blob: a86d5126b67bf8b95633e9966167f75a2e5acb9e [file] [log] [blame] [edit]
// -*- mode:c++ -*-
// Copyright (c) 2007 The Hewlett-Packard Development Company
// All rights reserved.
//
// The license below extends only to copyright in the software and shall
// not be construed as granting a license to any other intellectual
// property including but not limited to intellectual property relating
// to a hardware implementation of the functionality of the software
// licensed hereunder. You may use the software subject to the license
// terms below provided that you ensure that this notice is replicated
// unmodified and in its entirety in all distributions of the software,
// modified or unmodified, in source code or in binary form.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met: redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer;
// redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution;
// neither the name of the copyright holders nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
////////////////////////////////////////////////////////////////////
//
// Code to "specialize" a microcode sequence to use a particular
// variety of operands
//
let {{
# This code builds up a decode block which decodes based on switchval.
# vals is a dict which matches case values with what should be decoded to.
# Each element of the dict is a list containing a function and then the
# arguments to pass to it.
def doSplitDecode(switchVal, vals, default = None):
blocks = OutputBlocks()
blocks.decode_block = 'switch(%s) {\n' % switchVal
for (val, todo) in vals.items():
new_blocks = todo[0](*todo[1:])
new_blocks.decode_block = \
'\tcase %s: %s\n' % (val, new_blocks.decode_block)
blocks.append(new_blocks)
if default:
new_blocks = default[0](*default[1:])
new_blocks.decode_block = \
'\tdefault: %s\n' % new_blocks.decode_block
blocks.append(new_blocks)
blocks.decode_block += '}\n'
return blocks
}};
let {{
def doRipRelativeDecode(Name, opTypes, env):
# print "RIPing %s with opTypes %s" % (Name, opTypes)
env.memoryInst = True
normEnv = copy.copy(env)
normEnv.addToDisassembly(
'''printMem(out, env.seg, env.scale, env.index, env.base,
machInst.displacement, env.addressSize, false);''')
normBlocks = specializeInst(Name + "_M", copy.copy(opTypes), normEnv)
ripEnv = copy.copy(env)
ripEnv.addToDisassembly(
'''printMem(out, env.seg, 1, 0, 0,
machInst.displacement, env.addressSize, true);''')
ripBlocks = specializeInst(Name + "_P", copy.copy(opTypes), ripEnv)
blocks = OutputBlocks()
blocks.append(normBlocks)
blocks.append(ripBlocks)
blocks.decode_block = '''
if(machInst.modRM.mod == 0 &&
machInst.modRM.rm == 5 &&
machInst.mode.submode == SixtyFourBitMode)
{ %s }
else
{ %s }''' % \
(ripBlocks.decode_block, normBlocks.decode_block)
return blocks
}};
let {{
def doBadInstDecode():
blocks = OutputBlocks()
blocks.decode_block = '''
return new Unknown(machInst);
'''
return blocks
}};
let {{
class OpType(object):
parser = re.compile(r"(?P<tag>[A-Z]+)(?P<size>[a-z]*)|"
"(r(?P<reg>[A-Z0-9]+)(?P<rsize>[a-z]*))|"
"(s(?P<seg>[A-Z0-9]+)(?P<ssize>[a-z]*))")
def __init__(self, opTypeString):
match = OpType.parser.search(opTypeString)
if match == None:
raise Exception("Problem parsing operand type {}".format(
opTypeString))
self.reg = match.group("reg")
self.seg = match.group("seg")
self.tag = match.group("tag")
self.size = match.group("size")
if not self.size:
self.size = match.group("rsize")
if not self.size:
self.size = match.group("ssize")
ModRMRegIndex = "(MODRM_REG | (REX_R << 3))"
ModRMRMIndex = "(MODRM_RM | (REX_B << 3))"
InstRegIndex = "(OPCODE_OP_BOTTOM3 | (REX_B << 3))"
# This function specializes the given piece of code to use a particular
# set of argument types described by "opTypes".
def specializeInst(Name, opTypes, env):
# print "Specializing %s with opTypes %s" % (Name, opTypes)
while len(opTypes):
# Parse the operand type string we're working with
opType = OpType(opTypes[0])
opTypes.pop(0)
if opType.tag not in ("I", "J", "P", "PR", "Q", "V", "VR", "W"):
if opType.size:
env.setSize(opType.size)
if opType.reg:
#Figure out what to do with fixed register operands
#This is the index to use, so we should stick it some place.
