| /* |
| * Copyright (c) 2011, 2016 ARM Limited |
| * Copyright (c) 2013 Advanced Micro Devices, Inc. |
| * All rights reserved |
| * |
| * The license below extends only to copyright in the software and shall |
| * not be construed as granting a license to any other intellectual |
| * property including but not limited to intellectual property relating |
| * to a hardware implementation of the functionality of the software |
| * licensed hereunder. You may use the software subject to the license |
| * terms below provided that you ensure that this notice is replicated |
| * unmodified and in its entirety in all distributions of the software, |
| * modified or unmodified, in source code or in binary form. |
| * |
| * Copyright (c) 2006 The Regents of The University of Michigan |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are |
| * met: redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer; |
| * redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution; |
| * neither the name of the copyright holders nor the names of its |
| * contributors may be used to endorse or promote products derived from |
| * this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| * Authors: Kevin Lim |
| * Geoffrey Blake |
| */ |
| |
| #ifndef __CPU_CHECKER_CPU_IMPL_HH__ |
| #define __CPU_CHECKER_CPU_IMPL_HH__ |
| |
| #include <list> |
| #include <string> |
| |
| #include "arch/isa_traits.hh" |
| #include "arch/vtophys.hh" |
| #include "base/refcnt.hh" |
| #include "config/the_isa.hh" |
| #include "cpu/base_dyn_inst.hh" |
| #include "cpu/exetrace.hh" |
| #include "cpu/reg_class.hh" |
| #include "cpu/simple_thread.hh" |
| #include "cpu/static_inst.hh" |
| #include "cpu/thread_context.hh" |
| #include "cpu/checker/cpu.hh" |
| #include "debug/Checker.hh" |
| #include "sim/full_system.hh" |
| #include "sim/sim_object.hh" |
| #include "sim/stats.hh" |
| |
| using namespace std; |
| using namespace TheISA; |
| |
| template <class Impl> |
| void |
| Checker<Impl>::advancePC(const Fault &fault) |
| { |
| if (fault != NoFault) { |
| curMacroStaticInst = StaticInst::nullStaticInstPtr; |
| fault->invoke(tc, curStaticInst); |
| thread->decoder.reset(); |
| } else { |
| if (curStaticInst) { |
| if (curStaticInst->isLastMicroop()) |
| curMacroStaticInst = StaticInst::nullStaticInstPtr; |
| TheISA::PCState pcState = thread->pcState(); |
| TheISA::advancePC(pcState, curStaticInst); |
| thread->pcState(pcState); |
| DPRINTF(Checker, "Advancing PC to %s.\n", thread->pcState()); |
| } |
| } |
| } |
| ////////////////////////////////////////////////// |
| |
| template <class Impl> |
| void |
| Checker<Impl>::handlePendingInt() |
| { |
| DPRINTF(Checker, "IRQ detected at PC: %s with %d insts in buffer\n", |
| thread->pcState(), instList.size()); |
| DynInstPtr boundaryInst = NULL; |
| if (!instList.empty()) { |
| // Set the instructions as completed and verify as much as possible. |
| DynInstPtr inst; |
| typename std::list<DynInstPtr>::iterator itr; |
| |
| for (itr = instList.begin(); itr != instList.end(); itr++) { |
| (*itr)->setCompleted(); |
| } |
| |
| inst = instList.front(); |
| boundaryInst = instList.back(); |
| verify(inst); // verify the instructions |
| inst = NULL; |
| } |
| if ((!boundaryInst && curMacroStaticInst && |
| curStaticInst->isDelayedCommit() && |
| !curStaticInst->isLastMicroop()) || |
| (boundaryInst && boundaryInst->isDelayedCommit() && |
| !boundaryInst->isLastMicroop())) { |
| panic("%lli: Trying to take an interrupt in middle of " |
| "a non-interuptable instruction!", curTick()); |
| } |
| boundaryInst = NULL; |
| thread->decoder.reset(); |
| curMacroStaticInst = StaticInst::nullStaticInstPtr; |
| } |
| |
| template <class Impl> |
| void |
| Checker<Impl>::verify(const DynInstPtr &completed_inst) |
| { |
| DynInstPtr inst; |
