blob: bea680fac86b7887312bf6a3b8f5d4f63a125826 [file] [log] [blame]
/*
* Copyright (c) 2004-2006 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Kevin Lim
*/
#ifndef __CPU_BASE_DYN_INST_HH__
#define __CPU_BASE_DYN_INST_HH__
#include <bitset>
#include <list>
#include <string>
#include "arch/faults.hh"
#include "base/fast_alloc.hh"
#include "base/trace.hh"
#include "config/full_system.hh"
#include "cpu/o3/comm.hh"
#include "cpu/exetrace.hh"
#include "cpu/inst_seq.hh"
#include "cpu/op_class.hh"
#include "cpu/static_inst.hh"
#include "mem/packet.hh"
#include "sim/system.hh"
/**
* @file
* Defines a dynamic instruction context.
*/
// Forward declaration.
class StaticInstPtr;
template <class Impl>
class BaseDynInst : public FastAlloc, public RefCounted
{
public:
// Typedef for the CPU.
typedef typename Impl::CPUType ImplCPU;
typedef typename ImplCPU::ImplState ImplState;
// Logical register index type.
typedef TheISA::RegIndex RegIndex;
// Integer register type.
typedef TheISA::IntReg IntReg;
// Floating point register type.
typedef TheISA::FloatReg FloatReg;
// The DynInstPtr type.
typedef typename Impl::DynInstPtr DynInstPtr;
// The list of instructions iterator type.
typedef typename std::list<DynInstPtr>::iterator ListIt;
enum {
MaxInstSrcRegs = TheISA::MaxInstSrcRegs, /// Max source regs
MaxInstDestRegs = TheISA::MaxInstDestRegs, /// Max dest regs
};
/** The StaticInst used by this BaseDynInst. */
StaticInstPtr staticInst;
////////////////////////////////////////////
//
// INSTRUCTION EXECUTION
//
////////////////////////////////////////////
/** InstRecord that tracks this instructions. */
Trace::InstRecord *traceData;
void demapPage(Addr vaddr, uint64_t asn)
{
cpu->demapPage(vaddr, asn);
}
void demapInstPage(Addr vaddr, uint64_t asn)
{
cpu->demapPage(vaddr, asn);
}
void demapDataPage(Addr vaddr, uint64_t asn)
{
cpu->demapPage(vaddr, asn);
}
/**
* Does a read to a given address.
* @param addr The address to read.
* @param data The read's data is written into this parameter.
* @param flags The request's flags.
* @return Returns any fault due to the read.
*/
template <class T>
Fault read(Addr addr, T &data, unsigned flags);
Fault translateDataReadAddr(Addr vaddr, Addr &paddr,
int size, unsigned flags);
/**
* Does a write to a given address.
* @param data The data to be written.
* @param addr The address to write to.
* @param flags The request's flags.
* @param res The result of the write (for load locked/store conditionals).
* @return Returns any fault due to the write.
