| /* |
| * Copyright (c) 2007 MIPS Technologies, Inc. |
| * Copyright (c) 2004-2006 The Regents of The University of Michigan |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are |
| * met: redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer; |
| * redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution; |
| * neither the name of the copyright holders nor the names of its |
| * contributors may be used to endorse or promote products derived from |
| * this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| * Authors: Kevin Lim |
| * Korey Sewell |
| */ |
| |
| #ifndef __CPU_INORDER_DYN_INST_HH__ |
| #define __CPU_INORDER_DYN_INST_HH__ |
| |
| #include <bitset> |
| #include <list> |
| #include <string> |
| |
| #include "arch/isa_traits.hh" |
| #include "arch/faults.hh" |
| #include "arch/types.hh" |
| #include "arch/mt.hh" |
| #include "base/fast_alloc.hh" |
| #include "base/trace.hh" |
| #include "cpu/inorder/inorder_trace.hh" |
| #include "config/full_system.hh" |
| #include "cpu/thread_context.hh" |
| #include "cpu/exetrace.hh" |
| #include "cpu/inst_seq.hh" |
| #include "cpu/op_class.hh" |
| #include "cpu/static_inst.hh" |
| #include "cpu/inorder/thread_state.hh" |
| #include "cpu/inorder/resource.hh" |
| #include "cpu/inorder/pipeline_traits.hh" |
| #include "mem/packet.hh" |
| #include "sim/system.hh" |
| |
| /** |
| * @file |
| * Defines a dynamic instruction context for a inorder CPU model. |
| */ |
| |
| // Forward declaration. |
| class StaticInstPtr; |
| class ResourceRequest; |
| |
| class InOrderDynInst : public FastAlloc, public RefCounted |
| { |
| public: |
| // Binary machine instruction type. |
| typedef TheISA::MachInst MachInst; |
| // Extended machine instruction type |
| typedef TheISA::ExtMachInst ExtMachInst; |
| // Logical register index type. |
| typedef TheISA::RegIndex RegIndex; |
| // Integer register type. |
| typedef TheISA::IntReg IntReg; |
| // Floating point register type. |
| typedef TheISA::FloatReg FloatReg; |
| // Floating point register type. |
| typedef TheISA::MiscReg MiscReg; |
| |
| typedef short int PhysRegIndex; |
| |
| /** The refcounted DynInst pointer to be used. In most cases this is |
| * what should be used, and not DynInst*. |
| */ |
| typedef RefCountingPtr<InOrderDynInst> DynInstPtr; |
| |
| // The list of instructions iterator type. |
| typedef std::list<DynInstPtr>::iterator ListIt; |
| |
| enum { |
| MaxInstSrcRegs = TheISA::MaxInstSrcRegs, /// Max source regs |
| MaxInstDestRegs = TheISA::MaxInstDestRegs, /// Max dest regs |
| }; |
| |
| public: |
| /** BaseDynInst constructor given a binary instruction. |
| * @param inst The binary instruction. |
| * @param PC The PC of the instruction. |
| * @param pred_PC The predicted next PC. |
| * @param seq_num The sequence number of the instruction. |
| * @param cpu Pointer to the instruction's CPU. |
| */ |
| InOrderDynInst(ExtMachInst inst, Addr PC, Addr pred_PC, InstSeqNum seq_num, |
| InOrderCPU *cpu); |
| |
| /** BaseDynInst constructor given a binary instruction. |
| * @param seq_num The sequence number of the instruction. |
| * @param cpu Pointer to the instruction's CPU. |
| * NOTE: Must set Binary Instrution through Member Function |
| */ |
| InOrderDynInst(InOrderCPU *cpu, InOrderThreadState *state, |
| InstSeqNum seq_num, ThreadID tid, unsigned asid = 0); |
| |
| /** BaseDynInst constructor given a StaticInst pointer. |
| * @param _staticInst The StaticInst for this BaseDynInst. |
| */ |
| InOrderDynInst(StaticInstPtr &_staticInst); |
| |
| /** Skeleton Constructor. */ |
| InOrderDynInst(); |
| |
| /** InOrderDynInst destructor. */ |
| ~InOrderDynInst(); |
| |
| public: |
| /** The sequence number of the instruction. */ |
| InstSeqNum seqNum; |
| |
| /** The sequence number of the instruction. */ |
| InstSeqNum bdelaySeqNum; |
| |
| enum Status { |
| RegDepMapEntry, /// Instruction has been entered onto the RegDepMap |
| IqEntry, /// Instruction is in the IQ |
| RobEntry, /// Instruction is in the ROB |
