32_t
MipsISA::dspAbs(int32_t a, int32_t fmt, uint32_t *dspctl)
{
int nvals = SIMD_NVALS[fmt];
int32_t result;
int64_t svalue;
uint32_t ouflag = 0;
uint64_t a_values[SIMD_MAX_VALS];
simdUnpack(a, a_values, fmt, SIGNED);
for (int i = 0; i < nvals; i++) {
svalue = (int64_t)a_values[i];
if (a_values[i] == FIXED_SMIN[fmt]) {
a_values[i] = FIXED_SMAX[fmt];
ouflag = 1;
} else if (svalue < 0) {
a_values[i] = uint64_t(0 - svalue);
}
}
simdPack(a_values, &result, fmt);
if (ouflag)
writeDSPControl(dspctl, (ouflag << 4) << DSP_CTL_POS[DSP_OUFLAG],
1 << DSP_OUFLAG);
return result;
}
int32_t
MipsISA::dspAdd(int32_t a, int32_t b, int32_t fmt, int32_t saturate,
int32_t sign, uint32_t *dspctl)
{
int nvals = SIMD_NVALS[fmt];
int32_t result;
uint32_t ouflag = 0;
uint64_t a_values[SIMD_MAX_VALS];
uint64_t b_values[SIMD_MAX_VALS];
simdUnpack(a, a_values, fmt, sign);
simdUnpack(b, b_values, fmt, sign);
for (int i = 0; i < nvals; i++)
{
if (saturate)
a_values[i] = dspSaturate(a_values[i] + b_values[i], fmt, sign,
&ouflag);
else
a_values[i] = checkOverflow(a_values[i] + b_values[i], fmt, sign,
&ouflag);
}
simdPack(a_values, &result, fmt);
if (ouflag)
writeDSPControl(dspctl, (ouflag << 4) << DSP_CTL_POS[DSP_OUFLAG],
1 << DSP_OUFLAG);
return result;
}
int32_t
MipsISA::dspAddh(int32_t a, int32_t b, int32_t fmt, int32_t round,
int32_t sign)
{
int nvals = SIMD_NVALS[fmt];
int32_t result;
uint64_t a_values[SIMD_MAX_VALS];
uint64_t b_values[SIMD_MAX_VALS];
simdUnpack(a, a_values, fmt, sign);
simdUnpack(b, b_values, fmt, sign);
for (int i = 0; i < nvals; i++) {
if (round)
a_values[i] = addHalfLsb(a_values[i] + b_values[i], 1) >> 1;
else
a_values[i] = (a_values[i] + b_values[i]) >> 1;
}
simdPack(a_values, &result, fmt);
return result;
}
int32_t
MipsISA::dspSub(int32_t a, int32_t b, int32_t fmt, int32_t saturate,
int32_t sign, uint32_t *dspctl)
{
int nvals = SIMD_NVALS[fmt];
int32_t result;
uint32_t ouflag = 0;
uint64_t a_values[SIMD_MAX_VALS];
uint64_t b_values[SIMD_MAX_VALS];
simdUnpack(a, a_values, fmt, sign);
simdUnpack(b, b_values, fmt, sign);
for (int i = 0; i < nvals; i++) {
if (saturate)
a_values[i] = dspSaturate(a_values[i] - b_values[i], fmt, sign,
&ouflag);
else
a_values[i] = checkOverflow(a_values[i] - b_values[i], fmt, sign,
&ouflag);
}
simdPack(a_values, &result, fmt);
if (ouflag)
writeDSPControl(dspctl, (ouflag << 4) << DSP_CTL_POS[DSP_OUFLAG],
1 << DSP_OUFLAG);
return result;
}
int32_t
MipsISA::dspSubh(int32_t a, int32_t b, int32_t fmt, int32_t round,
int32_t sign)
{
int nvals = SIMD_NVALS[fmt];
int32_t result;
uint64_t a_values[SIMD_MAX_VALS];
uint64_t b_values[SIMD_MAX_VALS];
simdUnpack(a, a_values, fmt, sign);
simdUnpack(b, b_values, fmt, sign);
for (int i = 0; i < nvals; i++)
{
if (round)
