blob: 7ade1e6959a5ec137746e72783ad4d7e2df6fd6f [file] [log] [blame]
# Copyright (c) 2009, 2012-2013, 2015-2018 ARM Limited
# All rights reserved.
#
# The license below extends only to copyright in the software and shall
# not be construed as granting a license to any other intellectual
# property including but not limited to intellectual property relating
# to a hardware implementation of the functionality of the software
# licensed hereunder. You may use the software subject to the license
# terms below provided that you ensure that this notice is replicated
# unmodified and in its entirety in all distributions of the software,
# modified or unmodified, in source code or in binary form.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met: redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer;
# redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution;
# neither the name of the copyright holders nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Authors: Ali Saidi
# Glenn Bergmans
from m5.params import *
from m5.options import *
from m5.SimObject import *
from m5.util.fdthelper import *
from m5.objects.System import System
from m5.objects.ArmSemihosting import ArmSemihosting
class ArmMachineType(Enum):
map = {
'RealViewPBX' : 1901,
'VExpress_EMM' : 2272,
'VExpress_EMM64' : 2272,
'DTOnly' : -1,
}
class ArmSystem(System):
type = 'ArmSystem'
cxx_header = "arch/arm/system.hh"
multi_proc = Param.Bool(True, "Multiprocessor system?")
boot_loader = VectorParam.String([],
"File that contains the boot loader code. Zero or more files may be "
"specified. The first boot loader that matches the kernel's "
"architecture will be used.")
gic_cpu_addr = Param.Addr(0, "Addres of the GIC CPU interface")
flags_addr = Param.Addr(0, "Address of the flags register for MP booting")
have_security = Param.Bool(False,
"True if Security Extensions are implemented")
have_virtualization = Param.Bool(False,
"True if Virtualization Extensions are implemented")
have_crypto = Param.Bool(False,
"True if Crypto Extensions is implemented")
have_lpae = Param.Bool(True, "True if LPAE is implemented")
reset_addr = Param.Addr(0x0,
"Reset address (ARMv8)")
auto_reset_addr = Param.Bool(False,
"Determine reset address from kernel entry point if no boot loader")
highest_el_is_64 = Param.Bool(False,
"True if the register width of the highest implemented exception level "
"is 64 bits (ARMv8)")
phys_addr_range_64 = Param.UInt8(40,
"Supported physical address range in bits when using AArch64 (ARMv8)")
have_large_asid_64 = Param.Bool(False,
"True if ASID is 16 bits in AArch64 (ARMv8)")
semihosting = Param.ArmSemihosting(NULL,
"Enable support for the Arm semihosting by settings this parameter")
m5ops_base = Param.Addr(0,
"Base of the 64KiB PA range used for memory-mapped m5ops. Set to 0 "
"to disable.")
def generateDeviceTree(self, state):
# Generate a device tree root node for the system by creating the root
# node and adding the generated subnodes of all children.
# When a child needs to add multiple nodes, this is done by also
# creating a node called '/' which will then be merged with the
# root instead of appended.
def generateMemNode(mem_range):
node = FdtNode("memory@%x" % long(mem_range.start))
node.append(FdtPropertyStrings("device_type", ["memory"]))
node.append(FdtPropertyWords("reg",
state.addrCells(mem_range.start) +
state.sizeCells(mem_range.size()) ))
return node
root = FdtNode('/')
root.append(state.addrCellsProperty())
root.append(state.sizeCellsProperty())
# Add memory nodes
for mem_range in self.mem_ranges:
root.append(generateMemNode(mem_range))
for node in self.recurseDeviceTree(state):
# Merge root nodes instead of adding them (for children
# that need to add multiple root level nodes)
if node.get_name() == root.get_name():
root.merge(node)
else:
root.append(node)
return root
class GenericArmSystem(ArmSystem):
type = 'GenericArmSystem'
cxx_header = "arch/arm/system.hh"
machine_type = Param.ArmMachineType('DTOnly',
"Machine id from http://www.arm.linux.org.uk/developer/machines/")
atags_addr = Param.Addr("Address where default atags structure should " \
"be written")
dtb_filename = Param.String("",
"File that contains the Device Tree Blob. Don't use DTB if empty.")
early_kernel_symbols = Param.Bool(False,
"enable early kernel symbol tables before MMU")
enable_context_switch_stats_dump = Param.Bool(False, "enable stats/task info dumping at context switch boundaries")
panic_on_panic = Param.Bool(False, "Trigger a gem5 panic if the " \
"guest kernel panics")
panic_on_oops = Param.Bool(False, "Trigger a gem5 panic if the " \
"guest kernel oopses")
def generateDtb(self, outdir, filename):
"""
Autogenerate DTB. Arguments are the folder where the DTB
will be stored, and the name of the DTB file.
"""
state = FdtState(addr_cells=2, size_cells=2, cpu_cells=1)
rootNode = self.generateDeviceTree(state)
fdt = Fdt()
fdt.add_rootnode(rootNode)
dtb_filename = os.path.join(outdir, filename)
self.dtb_filename = fdt.writeDtbFile(dtb_filename)
class LinuxArmSystem(GenericArmSystem):
type = 'LinuxArmSystem'
cxx_header = "arch/arm/linux/system.hh"
@cxxMethod
def dumpDmesg(self):
"""Dump dmesg from the simulated kernel to standard out"""
pass
# Have Linux systems for ARM auto-calc their load_addr_mask for proper
# kernel relocation.
load_addr_mask = 0x0
class FreebsdArmSystem(GenericArmSystem):
type = 'FreebsdArmSystem'
cxx_header = "arch/arm/freebsd/system.hh"