| LsqEntry, /// Instruction is in the LSQ |
| Completed, /// Instruction has completed |
| ResultReady, /// Instruction has its result |
| CanIssue, /// Instruction can issue and execute |
| Issued, /// Instruction has issued |
| Executed, /// Instruction has executed |
| CanCommit, /// Instruction can commit |
| AtCommit, /// Instruction has reached commit |
| Committed, /// Instruction has committed |
| Squashed, /// Instruction is squashed |
| SquashedInIQ, /// Instruction is squashed in the IQ |
| SquashedInLSQ, /// Instruction is squashed in the LSQ |
| SquashedInROB, /// Instruction is squashed in the ROB |
| RecoverInst, /// Is a recover instruction |
| BlockingInst, /// Is a blocking instruction |
| ThreadsyncWait, /// Is a thread synchronization instruction |
| SerializeBefore, /// Needs to serialize on |
| /// instructions ahead of it |
| SerializeAfter, /// Needs to serialize instructions behind it |
| SerializeHandled, /// Serialization has been handled |
| NumStatus |
| }; |
| |
| /** The status of this BaseDynInst. Several bits can be set. */ |
| std::bitset<NumStatus> status; |
| |
| /** The thread this instruction is from. */ |
| short threadNumber; |
| |
| /** data address space ID, for loads & stores. */ |
| short asid; |
| |
| /** The virtual processor number */ |
| short virtProcNumber; |
| |
| /** The StaticInst used by this BaseDynInst. */ |
| StaticInstPtr staticInst; |
| |
| /** InstRecord that tracks this instructions. */ |
| Trace::InOrderTraceRecord *traceData; |
| |
| /** Pointer to the Impl's CPU object. */ |
| InOrderCPU *cpu; |
| |
| /** Pointer to the thread state. */ |
| InOrderThreadState *thread; |
| |
| /** The kind of fault this instruction has generated. */ |
| Fault fault; |
| |
| /** The memory request. */ |
| Request *req; |
| |
| /** Pointer to the data for the memory access. */ |
| uint8_t *memData; |
| |
| /** Data used for a store for operation. */ |
| uint64_t loadData; |
| |
| /** Data used for a store for operation. */ |
| uint64_t storeData; |
| |
| /** The resource schedule for this inst */ |
| ThePipeline::ResSchedule resSched; |
| |
| /** List of active resource requests for this instruction */ |
| std::list<ResourceRequest*> reqList; |
| |
| /** The effective virtual address (lds & stores only). */ |
| Addr effAddr; |
| |
| /** The effective physical address. */ |
| Addr physEffAddr; |
| |
| /** Effective virtual address for a copy source. */ |
| Addr copySrcEffAddr; |
| |
| /** Effective physical address for a copy source. */ |
| Addr copySrcPhysEffAddr; |
| |
| /** The memory request flags (from translation). */ |
| unsigned memReqFlags; |
| |
| /** How many source registers are ready. */ |
| unsigned readyRegs; |
| |
| /** An instruction src/dest has to be one of these types */ |
| union InstValue { |
| uint64_t integer; |
| double dbl; |
| }; |
| |
| //@TODO: Naming Convention for Enums? |
| enum ResultType { |
| None, |
| Integer, |
| Float, |
| Double |
| }; |
| |
| |
| /** Result of an instruction execution */ |
| struct InstResult { |
| ResultType type; |
| InstValue val; |
| Tick tick; |
| |
| InstResult() |
| : type(None), tick(0) |
| {} |
| }; |
| |
| /** The source of the instruction; assumes for now that there's only one |
| * destination register. |
| */ |
| InstValue instSrc[MaxInstSrcRegs]; |
| |
| /** The result of the instruction; assumes for now that there's only one |
| * destination register. |
| */ |
| InstResult instResult[MaxInstDestRegs]; |
| |
| /** PC of this instruction. */ |
| Addr PC; |
| |
| /** Next non-speculative PC. It is not filled in at fetch, but rather |
| * once the target of the branch is truly known (either decode or |
| * execute). |
| */ |
| Addr nextPC; |
| |
| /** Next next non-speculative PC. It is not filled in at fetch, but rather |
| * once the target of the branch is truly known (either decode or |
| * execute). |
| */ |
| Addr nextNPC; |
| |
| /** Predicted next PC. */ |
| Addr predPC; |
| |
| /** Predicted next NPC. */ |
| Addr predNPC; |
| |
| /** Predicted next microPC */ |