a_values[i] = addHalfLsb(a_values[i] - b_values[i], 1) >> 1;
else
a_values[i] = (a_values[i] - b_values[i]) >> 1;
}
simdPack(a_values, &result, fmt);
return result;
}
int32_t
MipsISA::dspShll(int32_t a, uint32_t sa, int32_t fmt, int32_t saturate,
int32_t sign, uint32_t *dspctl)
{
int nvals = SIMD_NVALS[fmt];
int32_t result;
uint32_t ouflag = 0;
uint64_t a_values[SIMD_MAX_VALS];
sa = bits(sa, SIMD_LOG2N[fmt] - 1, 0);
simdUnpack(a, a_values, fmt, sign);
for (int i = 0; i < nvals; i++)
{
if (saturate)
a_values[i] = dspSaturate(a_values[i] << sa, fmt, sign, &ouflag);
else
a_values[i] = checkOverflow(a_values[i] << sa, fmt, sign, &ouflag);
}
simdPack(a_values, &result, fmt);
if (ouflag)
writeDSPControl(dspctl, (ouflag << 6) << DSP_CTL_POS[DSP_OUFLAG],
1 << DSP_OUFLAG);
return result;
}
int32_t
MipsISA::dspShrl(int32_t a, uint32_t sa, int32_t fmt, int32_t sign)
{
int nvals = SIMD_NVALS[fmt];
int32_t result;
uint64_t a_values[SIMD_MAX_VALS];
sa = bits(sa, SIMD_LOG2N[fmt] - 1, 0);
simdUnpack(a, a_values, fmt, UNSIGNED);
for (int i = 0; i < nvals; i++)
a_values[i] = a_values[i] >> sa;
simdPack(a_values, &result, fmt);
return result;
}
int32_t
MipsISA::dspShra(int32_t a, uint32_t sa, int32_t fmt, int32_t round,
int32_t sign, uint32_t *dspctl)
{
int nvals = SIMD_NVALS[fmt];
int32_t result;
uint64_t a_values[SIMD_MAX_VALS];
sa = bits(sa, SIMD_LOG2N[fmt] - 1, 0);
simdUnpack(a, a_values, fmt, SIGNED);
for (int i = 0; i < nvals; i++) {
if (round)
a_values[i] = addHalfLsb(a_values[i], sa) >> sa;
else
a_values[i] = a_values[i] >> sa;
}
simdPack(a_values, &result, fmt);
return result;
}
int32_t
MipsISA::dspMulq(int32_t a, int32_t b, int32_t fmt, int32_t saturate,
int32_t round, uint32_t *dspctl)
{
int nvals = SIMD_NVALS[fmt];
int sa = SIMD_NBITS[fmt];
int32_t result;
uint32_t ouflag = 0;
uint64_t a_values[SIMD_MAX_VALS];
uint64_t b_values[SIMD_MAX_VALS];
int64_t temp;
simdUnpack(a, a_values, fmt, SIGNED);
simdUnpack(b, b_values, fmt, SIGNED);
for (int i = 0; i < nvals; i++) {
if (round)
temp =
(int64_t)addHalfLsb(a_values[i] * b_values[i] << 1, sa) >> sa;
else
temp = (int64_t)(a_values[i] * b_values[i]) >> (sa - 1);
if (a_values[i] == FIXED_SMIN[fmt] && b_values[i] == FIXED_SMIN[fmt]) {
ouflag = 1;
if (saturate)
temp = FIXED_SMAX[fmt];
}
a_values[i] = temp;
}
simdPack(a_values, &result, fmt);
if (ouflag)
writeDSPControl(dspctl, (ouflag << 5) << DSP_CTL_POS[DSP_OUFLAG],
1 << DSP_OUFLAG);
return result;
}
int32_t
MipsISA::dspMul(int32_t a, int32_t b, int32_t fmt, int32_t saturate,
uint32_t *dspctl)
{
int nvals = SIMD_NVALS[fmt];
int32_t result;
uint32_t ouflag = 0;
uint64_t a_values[SIMD_MAX_VALS];
uint64_t b_values[SIMD_MAX_VALS];
simdUnpack(a, a_values, fmt, SIGNED);
simdUnpack(b, b_values, fmt, SIGNED);