if opType.reg in ("A", "B", "C", "D"):
regString = "int_reg::R%sx" % opType.reg.lower()
else:
regString = "int_reg::R%s" % opType.reg.lower()
env.addReg(regString)
if env.regmUsed:
regString = "env.regm"
else:
regString = "env.reg"
env.addToDisassembly(
"printReg(out, intRegClass[%s], regSize);\n" %
regString)
Name += "_R"
elif opType.seg:
env.addReg("segment_idx::%ss" % opType.seg)
if env.regmUsed:
regString = "env.regm"
else:
regString = "env.reg"
env.addToDisassembly("printSegment(out, %s);\n" % regString)
Name += "_S"
elif opType.tag == "B":
# This refers to registers whose index is encoded as part of
# the opcode.
env.addToDisassembly(
"printReg(out, intRegClass[%s], regSize);\n" %
InstRegIndex)
Name += "_R"
env.addReg(InstRegIndex)
elif opType.tag == "M":
# This refers to memory. The macroop constructor sets up modrm
# addressing. Non memory modrm settings should cause an error.
env.doModRM = True
return doSplitDecode("MODRM_MOD",
{"3" : (doBadInstDecode,) },
(doRipRelativeDecode, Name, opTypes, env))
elif opType.tag == None or opType.size == None:
raise Exception("Problem parsing operand tag: {}".format(
opType.tag))
elif opType.tag == "C":
# A control register indexed by the "reg" field
env.addReg(ModRMRegIndex)
env.addToDisassembly(
"ccprintf(out, \"CR%%d\", %s);\n" % ModRMRegIndex)
Name += "_C"
elif opType.tag == "D":
# A debug register indexed by the "reg" field
env.addReg(ModRMRegIndex)
env.addToDisassembly(
"ccprintf(out, \"DR%%d\", %s);\n" % ModRMRegIndex)
Name += "_D"
elif opType.tag == "S":
# A segment selector register indexed by the "reg" field
env.addReg(ModRMRegIndex)
env.addToDisassembly(
"printSegment(out, %s);\n" % ModRMRegIndex)
Name += "_S"
elif opType.tag in ("G", "P", "T", "V"):
# Use the "reg" field of the ModRM byte to select the register
env.addReg(ModRMRegIndex)
if opType.tag == "P":
regFormat = 'ccprintf(out, "MMX%%d", %s);\n'
Name += "_MMX"
elif opType.tag == "V":
regFormat = 'ccprintf(out, "XMM%%d", %s);\n'
Name += "_XMM"
else:
regFormat = \
"printReg(out, intRegClass[%s], regSize);\n"
Name += "_R"
env.addToDisassembly(regFormat % ModRMRegIndex)
elif opType.tag in ("E", "Q", "W"):
# This might refer to memory or to a register. We need to
# divide it up farther.
regEnv = copy.copy(env)
regEnv.addReg(ModRMRMIndex)
# This refers to memory. The macroop constructor should set up
# modrm addressing.
memEnv = copy.copy(env)
memEnv.doModRM = True
if opType.tag == "Q":
regFormat = 'ccprintf(out, "MMX%%d", %s);\n'
regSuffix = "_MMX"
elif opType.tag == "W":
regFormat = 'ccprintf(out, "XMM%%d", %s);\n'
regSuffix = "_XMM"
else:
regFormat = \
"printReg(out, intRegClass[%s], regSize);\n"
regSuffix = "_R"
env.addToDisassembly(regFormat % ModRMRegIndex)
return doSplitDecode("MODRM_MOD",
{"3" : (specializeInst, Name + regSuffix,
copy.copy(opTypes), regEnv)},
(doRipRelativeDecode, Name,
copy.copy(opTypes), memEnv))
elif opType.tag in ("I", "J"):
# Immediates
env.addToDisassembly(
"ccprintf(out, \"%#x\", machInst.immediate);\n")
Name += "_I"
elif opType.tag == "O":
# Immediate containing a memory offset
Name += "_MI"
elif opType.tag in ("PR", "R", "VR"):
# Non register modrm settings should cause an error
env.addReg(ModRMRMIndex)
if opType.tag == "PR":
regFormat = 'ccprintf(out, "MMX%%d", %s);\n'
Name += "_MMX"
elif opType.tag == "VR":
regFormat = 'ccprintf(out, "XMM%%d", %s);\n'
Name += "_XMM"
else:
regFormat = \
"printReg(out, intRegClass[%s], regSize);\n"
Name += "_R"
env.addToDisassembly(regFormat % ModRMRegIndex)
elif opType.tag in ("X", "Y"):
# This type of memory addressing is for string instructions.
# They'll use the right index and segment internally.
if opType.tag == "X":
env.addToDisassembly(
'''printMem(out, env.seg,
1, X86ISA::int_reg::NumRegs,
X86ISA::int_reg::Rsi, 0,
env.addressSize, false);''')
else:
env.addToDisassembly(
'''printMem(out, segment_idx::Es,
1, X86ISA::int_reg::NumRegs,
X86ISA::int_reg::Rdi, 0,
env.addressSize, false);''')
Name += "_M"
else:
raise Exception("Unrecognized tag {}.".format(opType.tag))
# Generate code to return a macroop of the given name which will
# operate in the "emulation environment" env
return genMacroop(Name, env)
}};