blob: c06dd3170afa70ed181757129a9b46219512a0ad [file] [log] [blame]
/*
* Copyright (c) 2001-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Ron Dreslinski
* Ali Saidi
*/
#include <sys/types.h>
#include <sys/mman.h>
#include <errno.h>
#include <fcntl.h>
#include <unistd.h>
#include <zlib.h>
#include <iostream>
#include <string>
#include "arch/isa_traits.hh"
#include "base/misc.hh"
#include "base/random.hh"
#include "config/full_system.hh"
#include "mem/packet_access.hh"
#include "mem/physical.hh"
#include "sim/eventq.hh"
#include "sim/host.hh"
using namespace std;
using namespace TheISA;
PhysicalMemory::PhysicalMemory(const Params *p)
: MemObject(p), pmemAddr(NULL), lat(p->latency),
lat_var(p->latency_var)
{
if (params()->range.size() % TheISA::PageBytes != 0)
panic("Memory Size not divisible by page size\n");
int map_flags = MAP_ANON | MAP_PRIVATE;
pmemAddr = (uint8_t *)mmap(NULL, params()->range.size(),
PROT_READ | PROT_WRITE, map_flags, -1, 0);
if (pmemAddr == (void *)MAP_FAILED) {
perror("mmap");
fatal("Could not mmap!\n");
}
//If requested, initialize all the memory to 0
if (p->zero)
memset(pmemAddr, 0, p->range.size());
pagePtr = 0;
cachedSize = params()->range.size();
cachedStart = params()->range.start;
}
void
PhysicalMemory::init()
{
if (ports.size() == 0) {
fatal("PhysicalMemory object %s is unconnected!", name());
}
for (PortIterator pi = ports.begin(); pi != ports.end(); ++pi) {
if (*pi)
(*pi)->sendStatusChange(Port::RangeChange);
}
}
PhysicalMemory::~PhysicalMemory()
{
if (pmemAddr)
munmap((char*)pmemAddr, params()->range.size());
//Remove memPorts?
}
Addr
PhysicalMemory::new_page()
{
Addr return_addr = pagePtr << LogVMPageSize;
return_addr += start();
++pagePtr;
return return_addr;
}
int
PhysicalMemory::deviceBlockSize()
{
//Can accept anysize request
return 0;
}
Tick
PhysicalMemory::calculateLatency(PacketPtr pkt)
{
Tick latency = lat;
if (lat_var != 0)
latency += random_mt.random<Tick>(0, lat_var);
return latency;
}
// Add load-locked to tracking list. Should only be called if the
// operation is a load and the LOCKED flag is set.
void
PhysicalMemory::trackLoadLocked(PacketPtr pkt)
{
Request *req = pkt->req;
Addr paddr = LockedAddr::mask(req->getPaddr());
// first we check if we already have a locked addr for this
// xc. Since each xc only gets one, we just update the
// existing record with the new address.
list<LockedAddr>::iterator i;
for (i = lockedAddrList.begin(); i != lockedAddrList.end(); ++i) {
if (i->matchesContext(req)) {
DPRINTF(LLSC, "Modifying lock record: cpu %d thread %d addr %#x\n",
req->getCpuNum(), req->getThreadNum(), paddr);
i->addr = paddr;
return;
}
}
// no record for this xc: need to allocate a new one
DPRINTF(LLSC, "Adding lock record: cpu %d thread %d addr %#x\n",
req->getCpuNum(), req->getThreadNum(), paddr);
lockedAddrList.push_front(LockedAddr(req));
}
// Called on *writes* only... both regular stores and
// store-conditional operations. Check for conventional stores which
// conflict with locked addresses, and for success/failure of store
// conditionals.
bool
PhysicalMemory::checkLockedAddrList(PacketPtr pkt)
{
Request *req = pkt->req;
Addr paddr = LockedAddr::mask(req->getPaddr());
bool isLocked = pkt->isLocked();
// Initialize return value. Non-conditional stores always
// succeed. Assume conditional stores will fail until proven
// otherwise.
bool success = !isLocked;
// Iterate over list. Note that there could be multiple matching
// records, as more than one context could have done a load locked
// to this location.
list<LockedAddr>::iterator i = lockedAddrList.begin();
while (i != lockedAddrList.end()) {
if (i->addr == paddr) {
// we have a matching address
if (isLocked && i->matchesContext(req)) {
// it's a store conditional, and as far as the memory
// system can tell, the requesting context's lock is
// still valid.