for (int i = 0; i < nvals; i++)
{
if (saturate)
a_values[i] = dspSaturate(a_values[i] * b_values[i], fmt, SIGNED,
&ouflag);
else
a_values[i] = checkOverflow(a_values[i] * b_values[i], fmt, SIGNED,
&ouflag);
}
simdPack(a_values, &result, fmt);
if (ouflag)
writeDSPControl(dspctl, (ouflag << 5) << DSP_CTL_POS[DSP_OUFLAG],
1 << DSP_OUFLAG);
return result;
}
int32_t
MipsISA::dspMuleu(int32_t a, int32_t b, int32_t mode, uint32_t *dspctl)
{
int nvals = SIMD_NVALS[SIMD_FMT_PH];
int32_t result;
uint32_t ouflag = 0;
uint64_t a_values[SIMD_MAX_VALS];
uint64_t b_values[SIMD_MAX_VALS];
simdUnpack(a, a_values, SIMD_FMT_QB, UNSIGNED);
simdUnpack(b, b_values, SIMD_FMT_PH, UNSIGNED);
switch (mode) {
case MODE_L:
for (int i = 0; i < nvals; i++)
b_values[i] = dspSaturate(a_values[i + 2] * b_values[i],
SIMD_FMT_PH, UNSIGNED, &ouflag);
break;
case MODE_R:
for (int i = 0; i < nvals; i++)
b_values[i] = dspSaturate(a_values[i] * b_values[i], SIMD_FMT_PH,
UNSIGNED, &ouflag);
break;
}
simdPack(b_values, &result, SIMD_FMT_PH);
if (ouflag)
writeDSPControl(dspctl, (ouflag << 5) << DSP_CTL_POS[DSP_OUFLAG],
1 << DSP_OUFLAG);
return result;
}
int32_t
MipsISA::dspMuleq(int32_t a, int32_t b, int32_t mode, uint32_t *dspctl)
{
int nvals = SIMD_NVALS[SIMD_FMT_W];
int32_t result;
uint32_t ouflag = 0;
uint64_t a_values[SIMD_MAX_VALS];
uint64_t b_values[SIMD_MAX_VALS];
uint64_t c_values[SIMD_MAX_VALS];
memset(c_values, 0, sizeof(c_values));
simdUnpack(a, a_values, SIMD_FMT_PH, SIGNED);
simdUnpack(b, b_values, SIMD_FMT_PH, SIGNED);
switch (mode) {
case MODE_L:
for (int i = 0; i < nvals; i++)
c_values[i] = dspSaturate(a_values[i + 1] * b_values[i + 1] << 1,
SIMD_FMT_W, SIGNED, &ouflag);
break;
case MODE_R:
for (int i = 0; i < nvals; i++)
c_values[i] = dspSaturate(a_values[i] * b_values[i] << 1,
SIMD_FMT_W, SIGNED, &ouflag);
break;
}
simdPack(c_values, &result, SIMD_FMT_W);
if (ouflag)
writeDSPControl(dspctl, (ouflag << 5) << DSP_CTL_POS[DSP_OUFLAG],
1 << DSP_OUFLAG);
return result;
}
int64_t
MipsISA::dspDpaq(int64_t dspac, int32_t a, int32_t b, int32_t ac,
int32_t infmt, int32_t outfmt, int32_t postsat, int32_t mode,
uint32_t *dspctl)
{
int nvals = SIMD_NVALS[infmt];
int64_t result = 0;
int64_t temp = 0;
uint32_t ouflag = 0;
uint64_t a_values[SIMD_MAX_VALS];
uint64_t b_values[SIMD_MAX_VALS];
simdUnpack(a, a_values, infmt, SIGNED);
simdUnpack(b, b_values, infmt, SIGNED);
for (int i = 0; i < nvals; i++) {
switch (mode) {
case MODE_X:
if (a_values[nvals - 1 - i] == FIXED_SMIN[infmt] &&
b_values[i] == FIXED_SMIN[infmt]) {
result += FIXED_SMAX[outfmt];
ouflag = 1;
}
else
result += a_values[nvals - 1 - i] * b_values[i] << 1;
break;
default:
if (a_values[i] == FIXED_SMIN[infmt] &&
b_values[i] == FIXED_SMIN[infmt]) {