| |
| // Make sure serializing instructions are actually |
| // seen as serializing to commit. instList should be |
| // empty in these cases. |
| if ((completed_inst->isSerializing() || |
| completed_inst->isSerializeBefore()) && |
| (!instList.empty() ? |
| (instList.front()->seqNum != completed_inst->seqNum) : 0)) { |
| panic("%lli: Instruction sn:%lli at PC %s is serializing before but is" |
| " entering instList with other instructions\n", curTick(), |
| completed_inst->seqNum, completed_inst->pcState()); |
| } |
| |
| // Either check this instruction, or add it to a list of |
| // instructions waiting to be checked. Instructions must be |
| // checked in program order, so if a store has committed yet not |
| // completed, there may be some instructions that are waiting |
| // behind it that have completed and must be checked. |
| if (!instList.empty()) { |
| if (youngestSN < completed_inst->seqNum) { |
| DPRINTF(Checker, "Adding instruction [sn:%lli] PC:%s to list\n", |
| completed_inst->seqNum, completed_inst->pcState()); |
| instList.push_back(completed_inst); |
| youngestSN = completed_inst->seqNum; |
| } |
| |
| if (!instList.front()->isCompleted()) { |
| return; |
| } else { |
| inst = instList.front(); |
| instList.pop_front(); |
| } |
| } else { |
| if (!completed_inst->isCompleted()) { |
| if (youngestSN < completed_inst->seqNum) { |
| DPRINTF(Checker, "Adding instruction [sn:%lli] PC:%s to list\n", |
| completed_inst->seqNum, completed_inst->pcState()); |
| instList.push_back(completed_inst); |
| youngestSN = completed_inst->seqNum; |
| } |
| return; |
| } else { |
| if (youngestSN < completed_inst->seqNum) { |
| inst = completed_inst; |
| youngestSN = completed_inst->seqNum; |
| } else { |
| return; |
| } |
| } |
| } |
| |
| // Make sure a serializing instruction is actually seen as |
| // serializing. instList should be empty here |
| if (inst->isSerializeAfter() && !instList.empty()) { |
| panic("%lli: Instruction sn:%lli at PC %s is serializing after but is" |
| " exiting instList with other instructions\n", curTick(), |
| completed_inst->seqNum, completed_inst->pcState()); |
| } |
| unverifiedInst = inst; |
| inst = NULL; |
| |
| // Try to check all instructions that are completed, ending if we |
| // run out of instructions to check or if an instruction is not |
| // yet completed. |
| while (1) { |
| DPRINTF(Checker, "Processing instruction [sn:%lli] PC:%s.\n", |
| unverifiedInst->seqNum, unverifiedInst->pcState()); |
| unverifiedReq = NULL; |
| unverifiedReq = unverifiedInst->reqToVerify; |
| unverifiedMemData = unverifiedInst->memData; |
| // Make sure results queue is empty |
| while (!result.empty()) { |
| result.pop(); |
| } |
| numCycles++; |
| |
| Fault fault = NoFault; |
| |
| // maintain $r0 semantics |
| thread->setIntReg(ZeroReg, 0); |
| #if THE_ISA == ALPHA_ISA |
| thread->setFloatReg(ZeroReg, 0.0); |
| #endif |
| |
| // Check if any recent PC changes match up with anything we |
| // expect to happen. This is mostly to check if traps or |
| // PC-based events have occurred in both the checker and CPU. |
| if (changedPC) { |
| DPRINTF(Checker, "Changed PC recently to %s\n", |
| thread->pcState()); |
| if (willChangePC) { |
| if (newPCState == thread->pcState()) { |
| DPRINTF(Checker, "Changed PC matches expected PC\n"); |
| } else { |
| warn("%lli: Changed PC does not match expected PC, " |
| "changed: %s, expected: %s", |
| curTick(), thread->pcState(), newPCState); |
| CheckerCPU::handleError(); |
| } |
| willChangePC = false; |
| } |
| changedPC = false; |
| } |
| |
| // Try to fetch the instruction |
| uint64_t fetchOffset = 0; |
| bool fetchDone = false; |
| |
| while (!fetchDone) { |
| Addr fetch_PC = thread->instAddr(); |
| fetch_PC = (fetch_PC & PCMask) + fetchOffset; |
| |
| MachInst machInst; |