| Addr predMicroPC; |
| |
| /** Address to fetch from */ |
| Addr fetchAddr; |
| |
| /** Address to get/write data from/to */ |
| Addr memAddr; |
| |
| /** Whether or not the source register is ready. |
| * @todo: Not sure this should be here vs the derived class. |
| */ |
| bool _readySrcRegIdx[MaxInstSrcRegs]; |
| |
| /** Physical register index of the destination registers of this |
| * instruction. |
| */ |
| PhysRegIndex _destRegIdx[MaxInstDestRegs]; |
| |
| /** Physical register index of the source registers of this |
| * instruction. |
| */ |
| PhysRegIndex _srcRegIdx[MaxInstSrcRegs]; |
| |
| /** Physical register index of the previous producers of the |
| * architected destinations. |
| */ |
| PhysRegIndex _prevDestRegIdx[MaxInstDestRegs]; |
| |
| int nextStage; |
| |
| /* vars to keep track of InstStage's - used for resource sched defn */ |
| int nextInstStageNum; |
| ThePipeline::InstStage *currentInstStage; |
| std::list<ThePipeline::InstStage*> instStageList; |
| |
| private: |
| /** Function to initialize variables in the constructors. */ |
| void initVars(); |
| |
| public: |
| Tick memTime; |
| |
| //////////////////////////////////////////////////////////// |
| // |
| // BASE INSTRUCTION INFORMATION. |
| // |
| //////////////////////////////////////////////////////////// |
| std::string instName() { return staticInst->getName(); } |
| |
| |
| void setMachInst(ExtMachInst inst); |
| |
| /** Sets the StaticInst. */ |
| void setStaticInst(StaticInstPtr &static_inst); |
| |
| /** Sets the sequence number. */ |
| void setSeqNum(InstSeqNum seq_num) { seqNum = seq_num; } |
| |
| /** Sets the ASID. */ |
| void setASID(short addr_space_id) { asid = addr_space_id; } |
| |
| /** Reads the thread id. */ |
| short readTid() { return threadNumber; } |
| |
| /** Sets the thread id. */ |
| void setTid(ThreadID tid) { threadNumber = tid; } |
| |
| void setVpn(int id) { virtProcNumber = id; } |
| |
| int readVpn() { return virtProcNumber; } |
| |
| /** Sets the pointer to the thread state. */ |
| void setThreadState(InOrderThreadState *state) { thread = state; } |
| |
| /** Returns the thread context. */ |
| ThreadContext *tcBase() { return thread->getTC(); } |
| |
| /** Returns the fault type. */ |
| Fault getFault() { return fault; } |
| |
| //////////////////////////////////////////////////////////// |
| // |
| // INSTRUCTION TYPES - Forward checks to StaticInst object. |
| // |
| //////////////////////////////////////////////////////////// |
| bool isNop() const { return staticInst->isNop(); } |
| bool isMemRef() const { return staticInst->isMemRef(); } |
| bool isLoad() const { return staticInst->isLoad(); } |
| bool isStore() const { return staticInst->isStore(); } |
| bool isStoreConditional() const |
| { return staticInst->isStoreConditional(); } |
| bool isInstPrefetch() const { return staticInst->isInstPrefetch(); } |
| bool isDataPrefetch() const { return staticInst->isDataPrefetch(); } |
| bool isCopy() const { return staticInst->isCopy(); } |
| bool isInteger() const { return staticInst->isInteger(); } |
| bool isFloating() const { return staticInst->isFloating(); } |
| bool isControl() const { return staticInst->isControl(); } |
| bool isCall() const { return staticInst->isCall(); } |
| bool isReturn() const { return staticInst->isReturn(); } |
| bool isDirectCtrl() const { return staticInst->isDirectCtrl(); } |
| bool isIndirectCtrl() const { return staticInst->isIndirectCtrl(); } |
| bool isCondCtrl() const { return staticInst->isCondCtrl(); } |
| bool isUncondCtrl() const { return staticInst->isUncondCtrl(); } |
| bool isCondDelaySlot() const { return staticInst->isCondDelaySlot(); } |
| |
| bool isThreadSync() const { return staticInst->isThreadSync(); } |
| bool isSerializing() const { return staticInst->isSerializing(); } |
| bool isSerializeBefore() const |
| { return staticInst->isSerializeBefore() || status[SerializeBefore]; } |
| bool isSerializeAfter() const |
| { return staticInst->isSerializeAfter() || status[SerializeAfter]; } |