*/
template <class T>
Fault write(T data, Addr addr, unsigned flags,
uint64_t *res);
Fault translateDataWriteAddr(Addr vaddr, Addr &paddr,
int size, unsigned flags);
void prefetch(Addr addr, unsigned flags);
void writeHint(Addr addr, int size, unsigned flags);
Fault copySrcTranslate(Addr src);
Fault copy(Addr dest);
/** @todo: Consider making this private. */
public:
/** The sequence number of the instruction. */
InstSeqNum seqNum;
enum Status {
IqEntry, /// Instruction is in the IQ
RobEntry, /// Instruction is in the ROB
LsqEntry, /// Instruction is in the LSQ
Completed, /// Instruction has completed
ResultReady, /// Instruction has its result
CanIssue, /// Instruction can issue and execute
Issued, /// Instruction has issued
Executed, /// Instruction has executed
CanCommit, /// Instruction can commit
AtCommit, /// Instruction has reached commit
Committed, /// Instruction has committed
Squashed, /// Instruction is squashed
SquashedInIQ, /// Instruction is squashed in the IQ
SquashedInLSQ, /// Instruction is squashed in the LSQ
SquashedInROB, /// Instruction is squashed in the ROB
RecoverInst, /// Is a recover instruction
BlockingInst, /// Is a blocking instruction
ThreadsyncWait, /// Is a thread synchronization instruction
SerializeBefore, /// Needs to serialize on
/// instructions ahead of it
SerializeAfter, /// Needs to serialize instructions behind it
SerializeHandled, /// Serialization has been handled
NumStatus
};
/** The status of this BaseDynInst. Several bits can be set. */
std::bitset<NumStatus> status;
/** The thread this instruction is from. */
short threadNumber;
/** data address space ID, for loads & stores. */
short asid;
/** How many source registers are ready. */
unsigned readyRegs;
/** Pointer to the Impl's CPU object. */
ImplCPU *cpu;
/** Pointer to the thread state. */
ImplState *thread;
/** The kind of fault this instruction has generated. */
Fault fault;
/** Pointer to the data for the memory access. */
uint8_t *memData;
/** The effective virtual address (lds & stores only). */
Addr effAddr;
/** Is the effective virtual address valid. */
bool effAddrValid;
/** The effective physical address. */
Addr physEffAddr;
/** Effective virtual address for a copy source. */
Addr copySrcEffAddr;
/** Effective physical address for a copy source. */
Addr copySrcPhysEffAddr;
/** The memory request flags (from translation). */
unsigned memReqFlags;
union Result {
uint64_t integer;
// float fp;
double dbl;
};
/** The result of the instruction; assumes for now that there's only one
* destination register.
*/
Result instResult;
/** Records changes to result? */
bool recordResult;
/** PC of this instruction. */
Addr PC;
/** Micro PC of this instruction. */
Addr microPC;
protected:
/** Next non-speculative PC. It is not filled in at fetch, but rather
* once the target of the branch is truly known (either decode or
* execute).
*/
Addr nextPC;
/** Next non-speculative NPC. Target PC for Mips or Sparc. */
Addr nextNPC;
/** Next non-speculative micro PC. */
Addr nextMicroPC;
/** Predicted next PC. */
Addr predPC;
/** Predicted next NPC. */
Addr predNPC;
/** Predicted next microPC */
Addr predMicroPC;
/** If this is a branch that was predicted taken */
bool predTaken;
public:
/** Count of total number of dynamic instructions. */
static int instcount;
#ifdef DEBUG
void dumpSNList();
#endif
/** Whether or not the source register is ready.
* @todo: Not sure this should be here vs the derived class.
*/
bool _readySrcRegIdx[MaxInstSrcRegs];
protected:
/** Flattened register index of the destination registers of this
* instruction.
*/
TheISA::RegIndex _flatDestRegIdx[TheISA::MaxInstDestRegs];
/** Flattened register index of the source registers of this
* instruction.
*/
TheISA::RegIndex _flatSrcRegIdx[TheISA::MaxInstSrcRegs];
/** Physical register index of the destination registers of this
* instruction.
*/
PhysRegIndex _destRegIdx[TheISA::MaxInstDestRegs];
/** Physical register index of the source registers of this
* instruction.
*/
PhysRegIndex _srcRegIdx[TheISA::MaxInstSrcRegs];
/** Physical register index of the previous producers of the
* architected destinations.
*/
PhysRegIndex _prevDestRegIdx[TheISA::MaxInstDestRegs];
public:
/** Returns the physical register index of the i'th destination
* register.
*/
PhysRegIndex renamedDestRegIdx(int idx) const
{
return _destRegIdx[idx];
}
/** Returns the physical register index of the i'th source register. */
PhysRegIndex renamedSrcRegIdx(int idx) const
{
return _srcRegIdx[idx];
}
/** Returns the flattened register index of the i'th destination
* register.
*/
TheISA::RegIndex flattenedDestRegIdx(int idx) const
{
return _flatDestRegIdx[idx];
}
/** Returns the flattened register index of the i'th source register */
TheISA::RegIndex flattenedSrcRegIdx(int idx) const
{
return _flatSrcRegIdx[idx];
}
/** Returns the physical register index of the previous physical register
* that remapped to the same logical register index.
*/
PhysRegIndex prevDestRegIdx(int idx) const
{
return _prevDestRegIdx[idx];
}
/** Renames a destination register to a physical register. Also records
* the previous physical register that the logical register mapped to.