result += FIXED_SMAX[outfmt];
ouflag = 1;
} else {
result += a_values[i] * b_values[i] << 1;
}
break;
}
}
if (postsat) {
if (outfmt == SIMD_FMT_L) {
int signa = bits(dspac, 63, 63);
int signb = bits(result, 63, 63);
temp = dspac + result;
if (signa == signb && bits(temp, 63, 63) != signa) {
ouflag = 1;
if (signa)
dspac = FIXED_SMIN[outfmt];
else
dspac = FIXED_SMAX[outfmt];
} else {
dspac = temp;
}
} else {
dspac = dspSaturate(dspac + result, outfmt, SIGNED, &ouflag);
}
} else {
dspac += result;
}
if (ouflag)
*dspctl = insertBits(*dspctl, 16 + ac, 16 + ac, 1);
return dspac;
}
int64_t
MipsISA::dspDpsq(int64_t dspac, int32_t a, int32_t b, int32_t ac,
int32_t infmt, int32_t outfmt, int32_t postsat, int32_t mode,
uint32_t *dspctl)
{
int nvals = SIMD_NVALS[infmt];
int64_t result = 0;
int64_t temp = 0;
uint32_t ouflag = 0;
uint64_t a_values[SIMD_MAX_VALS];
uint64_t b_values[SIMD_MAX_VALS];
simdUnpack(a, a_values, infmt, SIGNED);
simdUnpack(b, b_values, infmt, SIGNED);
for (int i = 0; i < nvals; i++) {
switch (mode) {
case MODE_X:
if (a_values[nvals - 1 - i] == FIXED_SMIN[infmt] &&
b_values[i] == FIXED_SMIN[infmt]) {
result += FIXED_SMAX[outfmt];
ouflag = 1;
} else {
result += a_values[nvals - 1 - i] * b_values[i] << 1;
}
break;
default:
if (a_values[i] == FIXED_SMIN[infmt] &&
b_values[i] == FIXED_SMIN[infmt]) {
result += FIXED_SMAX[outfmt];
ouflag = 1;
} else {
result += a_values[i] * b_values[i] << 1;
}
break;
}
}
if (postsat) {
if (outfmt == SIMD_FMT_L) {
int signa = bits(dspac, 63, 63);
int signb = bits(-result, 63, 63);
temp = dspac - result;
if (signa == signb && bits(temp, 63, 63) != signa) {
ouflag = 1;
if (signa)
dspac = FIXED_SMIN[outfmt];
else
dspac = FIXED_SMAX[outfmt];
} else {
dspac = temp;
}
} else {
dspac = dspSaturate(dspac - result, outfmt, SIGNED, &ouflag);
}
} else {
dspac -= result;
}
if (ouflag)
*dspctl = insertBits(*dspctl, 16 + ac, 16 + ac, 1);
return dspac;
}
int64_t
MipsISA::dspDpa(int64_t dspac, int32_t a, int32_t b, int32_t ac,
int32_t fmt, int32_t sign, int32_t mode)
{
int nvals = SIMD_NVALS[fmt];
uint64_t a_values[SIMD_MAX_VALS];
uint64_t b_values[SIMD_MAX_VALS];
simdUnpack(a, a_values, fmt, sign);
simdUnpack(b, b_values, fmt, sign);
for (int i = 0; i < 2; i++) {
switch (mode) {
case MODE_L:
dspac += a_values[nvals - 1 - i] * b_values[nvals - 1 - i];
break;
case MODE_R:
dspac += a_values[nvals - 3 - i] * b_values[nvals - 3 - i];
break;
case MODE_X:
dspac += a_values[nvals - 1 - i] * b_values[i];
break;
}
}
return dspac;
}
int64_t
MipsISA::dspDps(int64_t dspac, int32_t a, int32_t b, int32_t ac,
int32_t fmt, int32_t sign, int32_t mode)
{
int nvals = SIMD_NVALS[fmt];
uint64_t a_values[SIMD_MAX_VALS];
uint64_t b_values[SIMD_MAX_VALS];