| |
| // If not in the middle of a macro instruction |
| if (!curMacroStaticInst) { |
| // set up memory request for instruction fetch |
| auto mem_req = std::make_shared<Request>( |
| unverifiedInst->threadNumber, fetch_PC, |
| sizeof(MachInst), 0, masterId, fetch_PC, |
| thread->contextId()); |
| |
| mem_req->setVirt(0, fetch_PC, sizeof(MachInst), |
| Request::INST_FETCH, masterId, |
| thread->instAddr()); |
| |
| fault = itb->translateFunctional( |
| mem_req, tc, BaseTLB::Execute); |
| |
| if (fault != NoFault) { |
| if (unverifiedInst->getFault() == NoFault) { |
| // In this case the instruction was not a dummy |
| // instruction carrying an ITB fault. In the single |
| // threaded case the ITB should still be able to |
| // translate this instruction; in the SMT case it's |
| // possible that its ITB entry was kicked out. |
| warn("%lli: Instruction PC %s was not found in the " |
| "ITB!", curTick(), thread->pcState()); |
| handleError(unverifiedInst); |
| |
| // go to the next instruction |
| advancePC(NoFault); |
| |
| // Give up on an ITB fault.. |
| unverifiedInst = NULL; |
| return; |
| } else { |
| // The instruction is carrying an ITB fault. Handle |
| // the fault and see if our results match the CPU on |
| // the next tick(). |
| fault = unverifiedInst->getFault(); |
| break; |
| } |
| } else { |
| PacketPtr pkt = new Packet(mem_req, MemCmd::ReadReq); |
| |
| pkt->dataStatic(&machInst); |
| icachePort->sendFunctional(pkt); |
| machInst = gtoh(machInst); |
| |
| delete pkt; |
| } |
| } |
| |
| if (fault == NoFault) { |
| TheISA::PCState pcState = thread->pcState(); |
| |
| if (isRomMicroPC(pcState.microPC())) { |
| fetchDone = true; |
| curStaticInst = |
| microcodeRom.fetchMicroop(pcState.microPC(), NULL); |
| } else if (!curMacroStaticInst) { |
| //We're not in the middle of a macro instruction |
| StaticInstPtr instPtr = nullptr; |
| |
| //Predecode, ie bundle up an ExtMachInst |
| //If more fetch data is needed, pass it in. |
| Addr fetchPC = (pcState.instAddr() & PCMask) + fetchOffset; |
| thread->decoder.moreBytes(pcState, fetchPC, machInst); |
| |
| //If an instruction is ready, decode it. |
| //Otherwise, we'll have to fetch beyond the |
| //MachInst at the current pc. |
| if (thread->decoder.instReady()) { |
| fetchDone = true; |
| instPtr = thread->decoder.decode(pcState); |
| thread->pcState(pcState); |
| } else { |
| fetchDone = false; |
| fetchOffset += sizeof(TheISA::MachInst); |
| } |
| |
| //If we decoded an instruction and it's microcoded, |
| //start pulling out micro ops |
| if (instPtr && instPtr->isMacroop()) { |
| curMacroStaticInst = instPtr; |
| curStaticInst = |
| instPtr->fetchMicroop(pcState.microPC()); |
| } else { |
| curStaticInst = instPtr; |
| } |
| } else { |
| // Read the next micro op from the macro-op |
| curStaticInst = |
| curMacroStaticInst->fetchMicroop(pcState.microPC()); |
| fetchDone = true; |
| } |
| } |
| } |
| // reset decoder on Checker |
| thread->decoder.reset(); |
| |
| // Check Checker and CPU get same instruction, and record |
| // any faults the CPU may have had. |
| Fault unverifiedFault; |
| if (fault == NoFault) { |
| unverifiedFault = unverifiedInst->getFault(); |
| |
| // Checks that the instruction matches what we expected it to be. |
| // Checks both the machine instruction and the PC. |
| validateInst(unverifiedInst); |
| } |
| |
| // keep an instruction count |
| numInst++; |
| |
| |
| // Either the instruction was a fault and we should process the fault, |
| // or we should just go ahead execute the instruction. This assumes |
| // that the instruction is properly marked as a fault. |
| if (fault == NoFault) { |
| // Execute Checker instruction and trace |
| if (!unverifiedInst->isUnverifiable()) { |
| Trace::InstRecord *traceData = tracer->getInstRecord(curTick(), |