*/
void renameDestReg(int idx,
PhysRegIndex renamed_dest,
PhysRegIndex previous_rename)
{
_destRegIdx[idx] = renamed_dest;
_prevDestRegIdx[idx] = previous_rename;
}
/** Renames a source logical register to the physical register which
* has/will produce that logical register's result.
* @todo: add in whether or not the source register is ready.
*/
void renameSrcReg(int idx, PhysRegIndex renamed_src)
{
_srcRegIdx[idx] = renamed_src;
}
/** Flattens a source architectural register index into a logical index.
*/
void flattenSrcReg(int idx, TheISA::RegIndex flattened_src)
{
_flatSrcRegIdx[idx] = flattened_src;
}
/** Flattens a destination architectural register index into a logical
* index.
*/
void flattenDestReg(int idx, TheISA::RegIndex flattened_dest)
{
_flatDestRegIdx[idx] = flattened_dest;
}
/** BaseDynInst constructor given a binary instruction.
* @param staticInst A StaticInstPtr to the underlying instruction.
* @param PC The PC of the instruction.
* @param pred_PC The predicted next PC.
* @param pred_NPC The predicted next NPC.
* @param seq_num The sequence number of the instruction.
* @param cpu Pointer to the instruction's CPU.
*/
BaseDynInst(StaticInstPtr staticInst, Addr PC, Addr NPC, Addr microPC,
Addr pred_PC, Addr pred_NPC, Addr pred_MicroPC,
InstSeqNum seq_num, ImplCPU *cpu);
/** BaseDynInst constructor given a binary instruction.
* @param inst The binary instruction.
* @param PC The PC of the instruction.
* @param pred_PC The predicted next PC.
* @param pred_NPC The predicted next NPC.
* @param seq_num The sequence number of the instruction.
* @param cpu Pointer to the instruction's CPU.
*/
BaseDynInst(TheISA::ExtMachInst inst, Addr PC, Addr NPC, Addr microPC,
Addr pred_PC, Addr pred_NPC, Addr pred_MicroPC,
InstSeqNum seq_num, ImplCPU *cpu);
/** BaseDynInst constructor given a StaticInst pointer.
* @param _staticInst The StaticInst for this BaseDynInst.
*/
BaseDynInst(StaticInstPtr &_staticInst);
/** BaseDynInst destructor. */
~BaseDynInst();
private:
/** Function to initialize variables in the constructors. */
void initVars();
public:
/** Dumps out contents of this BaseDynInst. */
void dump();
/** Dumps out contents of this BaseDynInst into given string. */
void dump(std::string &outstring);
/** Read this CPU's ID. */
int readCpuId() { return cpu->readCpuId(); }
/** Returns the fault type. */
Fault getFault() { return fault; }
/** Checks whether or not this instruction has had its branch target
* calculated yet. For now it is not utilized and is hacked to be
* always false.
* @todo: Actually use this instruction.
*/
bool doneTargCalc() { return false; }
/** Returns the next PC. This could be the speculative next PC if it is
* called prior to the actual branch target being calculated.
*/
Addr readNextPC() { return nextPC; }
/** Returns the next NPC. This could be the speculative next NPC if it is
* called prior to the actual branch target being calculated.
*/
Addr readNextNPC()
{
#if ISA_HAS_DELAY_SLOT
return nextNPC;
#else
return nextPC + sizeof(TheISA::MachInst);
#endif
}
Addr readNextMicroPC()
{
return nextMicroPC;
}
/** Set the predicted target of this current instruction. */
void setPredTarg(Addr predicted_PC, Addr predicted_NPC,
Addr predicted_MicroPC)
{
predPC = predicted_PC;
predNPC = predicted_NPC;
predMicroPC = predicted_MicroPC;
}
/** Returns the predicted PC immediately after the branch. */
Addr readPredPC() { return predPC; }
/** Returns the predicted PC two instructions after the branch */
Addr readPredNPC() { return predNPC; }
/** Returns the predicted micro PC after the branch */
Addr readPredMicroPC() { return predMicroPC; }
/** Returns whether the instruction was predicted taken or not. */
bool readPredTaken()
{
return predTaken;
}
void setPredTaken(bool predicted_taken)
{
predTaken = predicted_taken;
}
/** Returns whether the instruction mispredicted. */
bool mispredicted()
{
return readPredPC() != readNextPC() ||
readPredNPC() != readNextNPC() ||
readPredMicroPC() != readNextMicroPC();
}
//
// Instruction types. Forward checks to StaticInst object.