simdUnpack(a, a_values, fmt, sign);
simdUnpack(b, b_values, fmt, sign);
for (int i = 0; i < 2; i++) {
switch (mode) {
case MODE_L:
dspac -= a_values[nvals - 1 - i] * b_values[nvals - 1 - i];
break;
case MODE_R:
dspac -= a_values[nvals - 3 - i] * b_values[nvals - 3 - i];
break;
case MODE_X:
dspac -= a_values[nvals - 1 - i] * b_values[i];
break;
}
}
return dspac;
}
int64_t
MipsISA::dspMaq(int64_t dspac, int32_t a, int32_t b, int32_t ac,
int32_t fmt, int32_t mode, int32_t saturate, uint32_t *dspctl)
{
int nvals = SIMD_NVALS[fmt - 1];
uint64_t a_values[SIMD_MAX_VALS];
uint64_t b_values[SIMD_MAX_VALS];
int64_t temp = 0;
uint32_t ouflag = 0;
simdUnpack(a, a_values, fmt, SIGNED);
simdUnpack(b, b_values, fmt, SIGNED);
for (int i = 0; i < nvals; i++) {
switch (mode) {
case MODE_L:
temp = a_values[i + 1] * b_values[i + 1] << 1;
if (a_values[i + 1] == FIXED_SMIN[fmt] &&
b_values[i + 1] == FIXED_SMIN[fmt]) {
temp = (int64_t)FIXED_SMAX[fmt - 1];
ouflag = 1;
}
break;
case MODE_R:
temp = a_values[i] * b_values[i] << 1;
if (a_values[i] == FIXED_SMIN[fmt] &&
b_values[i] == FIXED_SMIN[fmt]) {
temp = (int64_t)FIXED_SMAX[fmt - 1];
ouflag = 1;
}
break;
}
temp += dspac;
if (saturate)
temp = dspSaturate(temp, fmt - 1, SIGNED, &ouflag);
if (ouflag)
*dspctl = insertBits(*dspctl, 16 + ac, 16 + ac, 1);
}
return temp;
}
int64_t
MipsISA::dspMulsa(int64_t dspac, int32_t a, int32_t b, int32_t ac, int32_t fmt)
{
uint64_t a_values[SIMD_MAX_VALS];
uint64_t b_values[SIMD_MAX_VALS];
simdUnpack(a, a_values, fmt, SIGNED);
simdUnpack(b, b_values, fmt, SIGNED);
dspac += a_values[1] * b_values[1] - a_values[0] * b_values[0];
return dspac;
}
int64_t
MipsISA::dspMulsaq(int64_t dspac, int32_t a, int32_t b, int32_t ac,
int32_t fmt, uint32_t *dspctl)
{
int nvals = SIMD_NVALS[fmt];
uint64_t a_values[SIMD_MAX_VALS];
uint64_t b_values[SIMD_MAX_VALS];
int64_t temp[2] = {0, 0};
uint32_t ouflag = 0;
simdUnpack(a, a_values, fmt, SIGNED);
simdUnpack(b, b_values, fmt, SIGNED);
for (int i = nvals - 1; i > -1; i--) {
temp[i] = a_values[i] * b_values[i] << 1;
if (a_values[i] == FIXED_SMIN[fmt] && b_values[i] == FIXED_SMIN[fmt]) {
temp[i] = FIXED_SMAX[fmt - 1];
ouflag = 1;
}
}
dspac += temp[1] - temp[0];
if (ouflag)
*dspctl = insertBits(*dspctl, 16 + ac, 16 + ac, 1);
return dspac;
}
void
MipsISA::dspCmp(int32_t a, int32_t b, int32_t fmt, int32_t sign, int32_t op,
uint32_t *dspctl)
{
int nvals = SIMD_NVALS[fmt];
int ccond = 0;
uint64_t a_values[SIMD_MAX_VALS];
uint64_t b_values[SIMD_MAX_VALS];
simdUnpack(a, a_values, fmt, sign);
simdUnpack(b, b_values, fmt, sign);
for (int i = 0; i < nvals; i++) {
int cc = 0;
switch (op) {
case CMP_EQ:
cc = (a_values[i] == b_values[i]);
break;
case CMP_LT:
cc = (a_values[i] < b_values[i]);
break;
case CMP_LE:
