| /* |
| * Copyright (c) 2012-2013, 2017-2018 ARM Limited |
| * All rights reserved |
| * |
| * The license below extends only to copyright in the software and shall |
| * not be construed as granting a license to any other intellectual |
| * property including but not limited to intellectual property relating |
| * to a hardware implementation of the functionality of the software |
| * licensed hereunder. You may use the software subject to the license |
| * terms below provided that you ensure that this notice is replicated |
| * unmodified and in its entirety in all distributions of the software, |
| * modified or unmodified, in source code or in binary form. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are |
| * met: redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer; |
| * redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution; |
| * neither the name of the copyright holders nor the names of its |
| * contributors may be used to endorse or promote products derived from |
| * this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| * Authors: Edmund Grimley Evans |
| * Thomas Grocutt |
| */ |
| |
| /** |
| * @file |
| * Floating-point library code, which will gradually replace vfp.hh. For |
| * portability, this library does not use floating-point data types. Currently, |
| * C's standard integer types are used in the API, though this could be changed |
| * to something like class Fp32 { uint32_t x; }, etc. |
| */ |
| |
| #ifndef __ARCH_ARM_INSTS_FPLIB_HH__ |
| #define __ARCH_ARM_INSTS_FPLIB_HH__ |
| |
| #include <stdint.h> |
| |
| #include "arch/arm/miscregs.hh" |
| |
| namespace ArmISA |
| { |
| |
| enum FPRounding { |
| FPRounding_TIEEVEN = 0, |
| FPRounding_POSINF = 1, |
| FPRounding_NEGINF = 2, |
| FPRounding_ZERO = 3, |
| FPRounding_TIEAWAY = 4, |
| FPRounding_ODD = 5 |
| }; |
| |
| static inline FPRounding |
| FPCRRounding(FPSCR &fpscr) |
| { |
| return (FPRounding)((uint32_t)fpscr >> 22 & 3); |
| } |
| |
| /** Floating-point absolute value. */ |
| template <class T> |
| T fplibAbs(T op); |
| /** Floating-point add. */ |
| template <class T> |
| T fplibAdd(T op1, T op2, FPSCR &fpscr); |
| /** Floating-point compare (quiet and signaling). */ |
| template <class T> |
| int fplibCompare(T op1, T op2, bool signal_nans, FPSCR &fpscr); |
| /** Floating-point compare equal. */ |
| template <class T> |
| bool fplibCompareEQ(T op1, T op2, FPSCR &fpscr); |
| /** Floating-point compare greater than or equal. */ |
| template <class T> |
| bool fplibCompareGE(T op1, T op2, FPSCR &fpscr); |
| /** Floating-point compare greater than. */ |
| template <class T> |
| bool fplibCompareGT(T op1, T op2, FPSCR &fpscr); |
| /** Floating-point compare unordered. */ |
| template <class T> |
| bool fplibCompareUN(T op1, T op2, FPSCR &fpscr); |
| /** Floating-point convert precision. */ |
| template <class T1, class T2> |
| T2 fplibConvert(T1 op, FPRounding rounding, FPSCR &fpscr); |
| /** Floating-point division. */ |
| template <class T> |
| T fplibDiv(T op1, T op2, FPSCR &fpscr); |