| tc, |
| curStaticInst, |
| pcState(), |
| curMacroStaticInst); |
| fault = curStaticInst->execute(this, traceData); |
| if (traceData) { |
| traceData->dump(); |
| delete traceData; |
| } |
| } |
| |
| if (fault == NoFault && unverifiedFault == NoFault) { |
| thread->funcExeInst++; |
| // Checks to make sure instrution results are correct. |
| validateExecution(unverifiedInst); |
| |
| if (curStaticInst->isLoad()) { |
| ++numLoad; |
| } |
| } else if (fault != NoFault && unverifiedFault == NoFault) { |
| panic("%lli: sn: %lli at PC: %s took a fault in checker " |
| "but not in driver CPU\n", curTick(), |
| unverifiedInst->seqNum, unverifiedInst->pcState()); |
| } else if (fault == NoFault && unverifiedFault != NoFault) { |
| panic("%lli: sn: %lli at PC: %s took a fault in driver " |
| "CPU but not in checker\n", curTick(), |
| unverifiedInst->seqNum, unverifiedInst->pcState()); |
| } |
| } |
| |
| // Take any faults here |
| if (fault != NoFault) { |
| if (FullSystem) { |
| fault->invoke(tc, curStaticInst); |
| willChangePC = true; |
| newPCState = thread->pcState(); |
| DPRINTF(Checker, "Fault, PC is now %s\n", newPCState); |
| curMacroStaticInst = StaticInst::nullStaticInstPtr; |
| } |
| } else { |
| advancePC(fault); |
| } |
| |
| if (FullSystem) { |
| // @todo: Determine if these should happen only if the |
| // instruction hasn't faulted. In the SimpleCPU case this may |
| // not be true, but in the O3 case this may be true. |
| Addr oldpc; |
| int count = 0; |
| do { |
| oldpc = thread->instAddr(); |
| system->pcEventQueue.service(tc); |
| count++; |
| } while (oldpc != thread->instAddr()); |
| if (count > 1) { |
| willChangePC = true; |
| newPCState = thread->pcState(); |
| DPRINTF(Checker, "PC Event, PC is now %s\n", newPCState); |
| } |
| } |
| |
| // @todo: Optionally can check all registers. (Or just those |
| // that have been modified). |
| validateState(); |
| |
| // Continue verifying instructions if there's another completed |
| // instruction waiting to be verified. |
| if (instList.empty()) { |
| break; |
| } else if (instList.front()->isCompleted()) { |
| unverifiedInst = NULL; |
| unverifiedInst = instList.front(); |
| instList.pop_front(); |
| } else { |
| break; |
| } |
| } |
| unverifiedInst = NULL; |
| } |
| |
| template <class Impl> |
| void |
| Checker<Impl>::switchOut() |
| { |
| instList.clear(); |
| } |
| |
| template <class Impl> |
| void |
| Checker<Impl>::takeOverFrom(BaseCPU *oldCPU) |
| { |
| } |
| |
| template <class Impl> |
| void |
| Checker<Impl>::validateInst(const DynInstPtr &inst) |
| { |
| if (inst->instAddr() != thread->instAddr()) { |
| warn("%lli: PCs do not match! Inst: %s, checker: %s", |
| curTick(), inst->pcState(), thread->pcState()); |
| if (changedPC) { |
| warn("%lli: Changed PCs recently, may not be an error", |
| curTick()); |
| } else { |
| handleError(inst); |
| } |
| } |
| |
| if (curStaticInst != inst->staticInst) { |
| warn("%lli: StaticInstPtrs don't match. (%s, %s).\n", curTick(), |
| curStaticInst->getName(), inst->staticInst->getName()); |
| } |
| } |
| |
| template <class Impl> |
| void |
| Checker<Impl>::validateExecution(const DynInstPtr &inst) |
| { |
| InstResult checker_val; |
| InstResult inst_val; |
| int idx = -1; |
| bool result_mismatch = false; |
| bool scalar_mismatch = false; |
| bool vector_mismatch = false; |
| |
| if (inst->isUnverifiable()) { |
| // Unverifiable instructions assume they were executed |
| // properly by the CPU. Grab the result from the |
| // instruction and write it to the register. |
| copyResult(inst, InstResult(0ul, InstResult::ResultType::Scalar), idx); |
| } else if (inst->numDestRegs() > 0 && !result.empty()) { |
| DPRINTF(Checker, "Dest regs %d, number of checker dest regs %d\n", |
| inst->numDestRegs(), result.size()); |