cc = (a_values[i] <= b_values[i]);
break;
}
ccond |= cc << (DSP_CTL_POS[DSP_CCOND] + i);
}
writeDSPControl(dspctl, ccond, 1 << DSP_CCOND);
}
int32_t
MipsISA::dspCmpg(int32_t a, int32_t b, int32_t fmt, int32_t sign, int32_t op)
{
int nvals = SIMD_NVALS[fmt];
int32_t result = 0;
uint64_t a_values[SIMD_MAX_VALS];
uint64_t b_values[SIMD_MAX_VALS];
simdUnpack(a, a_values, fmt, sign);
simdUnpack(b, b_values, fmt, sign);
for (int i = 0; i < nvals; i++) {
int cc = 0;
switch (op) {
case CMP_EQ:
cc = (a_values[i] == b_values[i]);
break;
case CMP_LT:
cc = (a_values[i] < b_values[i]);
break;
case CMP_LE:
cc = (a_values[i] <= b_values[i]);
break;
}
result |= cc << i;
}
return result;
}
int32_t
MipsISA::dspCmpgd(int32_t a, int32_t b, int32_t fmt, int32_t sign, int32_t op,
uint32_t *dspctl)
{
int nvals = SIMD_NVALS[fmt];
int32_t result = 0;
int ccond = 0;
uint64_t a_values[SIMD_MAX_VALS];
uint64_t b_values[SIMD_MAX_VALS];
simdUnpack(a, a_values, fmt, sign);
simdUnpack(b, b_values, fmt, sign);
for (int i = 0; i < nvals; i++) {
int cc = 0;
switch (op) {
case CMP_EQ:
cc = (a_values[i] == b_values[i]);
break;
case CMP_LT:
cc = (a_values[i] < b_values[i]);
break;
case CMP_LE:
cc = (a_values[i] <= b_values[i]);
break;
}
result |= cc << i;
ccond |= cc << (DSP_CTL_POS[DSP_CCOND] + i);
}
writeDSPControl(dspctl, ccond, 1 << DSP_CCOND);
return result;
}
int32_t
MipsISA::dspPrece(int32_t a, int32_t infmt, int32_t insign, int32_t outfmt,
int32_t outsign, int32_t mode)
{
int sa = 0;
int ninvals = SIMD_NVALS[infmt];
int noutvals = SIMD_NVALS[outfmt];
int32_t result;
uint64_t in_values[SIMD_MAX_VALS];
uint64_t out_values[SIMD_MAX_VALS];
if (insign == SIGNED && outsign == SIGNED)
sa = SIMD_NBITS[infmt];
else if (insign == UNSIGNED && outsign == SIGNED)
sa = SIMD_NBITS[infmt] - 1;
else if (insign == UNSIGNED && outsign == UNSIGNED)
sa = 0;
simdUnpack(a, in_values, infmt, insign);
for (int i = 0; i<noutvals; i++) {
switch (mode) {
case MODE_L:
out_values[i] = in_values[i + (ninvals >> 1)] << sa;
break;
case MODE_R:
out_values[i] = in_values[i] << sa;
break;
case MODE_LA:
out_values[i] = in_values[(i << 1) + 1] << sa;
break;
case MODE_RA:
out_values[i] = in_values[i << 1] << sa;
break;
}
}
simdPack(out_values, &result, outfmt);
return result;
}
int32_t
MipsISA::dspPrecrqu(int32_t a, int32_t b, uint32_t *dspctl)
{
uint64_t a_values[SIMD_MAX_VALS];
uint64_t b_values[SIMD_MAX_VALS];
uint64_t r_values[SIMD_MAX_VALS];
uint32_t ouflag = 0;
int32_t result = 0;
simdUnpack(a, a_values, SIMD_FMT_PH, SIGNED);
simdUnpack(b, b_values, SIMD_FMT_PH, SIGNED);
for (int i = 0; i<2; i++) {
r_values[i] =
dspSaturate((int64_t)b_values[i] >> (SIMD_NBITS[SIMD_FMT_QB] - 1),
SIMD_FMT_QB, UNSIGNED, &ouflag);
r_values[i + 2] =