| /** Floating-point exponential accelerator. */ |
| template <class T> |
| T fplibExpA(T op); |
| /** Floating-point maximum. */ |
| template <class T> |
| T fplibMax(T op1, T op2, FPSCR &fpscr); |
| /** Floating-point maximum number. */ |
| template <class T> |
| T fplibMaxNum(T op1, T op2, FPSCR &fpscr); |
| /** Floating-point minimum. */ |
| template <class T> |
| T fplibMin(T op1, T op2, FPSCR &fpscr); |
| /** Floating-point minimum number. */ |
| template <class T> |
| T fplibMinNum(T op1, T op2, FPSCR &fpscr); |
| /** Floating-point multiply. */ |
| template <class T> |
| T fplibMul(T op1, T op2, FPSCR &fpscr); |
| /** Floating-point multiply-add. */ |
| template <class T> |
| T fplibMulAdd(T addend, T op1, T op2, FPSCR &fpscr); |
| /** Floating-point multiply extended. */ |
| template <class T> |
| T fplibMulX(T op1, T op2, FPSCR &fpscr); |
| /** Floating-point negate. */ |
| template <class T> |
| T fplibNeg(T op); |
| /** Floating-point reciprocal square root estimate. */ |
| template <class T> |
| T fplibRSqrtEstimate(T op, FPSCR &fpscr); |
| /** Floating-point reciprocal square root step. */ |
| template <class T> |
| T fplibRSqrtStepFused(T op1, T op2, FPSCR &fpscr); |
| /** Floating-point reciprocal estimate. */ |
| template <class T> |
| T fplibRecipEstimate(T op, FPSCR &fpscr); |
| /** Floating-point reciprocal step. */ |
| template <class T> |
| T fplibRecipStepFused(T op1, T op2, FPSCR &fpscr); |
| /** Floating-point reciprocal exponent. */ |
| template <class T> |
| T fplibRecpX(T op, FPSCR &fpscr); |
| /** Floating-point convert to integer. */ |
| template <class T> |
| T fplibRoundInt(T op, FPRounding rounding, bool exact, FPSCR &fpscr); |
| /** Floating-point adjust exponent. */ |
| template <class T> |
| T fplibScale(T op1, T op2, FPSCR &fpscr); |
| /** Floating-point square root. */ |
| template <class T> |
| T fplibSqrt(T op, FPSCR &fpscr); |
| /** Floating-point subtract. */ |
| template <class T> |
| T fplibSub(T op1, T op2, FPSCR &fpscr); |
| /** Floating-point trigonometric multiply-add coefficient. */ |
| template <class T> |
| T fplibTrigMulAdd(uint8_t coeff_index, T op1, T op2, FPSCR &fpscr); |
| /** Floating-point trigonometric starting value. */ |
| template <class T> |
| T fplibTrigSMul(T op1, T op2, FPSCR &fpscr); |
| /** Floating-point trigonometric select coefficient. */ |
| template <class T> |
| T fplibTrigSSel(T op1, T op2, FPSCR &fpscr); |
| /** Floating-point convert to fixed-point. */ |
| template <class T1, class T2> |
| T2 fplibFPToFixed(T1 op, int fbits, bool u, FPRounding rounding, FPSCR &fpscr); |
| /** Floating-point convert from fixed-point. */ |
| template <class T> |
| T fplibFixedToFP(uint64_t op, int fbits, bool u, FPRounding rounding, |
| FPSCR &fpscr); |
| /** Floating-point value for +/- infinity. */ |
| template <class T> |
| T fplibInfinity(int sgn); |
| /** Foating-point value for default NaN. */ |
| template <class T> |
| T fplibDefaultNaN(); |
| |
| /* Function specializations... */ |
| template <> |