| for (int i = 0; i < inst->numDestRegs() && !result.empty(); i++) { |
| checker_val = result.front(); |
| result.pop(); |
| inst_val = inst->popResult( |
| InstResult(0ul, InstResult::ResultType::Scalar)); |
| if (checker_val != inst_val) { |
| result_mismatch = true; |
| idx = i; |
| scalar_mismatch = checker_val.isScalar(); |
| vector_mismatch = checker_val.isVector(); |
| panic_if(!(scalar_mismatch || vector_mismatch), |
| "Unknown type of result\n"); |
| } |
| } |
| } // Checker CPU checks all the saved results in the dyninst passed by |
| // the cpu model being checked against the saved results present in |
| // the static inst executed in the Checker. Sometimes the number |
| // of saved results differs between the dyninst and static inst, but |
| // this is ok and not a bug. May be worthwhile to try and correct this. |
| |
| if (result_mismatch) { |
| if (scalar_mismatch) { |
| warn("%lli: Instruction results (%i) do not match! (Values may" |
| " not actually be integers) Inst: %#x, checker: %#x", |
| curTick(), idx, inst_val.asIntegerNoAssert(), |
| checker_val.asInteger()); |
| } |
| |
| // It's useful to verify load values from memory, but in MP |
| // systems the value obtained at execute may be different than |
| // the value obtained at completion. Similarly DMA can |
| // present the same problem on even UP systems. Thus there is |
| // the option to only warn on loads having a result error. |
| // The load/store queue in Detailed CPU can also cause problems |
| // if load/store forwarding is allowed. |
| if (inst->isLoad() && warnOnlyOnLoadError) { |
| copyResult(inst, inst_val, idx); |
| } else { |
| handleError(inst); |
| } |
| } |
| |
| if (inst->nextInstAddr() != thread->nextInstAddr()) { |
| warn("%lli: Instruction next PCs do not match! Inst: %#x, " |
| "checker: %#x", |
| curTick(), inst->nextInstAddr(), thread->nextInstAddr()); |
| handleError(inst); |
| } |
| |
| // Checking side effect registers can be difficult if they are not |
| // checked simultaneously with the execution of the instruction. |
| // This is because other valid instructions may have modified |
| // these registers in the meantime, and their values are not |
| // stored within the DynInst. |
| while (!miscRegIdxs.empty()) { |
| int misc_reg_idx = miscRegIdxs.front(); |
| miscRegIdxs.pop(); |
| |
| if (inst->tcBase()->readMiscRegNoEffect(misc_reg_idx) != |
| thread->readMiscRegNoEffect(misc_reg_idx)) { |
| warn("%lli: Misc reg idx %i (side effect) does not match! " |
| "Inst: %#x, checker: %#x", |
| curTick(), misc_reg_idx, |
| inst->tcBase()->readMiscRegNoEffect(misc_reg_idx), |
| thread->readMiscRegNoEffect(misc_reg_idx)); |
| handleError(inst); |
| } |
| } |
| } |
| |
| |
| // This function is weird, if it is called it means the Checker and |
| // O3 have diverged, so panic is called for now. It may be useful |
| // to resynch states and continue if the divergence is a false positive |
| template <class Impl> |
| void |
| Checker<Impl>::validateState() |
| { |
| if (updateThisCycle) { |
| // Change this back to warn if divergences end up being false positives |
| panic("%lli: Instruction PC %#x results didn't match up, copying all " |
| "registers from main CPU", curTick(), unverifiedInst->instAddr()); |
| |
| // Terribly convoluted way to make sure O3 model does not implode |
| bool no_squash_from_TC = unverifiedInst->thread->noSquashFromTC; |
| unverifiedInst->thread->noSquashFromTC = true; |
| |
| // Heavy-weight copying of all registers |
| thread->copyArchRegs(unverifiedInst->tcBase()); |
| unverifiedInst->thread->noSquashFromTC = no_squash_from_TC; |
| |
| // Set curStaticInst to unverifiedInst->staticInst |
| curStaticInst = unverifiedInst->staticInst; |
| // Also advance the PC. Hopefully no PC-based events happened. |