//
bool isNop() const { return staticInst->isNop(); }
bool isMemRef() const { return staticInst->isMemRef(); }
bool isLoad() const { return staticInst->isLoad(); }
bool isStore() const { return staticInst->isStore(); }
bool isStoreConditional() const
{ return staticInst->isStoreConditional(); }
bool isInstPrefetch() const { return staticInst->isInstPrefetch(); }
bool isDataPrefetch() const { return staticInst->isDataPrefetch(); }
bool isCopy() const { return staticInst->isCopy(); }
bool isInteger() const { return staticInst->isInteger(); }
bool isFloating() const { return staticInst->isFloating(); }
bool isControl() const { return staticInst->isControl(); }
bool isCall() const { return staticInst->isCall(); }
bool isReturn() const { return staticInst->isReturn(); }
bool isDirectCtrl() const { return staticInst->isDirectCtrl(); }
bool isIndirectCtrl() const { return staticInst->isIndirectCtrl(); }
bool isCondCtrl() const { return staticInst->isCondCtrl(); }
bool isUncondCtrl() const { return staticInst->isUncondCtrl(); }
bool isCondDelaySlot() const { return staticInst->isCondDelaySlot(); }
bool isThreadSync() const { return staticInst->isThreadSync(); }
bool isSerializing() const { return staticInst->isSerializing(); }
bool isSerializeBefore() const
{ return staticInst->isSerializeBefore() || status[SerializeBefore]; }
bool isSerializeAfter() const
{ return staticInst->isSerializeAfter() || status[SerializeAfter]; }
bool isMemBarrier() const { return staticInst->isMemBarrier(); }
bool isWriteBarrier() const { return staticInst->isWriteBarrier(); }
bool isNonSpeculative() const { return staticInst->isNonSpeculative(); }
bool isQuiesce() const { return staticInst->isQuiesce(); }
bool isIprAccess() const { return staticInst->isIprAccess(); }
bool isUnverifiable() const { return staticInst->isUnverifiable(); }
bool isSyscall() const { return staticInst->isSyscall(); }
bool isMacroop() const { return staticInst->isMacroop(); }
bool isMicroop() const { return staticInst->isMicroop(); }
bool isDelayedCommit() const { return staticInst->isDelayedCommit(); }
bool isLastMicroop() const { return staticInst->isLastMicroop(); }
bool isFirstMicroop() const { return staticInst->isFirstMicroop(); }
bool isMicroBranch() const { return staticInst->isMicroBranch(); }
/** Temporarily sets this instruction as a serialize before instruction. */
void setSerializeBefore() { status.set(SerializeBefore); }
/** Clears the serializeBefore part of this instruction. */
void clearSerializeBefore() { status.reset(SerializeBefore); }
/** Checks if this serializeBefore is only temporarily set. */
bool isTempSerializeBefore() { return status[SerializeBefore]; }
/** Temporarily sets this instruction as a serialize after instruction. */
void setSerializeAfter() { status.set(SerializeAfter); }
/** Clears the serializeAfter part of this instruction.*/
void clearSerializeAfter() { status.reset(SerializeAfter); }
/** Checks if this serializeAfter is only temporarily set. */
bool isTempSerializeAfter() { return status[SerializeAfter]; }
/** Sets the serialization part of this instruction as handled. */
void setSerializeHandled() { status.set(SerializeHandled); }
/** Checks if the serialization part of this instruction has been
* handled. This does not apply to the temporary serializing
* state; it only applies to this instruction's own permanent
* serializing state.
