blob: 23195f720f382d8fb02f35c33732e2ac8f7a4591 [file] [log] [blame]
/*
* Copyright (c) 2002-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Steve Reinhardt
* Nathan Binkert
*/
#include <iostream>
#include <string>
#include <sstream>
#include "base/cprintf.hh"
#include "base/loader/symtab.hh"
#include "base/misc.hh"
#include "base/output.hh"
#include "cpu/base.hh"
#include "cpu/cpuevent.hh"
#include "cpu/thread_context.hh"
#include "cpu/profile.hh"
#include "sim/sim_exit.hh"
#include "sim/process.hh"
#include "sim/sim_events.hh"
#include "sim/system.hh"
#include "base/trace.hh"
// Hack
#include "sim/stat_control.hh"
using namespace std;
vector<BaseCPU *> BaseCPU::cpuList;
// This variable reflects the max number of threads in any CPU. Be
// careful to only use it once all the CPUs that you care about have
// been initialized
int maxThreadsPerCPU = 1;
CPUProgressEvent::CPUProgressEvent(EventQueue *q, Tick ival,
BaseCPU *_cpu)
: Event(q, Event::Progress_Event_Pri), interval(ival),
lastNumInst(0), cpu(_cpu)
{
if (interval)
schedule(curTick + interval);
}
void
CPUProgressEvent::process()
{
Counter temp = cpu->totalInstructions();
#ifndef NDEBUG
double ipc = double(temp - lastNumInst) / (interval / cpu->ticks(1));
DPRINTFN("%s progress event, instructions committed: %lli, IPC: %0.8d\n",
cpu->name(), temp - lastNumInst, ipc);
ipc = 0.0;
#else
cprintf("%lli: %s progress event, instructions committed: %lli\n",
curTick, cpu->name(), temp - lastNumInst);
#endif
lastNumInst = temp;
schedule(curTick + interval);
}
const char *
CPUProgressEvent::description() const
{
return "CPU Progress";
}
#if FULL_SYSTEM
BaseCPU::BaseCPU(Params *p)
: MemObject(makeParams(p->name)), clock(p->clock), instCnt(0),
params(p), number_of_threads(p->numberOfThreads), system(p->system),
phase(p->phase)
#else
BaseCPU::BaseCPU(Params *p)
: MemObject(makeParams(p->name)), clock(p->clock), params(p),
number_of_threads(p->numberOfThreads), system(p->system),
phase(p->phase)
#endif
{
// currentTick = curTick;
// add self to global list of CPUs
cpuList.push_back(this);
if (number_of_threads > maxThreadsPerCPU)
maxThreadsPerCPU = number_of_threads;
// allocate per-thread instruction-based event queues
comInstEventQueue = new EventQueue *[number_of_threads];
for (int i = 0; i < number_of_threads; ++i)
comInstEventQueue[i] = new EventQueue("instruction-based event queue");
//
// set up instruction-count-based termination events, if any
//
if (p->max_insts_any_thread != 0)
for (int i = 0; i < number_of_threads; ++i)
schedExitSimLoop("a thread reached the max instruction count",
p->max_insts_any_thread, 0,
comInstEventQueue[i]);
if (p->max_insts_all_threads != 0) {
// allocate & initialize shared downcounter: each event will
// decrement this when triggered; simulation will terminate
// when counter reaches 0
int *counter = new int;
*counter = number_of_threads;
for (int i = 0; i < number_of_threads; ++i)
new CountedExitEvent(comInstEventQueue[i],
"all threads reached the max instruction count",
p->max_insts_all_threads, *counter);
}
// allocate per-thread load-based event queues
comLoadEventQueue = new EventQueue *[number_of_threads];
for (int i = 0; i < number_of_threads; ++i)
comLoadEventQueue[i] = new EventQueue("load-based event queue");
//
// set up instruction-count-based termination events, if any
//
if (p->max_loads_any_thread != 0)
for (int i = 0; i < number_of_threads; ++i)
schedExitSimLoop("a thread reached the max load count",
p->max_loads_any_thread, 0,
comLoadEventQueue[i]);
if (p->max_loads_all_threads != 0) {
// allocate & initialize shared downcounter: each event will
// decrement this when triggered; simulation will terminate
// when counter reaches 0
int *counter = new int;
*counter = number_of_threads;
for (int i = 0; i < number_of_threads; ++i)
new CountedExitEvent(comLoadEventQueue[i],
"all threads reached the max load count",
p->max_loads_all_threads, *counter);
}
functionTracingEnabled = false;
if (p->functionTrace) {
functionTraceStream = simout.find(csprintf("ftrace.%s", name()));
currentFunctionStart = currentFunctionEnd = 0;
functionEntryTick = p->functionTraceStart;
if (p->functionTraceStart == 0) {
functionTracingEnabled = true;
} else {
new EventWrapper<BaseCPU, &BaseCPU::enableFunctionTrace>(this,
p->functionTraceStart,
true);
}
}
#if FULL_SYSTEM
profileEvent = NULL;
if (params->profile)
profileEvent = new ProfileEvent(this, params->profile);
#endif
tracer = params->tracer;
}
BaseCPU::Params::Params()
{
#if FULL_SYSTEM
profile = false;
#endif
checker = NULL;
tracer = NULL;
}
void
BaseCPU::enableFunctionTrace()
{
functionTracingEnabled = true;
}
BaseCPU::~BaseCPU()
{
}
void
BaseCPU::init()
{