| bool isMemBarrier() const { return staticInst->isMemBarrier(); } |
| bool isWriteBarrier() const { return staticInst->isWriteBarrier(); } |
| bool isNonSpeculative() const { return staticInst->isNonSpeculative(); } |
| bool isQuiesce() const { return staticInst->isQuiesce(); } |
| bool isIprAccess() const { return staticInst->isIprAccess(); } |
| bool isUnverifiable() const { return staticInst->isUnverifiable(); } |
| |
| ///////////////////////////////////////////// |
| // |
| // RESOURCE SCHEDULING |
| // |
| ///////////////////////////////////////////// |
| |
| void setNextStage(int stage_num) { nextStage = stage_num; } |
| int getNextStage() { return nextStage; } |
| |
| ThePipeline::InstStage *addStage(); |
| ThePipeline::InstStage *addStage(int stage); |
| ThePipeline::InstStage *currentStage() { return currentInstStage; } |
| void deleteStages(); |
| |
| /** Add A Entry To Reource Schedule */ |
| void addToSched(ThePipeline::ScheduleEntry* sched_entry) |
| { resSched.push(sched_entry); } |
| |
| |
| /** Print Resource Schedule */ |
| /** @NOTE: DEBUG ONLY */ |
| void printSched() |
| { |
| ThePipeline::ResSchedule tempSched; |
| std::cerr << "\tInst. Res. Schedule: "; |
| while (!resSched.empty()) { |
| std::cerr << '\t' << resSched.top()->stageNum << "-" |
| << resSched.top()->resNum << ", "; |
| |
| tempSched.push(resSched.top()); |
| resSched.pop(); |
| } |
| |
| std::cerr << std::endl; |
| resSched = tempSched; |
| } |
| |
| /** Return Next Resource Stage To Be Used */ |
| int nextResStage() |
| { |
| if (resSched.empty()) |
| return -1; |
| else |
| return resSched.top()->stageNum; |
| } |
| |
| |
| /** Return Next Resource To Be Used */ |
| int nextResource() |
| { |
| if (resSched.empty()) |
| return -1; |
| else |
| return resSched.top()->resNum; |
| } |
| |
| /** Remove & Deallocate a schedule entry */ |
| void popSchedEntry() |
| { |
| if (!resSched.empty()) { |
| ThePipeline::ScheduleEntry* sked = resSched.top(); |
| resSched.pop(); |
| delete sked; |
| } |
| } |
| |
| /** Release a Resource Request (Currently Unused) */ |
| void releaseReq(ResourceRequest* req); |
| |
| //////////////////////////////////////////// |
| // |
| // INSTRUCTION EXECUTION |
| // |
| //////////////////////////////////////////// |
| /** Returns the opclass of this instruction. */ |
| OpClass opClass() const { return staticInst->opClass(); } |
| |
| /** Executes the instruction.*/ |
| Fault execute(); |
| |
| unsigned curResSlot; |
| |
| unsigned getCurResSlot() { return curResSlot; } |
| |
| void setCurResSlot(unsigned slot_num) { curResSlot = slot_num; } |
| |
| /** Calls a syscall. */ |
| void syscall(int64_t callnum); |
| void prefetch(Addr addr, unsigned flags); |
| void writeHint(Addr addr, int size, unsigned flags); |
| Fault copySrcTranslate(Addr src); |
| Fault copy(Addr dest); |
| |
| //////////////////////////////////////////////////////////// |
| // |
| // MULTITHREADING INTERFACE TO CPU MODELS |
| // |
| //////////////////////////////////////////////////////////// |
| virtual void deallocateContext(int thread_num); |
| |
| virtual void enableVirtProcElement(unsigned vpe); |
| virtual void disableVirtProcElement(unsigned vpe); |
| |
| virtual void enableMultiThreading(unsigned vpe); |
| virtual void disableMultiThreading(unsigned vpe); |
| |
| //////////////////////////////////////////////////////////// |
| // |
| // PROGRAM COUNTERS - PC/NPC/NPC |
| // |
| //////////////////////////////////////////////////////////// |
| /** Read the PC of this instruction. */ |
| const Addr readPC() const { return PC; } |
| |
| /** Sets the PC of this instruction. */ |
| void setPC(Addr pc) { PC = pc; } |
| |
| /** Returns the next PC. This could be the speculative next PC if it is |
| * called prior to the actual branch target being calculated. |
| */ |
| Addr readNextPC() { return nextPC; } |
| |
| /** Set the next PC of this instruction (its actual target). */ |
| void setNextPC(uint64_t val) { nextPC = val; } |
| |