| uint16_t fplibAbs(uint16_t op); |
| template <> |
| uint32_t fplibAbs(uint32_t op); |
| template <> |
| uint64_t fplibAbs(uint64_t op); |
| template <> |
| uint16_t fplibAdd(uint16_t op1, uint16_t op2, FPSCR &fpscr); |
| template <> |
| uint32_t fplibAdd(uint32_t op1, uint32_t op2, FPSCR &fpscr); |
| template <> |
| uint64_t fplibAdd(uint64_t op1, uint64_t op2, FPSCR &fpscr); |
| template <> |
| int fplibCompare(uint16_t op1, uint16_t op2, bool signal_nans, FPSCR &fpscr); |
| template <> |
| int fplibCompare(uint32_t op1, uint32_t op2, bool signal_nans, FPSCR &fpscr); |
| template <> |
| int fplibCompare(uint64_t op1, uint64_t op2, bool signal_nans, FPSCR &fpscr); |
| template <> |
| bool fplibCompareEQ(uint16_t op1, uint16_t op2, FPSCR &fpscr); |
| template <> |
| bool fplibCompareEQ(uint32_t op1, uint32_t op2, FPSCR &fpscr); |
| template <> |
| bool fplibCompareEQ(uint64_t op1, uint64_t op2, FPSCR &fpscr); |
| template <> |
| bool fplibCompareGE(uint16_t op1, uint16_t op2, FPSCR &fpscr); |
| template <> |
| bool fplibCompareGE(uint32_t op1, uint32_t op2, FPSCR &fpscr); |
| template <> |
| bool fplibCompareGE(uint64_t op1, uint64_t op2, FPSCR &fpscr); |
| template <> |
| bool fplibCompareGT(uint16_t op1, uint16_t op2, FPSCR &fpscr); |
| template <> |
| bool fplibCompareGT(uint32_t op1, uint32_t op2, FPSCR &fpscr); |
| template <> |
| bool fplibCompareGT(uint64_t op1, uint64_t op2, FPSCR &fpscr); |
| template <> |
| bool fplibCompareUN(uint16_t op1, uint16_t op2, FPSCR &fpscr); |
| template <> |
| bool fplibCompareUN(uint32_t op1, uint32_t op2, FPSCR &fpscr); |
| template <> |
| bool fplibCompareUN(uint64_t op1, uint64_t op2, FPSCR &fpscr); |
| template <> |
| uint16_t fplibConvert(uint32_t op, FPRounding rounding, FPSCR &fpscr); |
| template <> |
| uint16_t fplibConvert(uint64_t op, FPRounding rounding, FPSCR &fpscr); |
| template <> |
| uint32_t fplibConvert(uint16_t op, FPRounding rounding, FPSCR &fpscr); |
| template <> |
| uint32_t fplibConvert(uint64_t op, FPRounding rounding, FPSCR &fpscr); |
| template <> |
| uint64_t fplibConvert(uint16_t op, FPRounding rounding, FPSCR &fpscr); |
| template <> |
| uint64_t fplibConvert(uint32_t op, FPRounding rounding, FPSCR &fpscr); |
| template <> |
| uint16_t fplibDiv(uint16_t op1, uint16_t op2, FPSCR &fpscr); |
| template <> |
| uint32_t fplibDiv(uint32_t op1, uint32_t op2, FPSCR &fpscr); |
| template <> |
| uint64_t fplibDiv(uint64_t op1, uint64_t op2, FPSCR &fpscr); |
| template <> |
| uint16_t fplibExpA(uint16_t op); |
| template <> |
| uint32_t fplibExpA(uint32_t op); |
| template <> |
| uint64_t fplibExpA(uint64_t op); |
| template <> |
| uint16_t fplibMax(uint16_t op1, uint16_t op2, FPSCR &fpscr); |
| template <> |
| uint32_t fplibMax(uint32_t op1, uint32_t op2, FPSCR &fpscr); |
| template <> |
| uint64_t fplibMax(uint64_t op1, uint64_t op2, FPSCR &fpscr); |
| template <> |
| uint16_t fplibMaxNum(uint16_t op1, uint16_t op2, FPSCR &fpscr); |
| template <> |
| uint32_t fplibMaxNum(uint32_t op1, uint32_t op2, FPSCR &fpscr); |
| template <> |