| advancePC(NoFault); |
| updateThisCycle = false; |
| } |
| } |
| |
| template <class Impl> |
| void |
| Checker<Impl>::copyResult(const DynInstPtr &inst, |
| const InstResult& mismatch_val, int start_idx) |
| { |
| // We've already popped one dest off the queue, |
| // so do the fix-up then start with the next dest reg; |
| if (start_idx >= 0) { |
| const RegId& idx = inst->destRegIdx(start_idx); |
| switch (idx.classValue()) { |
| case IntRegClass: |
| panic_if(!mismatch_val.isScalar(), "Unexpected type of result"); |
| thread->setIntReg(idx.index(), mismatch_val.asInteger()); |
| break; |
| case FloatRegClass: |
| panic_if(!mismatch_val.isScalar(), "Unexpected type of result"); |
| thread->setFloatRegBits(idx.index(), mismatch_val.asInteger()); |
| break; |
| case VecRegClass: |
| panic_if(!mismatch_val.isVector(), "Unexpected type of result"); |
| thread->setVecReg(idx, mismatch_val.asVector()); |
| break; |
| case VecElemClass: |
| panic_if(!mismatch_val.isVecElem(), |
| "Unexpected type of result"); |
| thread->setVecElem(idx, mismatch_val.asVectorElem()); |
| break; |
| case CCRegClass: |
| panic_if(!mismatch_val.isScalar(), "Unexpected type of result"); |
| thread->setCCReg(idx.index(), mismatch_val.asInteger()); |
| break; |
| case MiscRegClass: |
| panic_if(!mismatch_val.isScalar(), "Unexpected type of result"); |
| thread->setMiscReg(idx.index(), mismatch_val.asInteger()); |
| break; |
| default: |
| panic("Unknown register class: %d", (int)idx.classValue()); |
| } |
| } |
| start_idx++; |
| InstResult res; |
| for (int i = start_idx; i < inst->numDestRegs(); i++) { |
| const RegId& idx = inst->destRegIdx(i); |
| res = inst->popResult(); |
| switch (idx.classValue()) { |
| case IntRegClass: |
| panic_if(!res.isScalar(), "Unexpected type of result"); |
| thread->setIntReg(idx.index(), res.asInteger()); |
| break; |
| case FloatRegClass: |
| panic_if(!res.isScalar(), "Unexpected type of result"); |
| thread->setFloatRegBits(idx.index(), res.asInteger()); |
| break; |
| case VecRegClass: |
| panic_if(!res.isVector(), "Unexpected type of result"); |
| thread->setVecReg(idx, res.asVector()); |
| break; |
| case VecElemClass: |
| panic_if(!res.isVecElem(), "Unexpected type of result"); |
| thread->setVecElem(idx, res.asVectorElem()); |
| break; |
| case CCRegClass: |
| panic_if(!res.isScalar(), "Unexpected type of result"); |
| thread->setCCReg(idx.index(), res.asInteger()); |
| break; |
| case MiscRegClass: |
| panic_if(res.isValid(), "MiscReg expecting invalid result"); |
| // Try to get the proper misc register index for ARM here... |
| thread->setMiscReg(idx.index(), 0); |
| break; |
| // else Register is out of range... |
| default: |
| panic("Unknown register class: %d", (int)idx.classValue()); |
| } |
| } |
| } |
| |
| template <class Impl> |
| void |
| Checker<Impl>::dumpAndExit(const DynInstPtr &inst) |
| { |
| cprintf("Error detected, instruction information:\n"); |
| cprintf("PC:%s, nextPC:%#x\n[sn:%lli]\n[tid:%i]\n" |
| "Completed:%i\n", |
| inst->pcState(), |
| inst->nextInstAddr(), |
| inst->seqNum, |
| inst->threadNumber, |
| inst->isCompleted()); |
| inst->dump(); |
| CheckerCPU::dumpAndExit(); |
| } |
| |
| template <class Impl> |
| void |
| Checker<Impl>::dumpInsts() |
| { |
| int num = 0; |
| |
| InstListIt inst_list_it = --(instList.end()); |
| |
| cprintf("Inst list size: %i\n", instList.size()); |
| |
| while (inst_list_it != instList.end()) |
| { |
| cprintf("Instruction:%i\n", |
| num); |
| |
| cprintf("PC:%s\n[sn:%lli]\n[tid:%i]\n" |
| "Completed:%i\n", |
| (*inst_list_it)->pcState(), |
| (*inst_list_it)->seqNum, |
| (*inst_list_it)->threadNumber, |
| (*inst_list_it)->isCompleted()); |
| |
| cprintf("\n"); |
| |
| inst_list_it--; |
| ++num; |
| } |
| |
| } |
| |
| #endif//__CPU_CHECKER_CPU_IMPL_HH__ |