| /** Returns the next NPC. This could be the speculative next NPC if it is |
| * called prior to the actual branch target being calculated. |
| */ |
| Addr readNextNPC() |
| { |
| #if ISA_HAS_DELAY_SLOT |
| return nextNPC; |
| #else |
| return nextPC + sizeof(TheISA::MachInst); |
| #endif |
| } |
| |
| /** Set the next PC of this instruction (its actual target). */ |
| void setNextNPC(uint64_t val) { nextNPC = val; } |
| |
| //////////////////////////////////////////////////////////// |
| // |
| // BRANCH PREDICTION |
| // |
| //////////////////////////////////////////////////////////// |
| /** Set the predicted target of this current instruction. */ |
| void setPredTarg(Addr predicted_PC) { predPC = predicted_PC; } |
| |
| /** Returns the predicted target of the branch. */ |
| Addr readPredTarg() { return predPC; } |
| |
| /** Returns the predicted PC immediately after the branch. */ |
| Addr readPredPC() { return predPC; } |
| |
| /** Returns the predicted PC two instructions after the branch */ |
| Addr readPredNPC() { return predNPC; } |
| |
| /** Returns the predicted micro PC after the branch */ |
| Addr readPredMicroPC() { return predMicroPC; } |
| |
| /** Returns whether the instruction was predicted taken or not. */ |
| bool predTaken() { return predictTaken; } |
| |
| /** Returns whether the instruction mispredicted. */ |
| bool mispredicted() |
| { |
| #if ISA_HAS_DELAY_SLOT |
| return predPC != nextNPC; |
| #else |
| return predPC != nextPC; |
| #endif |
| } |
| |
| /** Returns whether the instruction mispredicted. */ |
| bool mistargeted() { return predPC != nextNPC; } |
| |
| /** Returns the branch target address. */ |
| Addr branchTarget() const { return staticInst->branchTarget(PC); } |
| |
| /** Checks whether or not this instruction has had its branch target |
| * calculated yet. For now it is not utilized and is hacked to be |
| * always false. |
| * @todo: Actually use this instruction. |
| */ |
| bool doneTargCalc() { return false; } |
| |
| void setBranchPred(bool prediction) { predictTaken = prediction; } |
| |
| int squashingStage; |
| |
| bool predictTaken; |
| |
| bool procDelaySlotOnMispred; |
| |
| //////////////////////////////////////////// |
| // |
| // MEMORY ACCESS |
| // |
| //////////////////////////////////////////// |
| /** |
| * Does a read to a given address. |
| * @param addr The address to read. |
| * @param data The read's data is written into this parameter. |
| * @param flags The request's flags. |
| * @return Returns any fault due to the read. |
| */ |
| template <class T> |
| Fault read(Addr addr, T &data, unsigned flags); |
| |
| /** |
| * Does a write to a given address. |
| * @param data The data to be written. |
| * @param addr The address to write to. |
| * @param flags The request's flags. |
| * @param res The result of the write (for load locked/store conditionals). |
| * @return Returns any fault due to the write. |
| */ |
| template <class T> |
| Fault write(T data, Addr addr, unsigned flags, |
| uint64_t *res); |
| |
| /** Initiates a memory access - Calculate Eff. Addr & Initiate Memory Access |
| * Only valid for memory operations. |
| */ |
| Fault initiateAcc(); |
| |
| /** Completes a memory access - Only valid for memory operations. */ |
| Fault completeAcc(Packet *pkt); |
| |
| /** Calculates Eff. Addr. part of a memory instruction. */ |
| Fault calcEA(); |
| |
| /** Read Effective Address from instruction & do memory access */ |
| Fault memAccess(); |
| |
| RequestPtr fetchMemReq; |
| RequestPtr dataMemReq; |
| |
| bool memAddrReady; |
| |
| bool validMemAddr() |
| { return memAddrReady; } |
| |
| void setMemAddr(Addr addr) |
| { memAddr = addr; memAddrReady = true;} |
| |
| void unsetMemAddr() |
| { memAddrReady = false;} |
| |
| Addr getMemAddr() |
| { return memAddr; } |
| |
| /** Sets the effective address. */ |
| void setEA(Addr &ea) { instEffAddr = ea; eaCalcDone = true; } |
| |
| /** Returns the effective address. */ |
| const Addr &getEA() const { return instEffAddr; } |
| |