| uint64_t fplibMaxNum(uint64_t op1, uint64_t op2, FPSCR &fpscr); |
| template <> |
| uint16_t fplibMin(uint16_t op1, uint16_t op2, FPSCR &fpscr); |
| template <> |
| uint32_t fplibMin(uint32_t op1, uint32_t op2, FPSCR &fpscr); |
| template <> |
| uint64_t fplibMin(uint64_t op1, uint64_t op2, FPSCR &fpscr); |
| template <> |
| uint16_t fplibMinNum(uint16_t op1, uint16_t op2, FPSCR &fpscr); |
| template <> |
| uint32_t fplibMinNum(uint32_t op1, uint32_t op2, FPSCR &fpscr); |
| template <> |
| uint64_t fplibMinNum(uint64_t op1, uint64_t op2, FPSCR &fpscr); |
| template <> |
| uint16_t fplibMul(uint16_t op1, uint16_t op2, FPSCR &fpscr); |
| template <> |
| uint32_t fplibMul(uint32_t op1, uint32_t op2, FPSCR &fpscr); |
| template <> |
| uint64_t fplibMul(uint64_t op1, uint64_t op2, FPSCR &fpscr); |
| template <> |
| uint16_t fplibMulAdd(uint16_t addend, uint16_t op1, uint16_t op2, |
| FPSCR &fpscr); |
| template <> |
| uint32_t fplibMulAdd(uint32_t addend, uint32_t op1, uint32_t op2, |
| FPSCR &fpscr); |
| template <> |
| uint64_t fplibMulAdd(uint64_t addend, uint64_t op1, uint64_t op2, |
| FPSCR &fpscr); |
| template <> |
| uint16_t fplibMulX(uint16_t op1, uint16_t op2, FPSCR &fpscr); |
| template <> |
| uint32_t fplibMulX(uint32_t op1, uint32_t op2, FPSCR &fpscr); |
| template <> |
| uint64_t fplibMulX(uint64_t op1, uint64_t op2, FPSCR &fpscr); |
| template <> |
| uint16_t fplibNeg(uint16_t op); |
| template <> |
| uint32_t fplibNeg(uint32_t op); |
| template <> |
| uint64_t fplibNeg(uint64_t op); |
| template <> |
| uint16_t fplibRSqrtEstimate(uint16_t op, FPSCR &fpscr); |
| template <> |
| uint32_t fplibRSqrtEstimate(uint32_t op, FPSCR &fpscr); |
| template<> |
| uint64_t fplibRSqrtEstimate(uint64_t op, FPSCR &fpscr); |
| template <> |
| uint16_t fplibRSqrtStepFused(uint16_t op1, uint16_t op2, FPSCR &fpscr); |
| template <> |
| uint32_t fplibRSqrtStepFused(uint32_t op1, uint32_t op2, FPSCR &fpscr); |
| template <> |
| uint64_t fplibRSqrtStepFused(uint64_t op1, uint64_t op2, FPSCR &fpscr); |
| template <> |
| uint16_t fplibRecipEstimate(uint16_t op, FPSCR &fpscr); |
| template <> |
| uint32_t fplibRecipEstimate(uint32_t op, FPSCR &fpscr); |
| template <> |
| uint64_t fplibRecipEstimate(uint64_t op, FPSCR &fpscr); |
| template <> |
| uint16_t fplibRecipStepFused(uint16_t op1, uint16_t op2, FPSCR &fpscr); |
| template <> |
| uint32_t fplibRecipStepFused(uint32_t op1, uint32_t op2, FPSCR &fpscr); |
| template <> |
| uint64_t fplibRecipStepFused(uint64_t op1, uint64_t op2, FPSCR &fpscr); |
| template <> |
| uint16_t fplibRecpX(uint16_t op, FPSCR &fpscr); |
| template <> |
| uint32_t fplibRecpX(uint32_t op, FPSCR &fpscr); |
| template <> |
| uint64_t fplibRecpX(uint64_t op, FPSCR &fpscr); |
| template <> |
| uint16_t fplibRoundInt(uint16_t op, FPRounding rounding, bool exact, |
| FPSCR &fpscr); |
| template <> |
| uint32_t fplibRoundInt(uint32_t op, FPRounding rounding, bool exact, |
| FPSCR &fpscr); |
| template <> |
| uint64_t fplibRoundInt(uint64_t op, FPRounding rounding, bool exact, |
| FPSCR &fpscr); |