dspSaturate((int64_t)a_values[i] >> (SIMD_NBITS[SIMD_FMT_QB] - 1),
SIMD_FMT_QB, UNSIGNED, &ouflag);
}
simdPack(r_values, &result, SIMD_FMT_QB);
if (ouflag)
*dspctl = insertBits(*dspctl, 22, 22, 1);
return result;
}
int32_t
MipsISA::dspPrecrq(int32_t a, int32_t b, int32_t fmt, uint32_t *dspctl)
{
uint64_t a_values[SIMD_MAX_VALS];
uint64_t b_values[SIMD_MAX_VALS];
uint64_t r_values[SIMD_MAX_VALS];
uint32_t ouflag = 0;
int32_t result;
simdUnpack(a, a_values, fmt, SIGNED);
simdUnpack(b, b_values, fmt, SIGNED);
r_values[1] = dspSaturate((int64_t)addHalfLsb(a_values[0], 16) >> 16,
fmt + 1, SIGNED, &ouflag);
r_values[0] = dspSaturate((int64_t)addHalfLsb(b_values[0], 16) >> 16,
fmt + 1, SIGNED, &ouflag);
simdPack(r_values, &result, fmt + 1);
if (ouflag)
*dspctl = insertBits(*dspctl, 22, 22, 1);
return result;
}
int32_t
MipsISA::dspPrecrSra(int32_t a, int32_t b, int32_t sa, int32_t fmt,
int32_t round)
{
int nvals = SIMD_NVALS[fmt];
uint64_t a_values[SIMD_MAX_VALS];
uint64_t b_values[SIMD_MAX_VALS];
uint64_t c_values[SIMD_MAX_VALS];
int32_t result = 0;
simdUnpack(a, a_values, fmt, SIGNED);
simdUnpack(b, b_values, fmt, SIGNED);
for (int i = 0; i < nvals; i++) {
if (round) {
c_values[i] = addHalfLsb(b_values[i], sa) >> sa;
c_values[i + 1] = addHalfLsb(a_values[i], sa) >> sa;
} else {
c_values[i] = b_values[i] >> sa;
c_values[i + 1] = a_values[i] >> sa;
}
}
simdPack(c_values, &result, fmt + 1);
return result;
}
int32_t
MipsISA::dspPick(int32_t a, int32_t b, int32_t fmt, uint32_t *dspctl)
{
int nvals = SIMD_NVALS[fmt];
int32_t result;
uint64_t a_values[SIMD_MAX_VALS];
uint64_t b_values[SIMD_MAX_VALS];
uint64_t c_values[SIMD_MAX_VALS];
simdUnpack(a, a_values, fmt, UNSIGNED);
simdUnpack(b, b_values, fmt, UNSIGNED);
for (int i = 0; i < nvals; i++) {
int condbit = DSP_CTL_POS[DSP_CCOND] + i;
if (bits(*dspctl, condbit, condbit) == 1)
c_values[i] = a_values[i];
else
c_values[i] = b_values[i];
}
simdPack(c_values, &result, fmt);
return result;
}
int32_t
MipsISA::dspPack(int32_t a, int32_t b, int32_t fmt)
{
int32_t result;
uint64_t a_values[SIMD_MAX_VALS];
uint64_t b_values[SIMD_MAX_VALS];
uint64_t c_values[SIMD_MAX_VALS];
simdUnpack(a, a_values, fmt, UNSIGNED);
simdUnpack(b, b_values, fmt, UNSIGNED);
c_values[0] = b_values[1];
c_values[1] = a_values[0];
simdPack(c_values, &result, fmt);
return result;
}
int32_t
MipsISA::dspExtr(int64_t dspac, int32_t fmt, int32_t sa, int32_t round,
int32_t saturate, uint32_t *dspctl)
{
int32_t result = 0;
uint32_t ouflag = 0;
int64_t temp = 0;
sa = bits(sa, 4, 0);
if (sa > 0) {
if (round) {
temp = (int64_t)addHalfLsb(dspac, sa);
if (dspac > 0 && temp < 0) {
ouflag = 1;
if (saturate)
temp = FIXED_SMAX[SIMD_FMT_L];
}
temp = temp >> sa;
} else {
temp = dspac >> sa;
}
} else {