DPRINTF(LLSC, "StCond success: cpu %d thread %d addr %#x\n",
req->getCpuNum(), req->getThreadNum(), paddr);
success = true;
}
// Get rid of our record of this lock and advance to next
DPRINTF(LLSC, "Erasing lock record: cpu %d thread %d addr %#x\n",
i->cpuNum, i->threadNum, paddr);
i = lockedAddrList.erase(i);
}
else {
// no match: advance to next record
++i;
}
}
if (isLocked) {
req->setExtraData(success ? 1 : 0);
}
return success;
}
#if TRACING_ON
#define CASE(A, T) \
case sizeof(T): \
DPRINTF(MemoryAccess, A " of size %i on address 0x%x data 0x%x\n", \
pkt->getSize(), pkt->getAddr(), pkt->get<T>()); \
break
#define TRACE_PACKET(A) \
do { \
switch (pkt->getSize()) { \
CASE(A, uint64_t); \
CASE(A, uint32_t); \
CASE(A, uint16_t); \
CASE(A, uint8_t); \
default: \
DPRINTF(MemoryAccess, A " of size %i on address 0x%x\n", \
pkt->getSize(), pkt->getAddr()); \
} \
} while (0)
#else
#define TRACE_PACKET(A)
#endif
Tick
PhysicalMemory::doAtomicAccess(PacketPtr pkt)
{
assert(pkt->getAddr() >= start() &&
pkt->getAddr() + pkt->getSize() <= start() + size());
if (pkt->memInhibitAsserted()) {
DPRINTF(MemoryAccess, "mem inhibited on 0x%x: not responding\n",
pkt->getAddr());
return 0;
}
uint8_t *hostAddr = pmemAddr + pkt->getAddr() - start();
if (pkt->cmd == MemCmd::SwapReq) {
IntReg overwrite_val;
bool overwrite_mem;
uint64_t condition_val64;
uint32_t condition_val32;
assert(sizeof(IntReg) >= pkt->getSize());
overwrite_mem = true;
// keep a copy of our possible write value, and copy what is at the
// memory address into the packet
std::memcpy(&overwrite_val, pkt->getPtr<uint8_t>(), pkt->getSize());
std::memcpy(pkt->getPtr<uint8_t>(), hostAddr, pkt->getSize());
if (pkt->req->isCondSwap()) {
if (pkt->getSize() == sizeof(uint64_t)) {
condition_val64 = pkt->req->getExtraData();
overwrite_mem = !std::memcmp(&condition_val64, hostAddr,
sizeof(uint64_t));
} else if (pkt->getSize() == sizeof(uint32_t)) {
condition_val32 = (uint32_t)pkt->req->getExtraData();
overwrite_mem = !std::memcmp(&condition_val32, hostAddr,
sizeof(uint32_t));
} else
panic("Invalid size for conditional read/write\n");
}
if (overwrite_mem)
std::memcpy(hostAddr, &overwrite_val, pkt->getSize());
TRACE_PACKET("Read/Write");
} else if (pkt->isRead()) {
assert(!pkt->isWrite());
if (pkt->isLocked()) {
trackLoadLocked(pkt);
}
memcpy(pkt->getPtr<uint8_t>(), hostAddr, pkt->getSize());
TRACE_PACKET("Read");
} else if (pkt->isWrite()) {
if (writeOK(pkt)) {
memcpy(hostAddr, pkt->getPtr<uint8_t>(), pkt->getSize());
TRACE_PACKET("Write");
}
} else if (pkt->isInvalidate()) {
//upgrade or invalidate
if (pkt->needsResponse()) {
pkt->makeAtomicResponse();
}
} else {
panic("unimplemented");
}
if (pkt->needsResponse()) {
pkt->makeAtomicResponse();
}
return calculateLatency(pkt);
}
void
PhysicalMemory::doFunctionalAccess(PacketPtr pkt)
{
assert(pkt->getAddr() >= start() &&
pkt->getAddr() + pkt->getSize() <= start() + size());
uint8_t *hostAddr = pmemAddr + pkt->getAddr() - start();
if (pkt->isRead()) {
memcpy(pkt->getPtr<uint8_t>(), hostAddr, pkt->getSize());
TRACE_PACKET("Read");
pkt->makeAtomicResponse();
} else if (pkt->isWrite()) {
memcpy(hostAddr, pkt->getPtr<uint8_t>(), pkt->getSize());
TRACE_PACKET("Write");
pkt->makeAtomicResponse();
} else if (pkt->isPrint()) {
Packet::PrintReqState *prs =
dynamic_cast<Packet::PrintReqState*>(pkt->senderState);
// Need to call printLabels() explicitly since we're not going
// through printObj().
prs->printLabels();
// Right now we just print the single byte at the specified address.
ccprintf(prs->os, "%s%#x\n", prs->curPrefix(), *hostAddr);
} else {
panic("PhysicalMemory: unimplemented functional command %s",
pkt->cmdString());
}
}
Port *
PhysicalMemory::getPort(const std::string &if_name, int idx)
{
// Accept request for "functional" port for backwards compatibility
// with places where this function is called from C++. I'd prefer
// to move all these into Python someday.