*/
bool isSerializeHandled() { return status[SerializeHandled]; }
/** Returns the opclass of this instruction. */
OpClass opClass() const { return staticInst->opClass(); }
/** Returns the branch target address. */
Addr branchTarget() const { return staticInst->branchTarget(PC); }
/** Returns the number of source registers. */
int8_t numSrcRegs() const { return staticInst->numSrcRegs(); }
/** Returns the number of destination registers. */
int8_t numDestRegs() const { return staticInst->numDestRegs(); }
// the following are used to track physical register usage
// for machines with separate int & FP reg files
int8_t numFPDestRegs() const { return staticInst->numFPDestRegs(); }
int8_t numIntDestRegs() const { return staticInst->numIntDestRegs(); }
/** Returns the logical register index of the i'th destination register. */
RegIndex destRegIdx(int i) const { return staticInst->destRegIdx(i); }
/** Returns the logical register index of the i'th source register. */
RegIndex srcRegIdx(int i) const { return staticInst->srcRegIdx(i); }
/** Returns the result of an integer instruction. */
uint64_t readIntResult() { return instResult.integer; }
/** Returns the result of a floating point instruction. */
float readFloatResult() { return (float)instResult.dbl; }
/** Returns the result of a floating point (double) instruction. */
double readDoubleResult() { return instResult.dbl; }
/** Records an integer register being set to a value. */
void setIntRegOperand(const StaticInst *si, int idx, uint64_t val)
{
if (recordResult)
instResult.integer = val;
}
/** Records an fp register being set to a value. */
void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val,
int width)
{
if (recordResult) {
if (width == 32)
instResult.dbl = (double)val;
else if (width == 64)
instResult.dbl = val;
else
panic("Unsupported width!");
}
}
/** Records an fp register being set to a value. */
void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val)
{
if (recordResult)
instResult.dbl = (double)val;
}
/** Records an fp register being set to an integer value. */
void setFloatRegOperandBits(const StaticInst *si, int idx, uint64_t val,
int width)
{
if (recordResult)
instResult.integer = val;
}
/** Records an fp register being set to an integer value. */
void setFloatRegOperandBits(const StaticInst *si, int idx, uint64_t val)
{
if (recordResult)
instResult.integer = val;
}
/** Records that one of the source registers is ready. */
void markSrcRegReady();
/** Marks a specific register as ready. */
void markSrcRegReady(RegIndex src_idx);
/** Returns if a source register is ready. */
bool isReadySrcRegIdx(int idx) const
{
return this->_readySrcRegIdx[idx];
}
/** Sets this instruction as completed. */
void setCompleted() { status.set(Completed); }
/** Returns whether or not this instruction is completed. */
bool isCompleted() const { return status[Completed]; }
/** Marks the result as ready. */
void setResultReady() { status.set(ResultReady); }
/** Returns whether or not the result is ready. */
bool isResultReady() const { return status[ResultReady]; }
/** Sets this instruction as ready to issue. */
void setCanIssue() { status.set(CanIssue); }
/** Returns whether or not this instruction is ready to issue. */
bool readyToIssue() const { return status[CanIssue]; }
/** Clears this instruction being able to issue. */
void clearCanIssue() { status.reset(CanIssue); }
/** Sets this instruction as issued from the IQ. */
void setIssued() { status.set(Issued); }
/** Returns whether or not this instruction has issued. */
bool isIssued() const { return status[Issued]; }
/** Clears this instruction as being issued. */
void clearIssued() { status.reset(Issued); }
/** Sets this instruction as executed. */
void setExecuted() { status.set(Executed); }