| template <> |
| uint16_t fplibScale(uint16_t op1, uint16_t op2, FPSCR &fpscr); |
| template <> |
| uint32_t fplibScale(uint32_t op1, uint32_t op2, FPSCR &fpscr); |
| template <> |
| uint64_t fplibScale(uint64_t op1, uint64_t op2, FPSCR &fpscr); |
| template <> |
| uint16_t fplibSqrt(uint16_t op, FPSCR &fpscr); |
| template <> |
| uint32_t fplibSqrt(uint32_t op, FPSCR &fpscr); |
| template <> |
| uint64_t fplibSqrt(uint64_t op, FPSCR &fpscr); |
| template <> |
| uint16_t fplibSub(uint16_t op1, uint16_t op2, FPSCR &fpscr); |
| template <> |
| uint32_t fplibSub(uint32_t op1, uint32_t op2, FPSCR &fpscr); |
| template <> |
| uint64_t fplibSub(uint64_t op1, uint64_t op2, FPSCR &fpscr); |
| template <> |
| uint16_t fplibTrigMulAdd(uint8_t coeff_index, uint16_t op1, uint16_t op2, |
| FPSCR &fpscr); |
| template <> |
| uint32_t fplibTrigMulAdd(uint8_t coeff_index, uint32_t op1, uint32_t op2, |
| FPSCR &fpscr); |
| template <> |
| uint64_t fplibTrigMulAdd(uint8_t coeff_index, uint64_t op1, uint64_t op2, |
| FPSCR &fpscr); |
| template <> |
| uint16_t fplibTrigSMul(uint16_t op1, uint16_t op2, FPSCR &fpscr); |
| template <> |
| uint32_t fplibTrigSMul(uint32_t op1, uint32_t op2, FPSCR &fpscr); |
| template <> |
| uint64_t fplibTrigSMul(uint64_t op1, uint64_t op2, FPSCR &fpscr); |
| template <> |
| uint16_t fplibTrigSSel(uint16_t op1, uint16_t op2, FPSCR &fpscr); |
| template <> |
| uint32_t fplibTrigSSel(uint32_t op1, uint32_t op2, FPSCR &fpscr); |
| template <> |
| uint64_t fplibTrigSSel(uint64_t op1, uint64_t op2, FPSCR &fpscr); |
| template <> |
| uint16_t fplibFPToFixed(uint16_t op, int fbits, bool u, FPRounding rounding, |
| FPSCR &fpscr); |
| template <> |
| uint32_t fplibFPToFixed(uint16_t op, int fbits, bool u, FPRounding rounding, |
| FPSCR &fpscr); |
| template <> |
| uint32_t fplibFPToFixed(uint32_t op, int fbits, bool u, FPRounding rounding, |
| FPSCR &fpscr); |
| template <> |
| uint32_t fplibFPToFixed(uint64_t op, int fbits, bool u, FPRounding rounding, |
| FPSCR &fpscr); |
| template <> |
| uint64_t fplibFPToFixed(uint16_t op, int fbits, bool u, FPRounding rounding, |
| FPSCR &fpscr); |
| template <> |
| uint64_t fplibFPToFixed(uint32_t op, int fbits, bool u, FPRounding rounding, |
| FPSCR &fpscr); |
| template <> |
| uint64_t fplibFPToFixed(uint64_t op, int fbits, bool u, FPRounding rounding, |
| FPSCR &fpscr); |
| template <> |
| uint16_t fplibFixedToFP(uint64_t op, int fbits, bool u, FPRounding rounding, |
| FPSCR &fpscr); |
| template <> |
| uint32_t fplibFixedToFP(uint64_t op, int fbits, bool u, FPRounding rounding, |
| FPSCR &fpscr); |
| template <> |
| uint64_t fplibFixedToFP(uint64_t op, int fbits, bool u, FPRounding rounding, |
| FPSCR &fpscr); |
| template <> |
| uint16_t fplibInfinity(int sgn); |
| template <> |
| uint32_t fplibInfinity(int sgn); |
| template <> |
| uint64_t fplibInfinity(int sgn); |
| template <> |
| uint16_t fplibDefaultNaN(); |
| template <> |
| uint32_t fplibDefaultNaN(); |
| template <> |
| uint64_t fplibDefaultNaN(); |
| } |
| |
| #endif |