temp = dspac;
}
dspac = checkOverflow(dspac, fmt, SIGNED, &ouflag);
if (ouflag) {
*dspctl = insertBits(*dspctl, 23, 23, ouflag);
if (saturate)
result = (int32_t)dspSaturate(temp, fmt, SIGNED, &ouflag);
else
result = (int32_t)temp;
} else {
result = (int32_t)temp;
}
return result;
}
int32_t
MipsISA::dspExtp(int64_t dspac, int32_t size, uint32_t *dspctl)
{
int32_t pos = 0;
int32_t result = 0;
pos = bits(*dspctl, 5, 0);
size = bits(size, 4, 0);
if (pos - (size + 1) >= -1) {
result = bits(dspac, pos, pos - size);
*dspctl = insertBits(*dspctl, 14, 14, 0);
} else {
result = 0;
*dspctl = insertBits(*dspctl, 14, 14, 1);
}
return result;
}
int32_t
MipsISA::dspExtpd(int64_t dspac, int32_t size, uint32_t *dspctl)
{
int32_t pos = 0;
int32_t result = 0;
pos = bits(*dspctl, 5, 0);
size = bits(size, 4, 0);
if (pos - (size + 1) >= -1) {
result = bits(dspac, pos, pos - size);
*dspctl = insertBits(*dspctl, 14, 14, 0);
if (pos - (size + 1) >= 0)
*dspctl = insertBits(*dspctl, 5, 0, pos - (size + 1));
else if ((pos - (size + 1)) == -1)
*dspctl = insertBits(*dspctl, 5, 0, 63);
} else {
result = 0;
*dspctl = insertBits(*dspctl, 14, 14, 1);
}
return result;
}
void
MipsISA::simdPack(uint64_t *values_ptr, int32_t *reg, int32_t fmt)
{
int nvals = SIMD_NVALS[fmt];
int nbits = SIMD_NBITS[fmt];
*reg = 0;
for (int i = 0; i < nvals; i++)
*reg |= (int32_t)bits(values_ptr[i], nbits - 1, 0) << nbits * i;
}
void
MipsISA::simdUnpack(int32_t reg, uint64_t *values_ptr, int32_t fmt, int32_t sign)
{
int nvals = SIMD_NVALS[fmt];
int nbits = SIMD_NBITS[fmt];
switch (sign) {
case SIGNED:
for (int i = 0; i < nvals; i++) {
uint64_t tmp = (uint64_t)bits(reg, nbits * (i + 1) - 1, nbits * i);
values_ptr[i] = signExtend(tmp, fmt);
}
break;
case UNSIGNED:
for (int i = 0; i < nvals; i++) {
values_ptr[i] =
(uint64_t)bits(reg, nbits * (i + 1) - 1, nbits * i);
}
break;
}
}
void
MipsISA::writeDSPControl(uint32_t *dspctl, uint32_t value, uint32_t mask)
{
uint32_t fmask = 0;
if (mask & 0x01) fmask |= DSP_CTL_MASK[DSP_POS];
if (mask & 0x02) fmask |= DSP_CTL_MASK[DSP_SCOUNT];
if (mask & 0x04) fmask |= DSP_CTL_MASK[DSP_C];
if (mask & 0x08) fmask |= DSP_CTL_MASK[DSP_OUFLAG];
if (mask & 0x10) fmask |= DSP_CTL_MASK[DSP_CCOND];
if (mask & 0x20) fmask |= DSP_CTL_MASK[DSP_EFI];
*dspctl &= ~fmask;
value &= fmask;
*dspctl |= value;
}
uint32_t
MipsISA::readDSPControl(uint32_t *dspctl, uint32_t mask)
{
uint32_t fmask = 0;
if (mask & 0x01) fmask |= DSP_CTL_MASK[DSP_POS];
if (mask & 0x02) fmask |= DSP_CTL_MASK[DSP_SCOUNT];
if (mask & 0x04) fmask |= DSP_CTL_MASK[DSP_C];
if (mask & 0x08) fmask |= DSP_CTL_MASK[DSP_OUFLAG];
if (mask & 0x10) fmask |= DSP_CTL_MASK[DSP_CCOND];
if (mask & 0x20) fmask |= DSP_CTL_MASK[DSP_EFI];
return *dspctl & fmask;
}