/** Returns whether or not this instruction has executed. */
bool isExecuted() const { return status[Executed]; }
/** Sets this instruction as ready to commit. */
void setCanCommit() { status.set(CanCommit); }
/** Clears this instruction as being ready to commit. */
void clearCanCommit() { status.reset(CanCommit); }
/** Returns whether or not this instruction is ready to commit. */
bool readyToCommit() const { return status[CanCommit]; }
void setAtCommit() { status.set(AtCommit); }
bool isAtCommit() { return status[AtCommit]; }
/** Sets this instruction as committed. */
void setCommitted() { status.set(Committed); }
/** Returns whether or not this instruction is committed. */
bool isCommitted() const { return status[Committed]; }
/** Sets this instruction as squashed. */
void setSquashed() { status.set(Squashed); }
/** Returns whether or not this instruction is squashed. */
bool isSquashed() const { return status[Squashed]; }
//Instruction Queue Entry
//-----------------------
/** Sets this instruction as a entry the IQ. */
void setInIQ() { status.set(IqEntry); }
/** Sets this instruction as a entry the IQ. */
void clearInIQ() { status.reset(IqEntry); }
/** Returns whether or not this instruction has issued. */
bool isInIQ() const { return status[IqEntry]; }
/** Sets this instruction as squashed in the IQ. */
void setSquashedInIQ() { status.set(SquashedInIQ); status.set(Squashed);}
/** Returns whether or not this instruction is squashed in the IQ. */
bool isSquashedInIQ() const { return status[SquashedInIQ]; }
//Load / Store Queue Functions
//-----------------------
/** Sets this instruction as a entry the LSQ. */
void setInLSQ() { status.set(LsqEntry); }
/** Sets this instruction as a entry the LSQ. */
void removeInLSQ() { status.reset(LsqEntry); }
/** Returns whether or not this instruction is in the LSQ. */
bool isInLSQ() const { return status[LsqEntry]; }
/** Sets this instruction as squashed in the LSQ. */
void setSquashedInLSQ() { status.set(SquashedInLSQ);}
/** Returns whether or not this instruction is squashed in the LSQ. */
bool isSquashedInLSQ() const { return status[SquashedInLSQ]; }
//Reorder Buffer Functions
//-----------------------
/** Sets this instruction as a entry the ROB. */
void setInROB() { status.set(RobEntry); }
/** Sets this instruction as a entry the ROB. */
void clearInROB() { status.reset(RobEntry); }
/** Returns whether or not this instruction is in the ROB. */
bool isInROB() const { return status[RobEntry]; }
/** Sets this instruction as squashed in the ROB. */
void setSquashedInROB() { status.set(SquashedInROB); }
/** Returns whether or not this instruction is squashed in the ROB. */
bool isSquashedInROB() const { return status[SquashedInROB]; }
/** Read the PC of this instruction. */
const Addr readPC() const { return PC; }
/**Read the micro PC of this instruction. */
const Addr readMicroPC() const { return microPC; }
/** Set the next PC of this instruction (its actual target). */
void setNextPC(Addr val)
{
nextPC = val;
}
/** Set the next NPC of this instruction (the target in Mips or Sparc).*/
void setNextNPC(Addr val)
{
#if ISA_HAS_DELAY_SLOT
nextNPC = val;
#endif
}
void setNextMicroPC(Addr val)
{
nextMicroPC = val;
}
/** Sets the ASID. */
void setASID(short addr_space_id) { asid = addr_space_id; }
/** Sets the thread id. */
void setTid(unsigned tid) { threadNumber = tid; }
/** Sets the pointer to the thread state. */
void setThreadState(ImplState *state) { thread = state; }
/** Returns the thread context. */
ThreadContext *tcBase() { return thread->getTC(); }
private:
/** Instruction effective address.
* @todo: Consider if this is necessary or not.
*/
Addr instEffAddr;
/** Whether or not the effective address calculation is completed.
* @todo: Consider if this is necessary or not.