| /** Returns whether or not the eff. addr. calculation has been completed. */ |
| bool doneEACalc() { return eaCalcDone; } |
| |
| /** Returns whether or not the eff. addr. source registers are ready. |
| * Assume that src registers 1..n-1 are the ones that the |
| * EA calc depends on. (i.e. src reg 0 is the source of the data to be |
| * stored) |
| */ |
| bool eaSrcsReady() |
| { |
| for (int i = 1; i < numSrcRegs(); ++i) { |
| if (!_readySrcRegIdx[i]) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| ////////////////////////////////////////////////// |
| // |
| // SOURCE-DESTINATION REGISTER INDEXING |
| // |
| ////////////////////////////////////////////////// |
| /** Returns the number of source registers. */ |
| int8_t numSrcRegs() const { return staticInst->numSrcRegs(); } |
| |
| /** Returns the number of destination registers. */ |
| int8_t numDestRegs() const { return staticInst->numDestRegs(); } |
| |
| // the following are used to track physical register usage |
| // for machines with separate int & FP reg files |
| int8_t numFPDestRegs() const { return staticInst->numFPDestRegs(); } |
| int8_t numIntDestRegs() const { return staticInst->numIntDestRegs(); } |
| |
| /** Returns the logical register index of the i'th destination register. */ |
| RegIndex destRegIdx(int i) const { return staticInst->destRegIdx(i); } |
| |
| /** Returns the logical register index of the i'th source register. */ |
| RegIndex srcRegIdx(int i) const { return staticInst->srcRegIdx(i); } |
| |
| ////////////////////////////////////////////////// |
| // |
| // RENAME/PHYSICAL REGISTER FILE SUPPORT |
| // |
| ////////////////////////////////////////////////// |
| /** Returns the physical register index of the i'th destination |
| * register. |
| */ |
| PhysRegIndex renamedDestRegIdx(int idx) const |
| { |
| return _destRegIdx[idx]; |
| } |
| |
| /** Returns the physical register index of the i'th source register. */ |
| PhysRegIndex renamedSrcRegIdx(int idx) const |
| { |
| return _srcRegIdx[idx]; |
| } |
| |
| /** Returns the physical register index of the previous physical register |
| * that remapped to the same logical register index. |
| */ |
| PhysRegIndex prevDestRegIdx(int idx) const |
| { |
| return _prevDestRegIdx[idx]; |
| } |
| |
| /** Returns if a source register is ready. */ |
| bool isReadySrcRegIdx(int idx) const |
| { |
| return this->_readySrcRegIdx[idx]; |
| } |
| |
| /** Records that one of the source registers is ready. */ |
| void markSrcRegReady() |
| { |
| if (++readyRegs == numSrcRegs()) { |
| status.set(CanIssue); |
| } |
| } |
| |
| /** Marks a specific register as ready. */ |
| void markSrcRegReady(RegIndex src_idx) |
| { |
| _readySrcRegIdx[src_idx] = true; |
| |
| markSrcRegReady(); |
| } |
| |
| /** Renames a destination register to a physical register. Also records |
| * the previous physical register that the logical register mapped to. |
| */ |
| void renameDestReg(int idx, |
| PhysRegIndex renamed_dest, |
| PhysRegIndex previous_rename) |
| { |
| _destRegIdx[idx] = renamed_dest; |
| _prevDestRegIdx[idx] = previous_rename; |
| } |
| |
| /** Renames a source logical register to the physical register which |
| * has/will produce that logical register's result. |
| * @todo: add in whether or not the source register is ready. |
| */ |
| void renameSrcReg(int idx, PhysRegIndex renamed_src) |
| { |
| _srcRegIdx[idx] = renamed_src; |
| } |
| |
| |
| PhysRegIndex readDestRegIdx(int idx) |
| { |
| return _destRegIdx[idx]; |
| } |
| |
| void setDestRegIdx(int idx, PhysRegIndex dest_idx) |
| { |
| _destRegIdx[idx] = dest_idx; |
| } |
| |
| int getDestIdxNum(PhysRegIndex dest_idx) |
| { |
| for (int i=0; i < staticInst->numDestRegs(); i++) { |
| if (_destRegIdx[i] == dest_idx) |
| return i; |
| } |
| |
| return -1; |
| } |
| |
| PhysRegIndex readSrcRegIdx(int idx) |
| { |
| return _srcRegIdx[idx]; |
| } |
| |
| void setSrcRegIdx(int idx, PhysRegIndex src_idx) |
| { |
| _srcRegIdx[idx] = src_idx; |
| } |
| |
| int getSrcIdxNum(PhysRegIndex src_idx) |
| { |