if (if_name == "functional") {
return new MemoryPort(csprintf("%s-functional", name()), this);
}
if (if_name != "port") {
panic("PhysicalMemory::getPort: unknown port %s requested", if_name);
}
if (idx >= ports.size()) {
ports.resize(idx+1);
}
if (ports[idx] != NULL) {
panic("PhysicalMemory::getPort: port %d already assigned", idx);
}
MemoryPort *port =
new MemoryPort(csprintf("%s-port%d", name(), idx), this);
ports[idx] = port;
return port;
}
void
PhysicalMemory::recvStatusChange(Port::Status status)
{
}
PhysicalMemory::MemoryPort::MemoryPort(const std::string &_name,
PhysicalMemory *_memory)
: SimpleTimingPort(_name), memory(_memory)
{ }
void
PhysicalMemory::MemoryPort::recvStatusChange(Port::Status status)
{
memory->recvStatusChange(status);
}
void
PhysicalMemory::MemoryPort::getDeviceAddressRanges(AddrRangeList &resp,
bool &snoop)
{
memory->getAddressRanges(resp, snoop);
}
void
PhysicalMemory::getAddressRanges(AddrRangeList &resp, bool &snoop)
{
snoop = false;
resp.clear();
resp.push_back(RangeSize(start(), params()->range.size()));
}
int
PhysicalMemory::MemoryPort::deviceBlockSize()
{
return memory->deviceBlockSize();
}
Tick
PhysicalMemory::MemoryPort::recvAtomic(PacketPtr pkt)
{
return memory->doAtomicAccess(pkt);
}
void
PhysicalMemory::MemoryPort::recvFunctional(PacketPtr pkt)
{
pkt->pushLabel(memory->name());
if (!checkFunctional(pkt)) {
// Default implementation of SimpleTimingPort::recvFunctional()
// calls recvAtomic() and throws away the latency; we can save a
// little here by just not calculating the latency.
memory->doFunctionalAccess(pkt);
}
pkt->popLabel();
}
unsigned int
PhysicalMemory::drain(Event *de)
{
int count = 0;
for (PortIterator pi = ports.begin(); pi != ports.end(); ++pi) {
count += (*pi)->drain(de);
}
if (count)
changeState(Draining);
else
changeState(Drained);
return count;
}
void
PhysicalMemory::serialize(ostream &os)
{
gzFile compressedMem;
string filename = name() + ".physmem";
SERIALIZE_SCALAR(filename);
// write memory file
string thefile = Checkpoint::dir() + "/" + filename.c_str();
int fd = creat(thefile.c_str(), 0664);
if (fd < 0) {
perror("creat");
fatal("Can't open physical memory checkpoint file '%s'\n", filename);
}
compressedMem = gzdopen(fd, "wb");
if (compressedMem == NULL)
fatal("Insufficient memory to allocate compression state for %s\n",
filename);
if (gzwrite(compressedMem, pmemAddr, params()->range.size()) !=
params()->range.size()) {
fatal("Write failed on physical memory checkpoint file '%s'\n",
filename);
}
if (gzclose(compressedMem))
fatal("Close failed on physical memory checkpoint file '%s'\n",
filename);
}
void
PhysicalMemory::unserialize(Checkpoint *cp, const string &section)
{
gzFile compressedMem;
long *tempPage;
long *pmem_current;
uint64_t curSize;
uint32_t bytesRead;
const int chunkSize = 16384;
string filename;
UNSERIALIZE_SCALAR(filename);
filename = cp->cptDir + "/" + filename;
// mmap memoryfile
int fd = open(filename.c_str(), O_RDONLY);
if (fd < 0) {
perror("open");
fatal("Can't open physical memory checkpoint file '%s'", filename);
}
compressedMem = gzdopen(fd, "rb");
if (compressedMem == NULL)
fatal("Insufficient memory to allocate compression state for %s\n",
filename);
// unmap file that was mmaped in the constructor
// This is done here to make sure that gzip and open don't muck with our
// nice large space of memory before we reallocate it
munmap((char*)pmemAddr, params()->range.size());
pmemAddr = (uint8_t *)mmap(NULL, params()->range.size(),
PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0);
if (pmemAddr == (void *)MAP_FAILED) {
perror("mmap");
fatal("Could not mmap physical memory!\n");
}
curSize = 0;
tempPage = (long*)malloc(chunkSize);
if (tempPage == NULL)
fatal("Unable to malloc memory to read file %s\n", filename);
/* Only copy bytes that are non-zero, so we don't give the VM system hell */
while (curSize < params()->range.size()) {
bytesRead = gzread(compressedMem, tempPage, chunkSize);
if (bytesRead != chunkSize &&
bytesRead != params()->range.size() - curSize)
fatal("Read failed on physical memory checkpoint file '%s'"
" got %d bytes, expected %d or %d bytes\n",
filename, bytesRead, chunkSize,
params()->range.size() - curSize);
assert(bytesRead % sizeof(long) == 0);
for (int x = 0; x < bytesRead/sizeof(long); x++)
{
if (*(tempPage+x) != 0) {
pmem_current = (long*)(pmemAddr + curSize + x * sizeof(long));
*pmem_current = *(tempPage+x);
}
}
curSize += bytesRead;
}
free(tempPage);
if (gzclose(compressedMem))
fatal("Close failed on physical memory checkpoint file '%s'\n",
filename);
}
PhysicalMemory *
PhysicalMemoryParams::create()
{
return new PhysicalMemory(this);
}