*/
bool eaCalcDone;
/** Is this instruction's memory access uncacheable. */
bool isUncacheable;
/** Has this instruction generated a memory request. */
bool reqMade;
public:
/** Sets the effective address. */
void setEA(Addr &ea) { instEffAddr = ea; eaCalcDone = true; }
/** Returns the effective address. */
const Addr &getEA() const { return instEffAddr; }
/** Returns whether or not the eff. addr. calculation has been completed. */
bool doneEACalc() { return eaCalcDone; }
/** Returns whether or not the eff. addr. source registers are ready. */
bool eaSrcsReady();
/** Whether or not the memory operation is done. */
bool memOpDone;
/** Is this instruction's memory access uncacheable. */
bool uncacheable() { return isUncacheable; }
/** Has this instruction generated a memory request. */
bool hasRequest() { return reqMade; }
public:
/** Load queue index. */
int16_t lqIdx;
/** Store queue index. */
int16_t sqIdx;
/** Iterator pointing to this BaseDynInst in the list of all insts. */
ListIt instListIt;
/** Returns iterator to this instruction in the list of all insts. */
ListIt &getInstListIt() { return instListIt; }
/** Sets iterator for this instruction in the list of all insts. */
void setInstListIt(ListIt _instListIt) { instListIt = _instListIt; }
public:
/** Returns the number of consecutive store conditional failures. */
unsigned readStCondFailures()
{ return thread->storeCondFailures; }
/** Sets the number of consecutive store conditional failures. */
void setStCondFailures(unsigned sc_failures)
{ thread->storeCondFailures = sc_failures; }
};
template<class Impl>
Fault
BaseDynInst<Impl>::translateDataReadAddr(Addr vaddr, Addr &paddr,
int size, unsigned flags)
{
if (traceData) {
traceData->setAddr(vaddr);
}
reqMade = true;
Request *req = new Request();
req->setVirt(asid, vaddr, size, flags, PC);
req->setThreadContext(thread->readCpuId(), threadNumber);
fault = cpu->translateDataReadReq(req, thread);
if (fault == NoFault)
paddr = req->getPaddr();
delete req;
return fault;
}
template<class Impl>
template<class T>
inline Fault
BaseDynInst<Impl>::read(Addr addr, T &data, unsigned flags)
{
reqMade = true;
Request *req = new Request();
req->setVirt(asid, addr, sizeof(T), flags, this->PC);
req->setThreadContext(thread->readCpuId(), threadNumber);
fault = cpu->translateDataReadReq(req, thread);
if (req->isUncacheable())
isUncacheable = true;
if (fault == NoFault) {
effAddr = req->getVaddr();
effAddrValid = true;
physEffAddr = req->getPaddr();
memReqFlags = req->getFlags();
#if 0
if (cpu->system->memctrl->badaddr(physEffAddr)) {
fault = TheISA::genMachineCheckFault();
data = (T)-1;
this->setExecuted();
} else {
fault = cpu->read(req, data, lqIdx);
}
#else
fault = cpu->read(req, data, lqIdx);
#endif
} else {
// Return a fixed value to keep simulation deterministic even
// along misspeculated paths.
data = (T)-1;
// Commit will have to clean up whatever happened. Set this
// instruction as executed.
this->setExecuted();
delete req;
}
if (traceData) {
traceData->setAddr(addr);
traceData->setData(data);
}
return fault;
}
template<class Impl>
Fault
BaseDynInst<Impl>::translateDataWriteAddr(Addr vaddr, Addr &paddr,
int size, unsigned flags)
{
if (traceData) {
traceData->setAddr(vaddr);
}
reqMade = true;
Request *req = new Request();
req->setVirt(asid, vaddr, size, flags, PC);
req->setThreadContext(thread->readCpuId(), threadNumber);
fault = cpu->translateDataWriteReq(req, thread);
if (fault == NoFault)
paddr = req->getPaddr();
delete req;
return fault;
}
template<class Impl>
template<class T>
inline Fault
BaseDynInst<Impl>::write(T data, Addr addr, unsigned flags, uint64_t *res)
{
if (traceData) {
traceData->setAddr(addr);
traceData->setData(data);
}
reqMade = true;
Request *req = new Request();
req->setVirt(asid, addr, sizeof(T), flags, this->PC);
req->setThreadContext(thread->readCpuId(), threadNumber);
fault = cpu->translateDataWriteReq(req, thread);
if (req->isUncacheable())
isUncacheable = true;
if (fault == NoFault) {
effAddr = req->getVaddr();
effAddrValid = true;
physEffAddr = req->getPaddr();
memReqFlags = req->getFlags();
if (req->isCondSwap()) {
assert(res);
req->setExtraData(*res);
}
#if 0
if (cpu->system->memctrl->badaddr(physEffAddr)) {
fault = TheISA::genMachineCheckFault();
} else {
fault = cpu->write(req, data, sqIdx);
}
#else
fault = cpu->write(req, data, sqIdx);
#endif
} else {
delete req;
}
return fault;
}
#endif // __CPU_BASE_DYN_INST_HH__