| for (int i=0; i < staticInst->numSrcRegs(); i++) { |
| if (_srcRegIdx[i] == src_idx) |
| return i; |
| } |
| |
| return -1; |
| } |
| |
| //////////////////////////////////////////////////// |
| // |
| // SOURCE-DESTINATION REGISTER VALUES |
| // |
| //////////////////////////////////////////////////// |
| |
| /** Functions that sets an integer or floating point |
| * source register to a value. */ |
| void setIntSrc(int idx, uint64_t val); |
| void setFloatSrc(int idx, FloatReg val); |
| void setFloatRegBitsSrc(int idx, uint64_t val); |
| |
| uint64_t* getIntSrcPtr(int idx) { return &instSrc[idx].integer; } |
| uint64_t readIntSrc(int idx) { return instSrc[idx].integer; } |
| |
| /** These Instructions read a integer/float/misc. source register |
| * value in the instruction. The instruction's execute function will |
| * call these and it is the interface that is used by the ISA descr. |
| * language (which is why the name isnt readIntSrc(...)) Note: That |
| * the source reg. value is set using the setSrcReg() function. |
| */ |
| IntReg readIntRegOperand(const StaticInst *si, int idx, ThreadID tid = 0); |
| FloatReg readFloatRegOperand(const StaticInst *si, int idx); |
| TheISA::FloatRegBits readFloatRegOperandBits(const StaticInst *si, int idx); |
| MiscReg readMiscReg(int misc_reg); |
| MiscReg readMiscRegNoEffect(int misc_reg); |
| MiscReg readMiscRegOperand(const StaticInst *si, int idx); |
| MiscReg readMiscRegOperandNoEffect(const StaticInst *si, int idx); |
| |
| /** Returns the result value instruction. */ |
| ResultType resultType(int idx) |
| { |
| return instResult[idx].type; |
| } |
| |
| uint64_t readIntResult(int idx) |
| { |
| return instResult[idx].val.integer; |
| } |
| |
| /** Depending on type, return Float or Double */ |
| double readFloatResult(int idx) |
| { |
| return instResult[idx].val.dbl; |
| } |
| |
| Tick readResultTime(int idx) { return instResult[idx].tick; } |
| |
| uint64_t* getIntResultPtr(int idx) { return &instResult[idx].val.integer; } |
| |
| /** This is the interface that an instruction will use to write |
| * it's destination register. |
| */ |
| void setIntRegOperand(const StaticInst *si, int idx, IntReg val); |
| void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val); |
| void setFloatRegOperandBits(const StaticInst *si, int idx, |
| TheISA::FloatRegBits val); |
| void setMiscReg(int misc_reg, const MiscReg &val); |
| void setMiscRegNoEffect(int misc_reg, const MiscReg &val); |
| void setMiscRegOperand(const StaticInst *si, int idx, const MiscReg &val); |
| void setMiscRegOperandNoEffect(const StaticInst *si, int idx, const MiscReg &val); |
| |
| virtual uint64_t readRegOtherThread(unsigned idx, |
| ThreadID tid = InvalidThreadID); |
| virtual void setRegOtherThread(unsigned idx, const uint64_t &val, |
| ThreadID tid = InvalidThreadID); |
| |
| /** Sets the number of consecutive store conditional failures. */ |
| void setStCondFailures(unsigned sc_failures) |
| { thread->storeCondFailures = sc_failures; } |
| |
| ////////////////////////////////////////////////////////////// |
| // |
| // INSTRUCTION STATUS FLAGS (READ/SET) |
| // |
| ////////////////////////////////////////////////////////////// |
| /** Sets this instruction as entered on the CPU Reg Dep Map */ |
| void setRegDepEntry() { status.set(RegDepMapEntry); } |
| |
| /** Returns whether or not the entry is on the CPU Reg Dep Map */ |
| bool isRegDepEntry() const { return status[RegDepMapEntry]; } |
| |
| /** Sets this instruction as completed. */ |
| void setCompleted() { status.set(Completed); } |
| |
| /** Returns whether or not this instruction is completed. */ |
| bool isCompleted() const { return status[Completed]; } |
| |
| /** Marks the result as ready. */ |
| void setResultReady() { status.set(ResultReady); } |
| |
| /** Returns whether or not the result is ready. */ |
| bool isResultReady() const { return status[ResultReady]; } |
| |
| /** Sets this instruction as ready to issue. */ |
| void setCanIssue() { status.set(CanIssue); } |
| |