if (!params->deferRegistration)
registerThreadContexts();
}
void
BaseCPU::startup()
{
#if FULL_SYSTEM
if (!params->deferRegistration && profileEvent)
profileEvent->schedule(curTick);
#endif
if (params->progress_interval) {
new CPUProgressEvent(&mainEventQueue,
ticks(params->progress_interval),
this);
}
}
void
BaseCPU::regStats()
{
using namespace Stats;
numCycles
.name(name() + ".numCycles")
.desc("number of cpu cycles simulated")
;
int size = threadContexts.size();
if (size > 1) {
for (int i = 0; i < size; ++i) {
stringstream namestr;
ccprintf(namestr, "%s.ctx%d", name(), i);
threadContexts[i]->regStats(namestr.str());
}
} else if (size == 1)
threadContexts[0]->regStats(name());
#if FULL_SYSTEM
#endif
}
Tick
BaseCPU::nextCycle()
{
Tick next_tick = curTick - phase + clock - 1;
next_tick -= (next_tick % clock);
next_tick += phase;
return next_tick;
}
Tick
BaseCPU::nextCycle(Tick begin_tick)
{
Tick next_tick = begin_tick;
if (next_tick % clock != 0)
next_tick = next_tick - (next_tick % clock) + clock;
next_tick += phase;
assert(next_tick >= curTick);
return next_tick;
}
void
BaseCPU::registerThreadContexts()
{
for (int i = 0; i < threadContexts.size(); ++i) {
ThreadContext *tc = threadContexts[i];
#if FULL_SYSTEM
int id = params->cpu_id;
if (id != -1)
id += i;
tc->setCpuId(system->registerThreadContext(tc, id));
#else
tc->setCpuId(tc->getProcessPtr()->registerThreadContext(tc));
#endif
}
}
int
BaseCPU::findContext(ThreadContext *tc)
{
for (int i = 0; i < threadContexts.size(); ++i) {
if (tc == threadContexts[i])
return i;
}
return 0;
}
void
BaseCPU::switchOut()
{
// panic("This CPU doesn't support sampling!");
#if FULL_SYSTEM
if (profileEvent && profileEvent->scheduled())
profileEvent->deschedule();
#endif
}
void
BaseCPU::takeOverFrom(BaseCPU *oldCPU, Port *ic, Port *dc)
{
assert(threadContexts.size() == oldCPU->threadContexts.size());
for (int i = 0; i < threadContexts.size(); ++i) {
ThreadContext *newTC = threadContexts[i];
ThreadContext *oldTC = oldCPU->threadContexts[i];
newTC->takeOverFrom(oldTC);
CpuEvent::replaceThreadContext(oldTC, newTC);
assert(newTC->readCpuId() == oldTC->readCpuId());
#if FULL_SYSTEM
system->replaceThreadContext(newTC, newTC->readCpuId());
#else
assert(newTC->getProcessPtr() == oldTC->getProcessPtr());
newTC->getProcessPtr()->replaceThreadContext(newTC, newTC->readCpuId());
#endif
if (DTRACE(Context))
ThreadContext::compare(oldTC, newTC);
}
#if FULL_SYSTEM
interrupts = oldCPU->interrupts;
for (int i = 0; i < threadContexts.size(); ++i)
threadContexts[i]->profileClear();
if (profileEvent)
profileEvent->schedule(curTick);
#endif
// Connect new CPU to old CPU's memory only if new CPU isn't
// connected to anything. Also connect old CPU's memory to new
// CPU.
Port *peer;
if (ic->getPeer() == NULL || ic->getPeer()->isDefaultPort()) {
peer = oldCPU->getPort("icache_port")->getPeer();
ic->setPeer(peer);
} else {
peer = ic->getPeer();
}
peer->setPeer(ic);
if (dc->getPeer() == NULL || dc->getPeer()->isDefaultPort()) {
peer = oldCPU->getPort("dcache_port")->getPeer();
dc->setPeer(peer);
} else {
peer = dc->getPeer();
}
peer->setPeer(dc);
}
#if FULL_SYSTEM
BaseCPU::ProfileEvent::ProfileEvent(BaseCPU *_cpu, int _interval)
: Event(&mainEventQueue), cpu(_cpu), interval(_interval)
{ }
void
BaseCPU::ProfileEvent::process()
{
for (int i = 0, size = cpu->threadContexts.size(); i < size; ++i) {
ThreadContext *tc = cpu->threadContexts[i];
tc->profileSample();
}
schedule(curTick + interval);
}
void
BaseCPU::post_interrupt(int int_num, int index)
{
interrupts.post(int_num, index);
}
void
BaseCPU::clear_interrupt(int int_num, int index)
{
interrupts.clear(int_num, index);
}
void
BaseCPU::clear_interrupts()
{
interrupts.clear_all();
}
uint64_t
BaseCPU::get_interrupts(int int_num)
{
return interrupts.get_vec(int_num);
}
void
BaseCPU::serialize(std::ostream &os)
{
SERIALIZE_SCALAR(instCnt);
interrupts.serialize(os);
}
void
BaseCPU::unserialize(Checkpoint *cp, const std::string &section)
{
UNSERIALIZE_SCALAR(instCnt);
interrupts.unserialize(cp, section);
}
#endif // FULL_SYSTEM
void
BaseCPU::traceFunctionsInternal(Addr pc)
{
if (!debugSymbolTable)
return;
// if pc enters different function, print new function symbol and
// update saved range. Otherwise do nothing.
if (pc < currentFunctionStart || pc >= currentFunctionEnd) {
string sym_str;
bool found = debugSymbolTable->findNearestSymbol(pc, sym_str,
currentFunctionStart,
currentFunctionEnd);
if (!found) {
// no symbol found: use addr as label
sym_str = csprintf("0x%x", pc);
currentFunctionStart = pc;
currentFunctionEnd = pc + 1;
}
ccprintf(*functionTraceStream, " (%d)\n%d: %s",
curTick - functionEntryTick, curTick, sym_str);
functionEntryTick = curTick;
}
}