| /** Returns whether or not this instruction is ready to issue. */ |
| bool readyToIssue() const { return status[CanIssue]; } |
| |
| /** Sets this instruction as issued from the IQ. */ |
| void setIssued() { status.set(Issued); } |
| |
| /** Returns whether or not this instruction has issued. */ |
| bool isIssued() const { return status[Issued]; } |
| |
| /** Sets this instruction as executed. */ |
| void setExecuted() { status.set(Executed); } |
| |
| /** Returns whether or not this instruction has executed. */ |
| bool isExecuted() const { return status[Executed]; } |
| |
| /** Sets this instruction as ready to commit. */ |
| void setCanCommit() { status.set(CanCommit); } |
| |
| /** Clears this instruction as being ready to commit. */ |
| void clearCanCommit() { status.reset(CanCommit); } |
| |
| /** Returns whether or not this instruction is ready to commit. */ |
| bool readyToCommit() const { return status[CanCommit]; } |
| |
| void setAtCommit() { status.set(AtCommit); } |
| |
| bool isAtCommit() { return status[AtCommit]; } |
| |
| /** Sets this instruction as committed. */ |
| void setCommitted() { status.set(Committed); } |
| |
| /** Returns whether or not this instruction is committed. */ |
| bool isCommitted() const { return status[Committed]; } |
| |
| /** Sets this instruction as squashed. */ |
| void setSquashed() { status.set(Squashed); } |
| |
| /** Returns whether or not this instruction is squashed. */ |
| bool isSquashed() const { return status[Squashed]; } |
| |
| /** Temporarily sets this instruction as a serialize before instruction. */ |
| void setSerializeBefore() { status.set(SerializeBefore); } |
| |
| /** Clears the serializeBefore part of this instruction. */ |
| void clearSerializeBefore() { status.reset(SerializeBefore); } |
| |
| /** Checks if this serializeBefore is only temporarily set. */ |
| bool isTempSerializeBefore() { return status[SerializeBefore]; } |
| |
| /** Temporarily sets this instruction as a serialize after instruction. */ |
| void setSerializeAfter() { status.set(SerializeAfter); } |
| |
| /** Clears the serializeAfter part of this instruction.*/ |
| void clearSerializeAfter() { status.reset(SerializeAfter); } |
| |
| /** Checks if this serializeAfter is only temporarily set. */ |
| bool isTempSerializeAfter() { return status[SerializeAfter]; } |
| |
| /** Sets the serialization part of this instruction as handled. */ |
| void setSerializeHandled() { status.set(SerializeHandled); } |
| |
| /** Checks if the serialization part of this instruction has been |
| * handled. This does not apply to the temporary serializing |
| * state; it only applies to this instruction's own permanent |
| * serializing state. |
| */ |
| bool isSerializeHandled() { return status[SerializeHandled]; } |
| |
| private: |
| /** Instruction effective address. |
| * @todo: Consider if this is necessary or not. |
| */ |
| Addr instEffAddr; |
| |
| /** Whether or not the effective address calculation is completed. |
| * @todo: Consider if this is necessary or not. |
| */ |
| bool eaCalcDone; |
| |
| public: |
| /** Whether or not the memory operation is done. */ |
| bool memOpDone; |
| |
| public: |
| /** Load queue index. */ |
| int16_t lqIdx; |
| |
| /** Store queue index. */ |
| int16_t sqIdx; |
| |
| /** Iterator pointing to this BaseDynInst in the list of all insts. */ |
| ListIt instListIt; |
| |
| /** Returns iterator to this instruction in the list of all insts. */ |
| ListIt &getInstListIt() { return instListIt; } |
| |
| /** Sets iterator for this instruction in the list of all insts. */ |
| void setInstListIt(ListIt _instListIt) { instListIt = _instListIt; } |
| |
| /** Count of total number of dynamic instructions. */ |
| static int instcount; |
| |
| /** Dumps out contents of this BaseDynInst. */ |
| void dump(); |
| |
| /** Dumps out contents of this BaseDynInst into given string. */ |
| void dump(std::string &outstring); |
| |
| |
| //inline int curCount() { return curCount(); } |
| }; |
| |
| |
| #endif // __CPU_BASE_DYN_INST_HH__ |