blob: db680338c77ab136e3c38116156df06ac4763bff [file] [log] [blame]
/*****************************************************************************
Licensed to Accellera Systems Initiative Inc. (Accellera) under one or
more contributor license agreements. See the NOTICE file distributed
with this work for additional information regarding copyright ownership.
Accellera licenses this file to you under the Apache License, Version 2.0
(the "License"); you may not use this file except in compliance with the
License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied. See the License for the specific language governing
permissions and limitations under the License.
*****************************************************************************/
#ifndef __SIMPLEBUSAT_H__
#define __SIMPLEBUSAT_H__
//#include <systemc>
#include "tlm.h"
#include "tlm_utils/simple_target_socket.h"
#include "tlm_utils/simple_initiator_socket.h"
#include "tlm_utils/peq_with_get.h"
template <int NR_OF_INITIATORS, int NR_OF_TARGETS>
class SimpleBusAT : public sc_core::sc_module
{
public:
typedef tlm::tlm_generic_payload transaction_type;
typedef tlm::tlm_phase phase_type;
typedef tlm::tlm_sync_enum sync_enum_type;
typedef tlm_utils::simple_target_socket_tagged<SimpleBusAT> target_socket_type;
typedef tlm_utils::simple_initiator_socket_tagged<SimpleBusAT> initiator_socket_type;
public:
target_socket_type target_socket[NR_OF_INITIATORS];
initiator_socket_type initiator_socket[NR_OF_TARGETS];
public:
SC_HAS_PROCESS(SimpleBusAT);
SimpleBusAT(sc_core::sc_module_name name) :
sc_core::sc_module(name),
mRequestPEQ("requestPEQ"),
mResponsePEQ("responsePEQ")
{
for (unsigned int i = 0; i < NR_OF_INITIATORS; ++i) {
target_socket[i].register_nb_transport_fw(this, &SimpleBusAT::initiatorNBTransport, i);
target_socket[i].register_transport_dbg(this, &SimpleBusAT::transportDebug, i);
target_socket[i].register_get_direct_mem_ptr(this, &SimpleBusAT::getDMIPointer, i);
}
for (unsigned int i = 0; i < NR_OF_TARGETS; ++i) {
initiator_socket[i].register_nb_transport_bw(this, &SimpleBusAT::targetNBTransport, i);
initiator_socket[i].register_invalidate_direct_mem_ptr(this, &SimpleBusAT::invalidateDMIPointers, i);
}
SC_THREAD(RequestThread);
SC_THREAD(ResponseThread);
}
//
// Dummy decoder:
// - address[31-28]: portId
// - address[27-0]: masked address
//
unsigned int getPortId(const sc_dt::uint64& address)
{
return (unsigned int)address >> 28;
}
sc_dt::uint64 getAddressOffset(unsigned int portId)
{
return portId << 28;
}
sc_dt::uint64 getAddressMask(unsigned int portId)
{
return 0xfffffff;
}
unsigned int decode(const sc_dt::uint64& address)
{
// decode address:
// - return initiator socket id
return getPortId(address);
}
//
// AT protocol
//
void RequestThread()
{
while (true) {
wait(mRequestPEQ.get_event());
transaction_type* trans;
while ((trans = mRequestPEQ.get_next_transaction())!=0) {
unsigned int portId = decode(trans->get_address());
assert(portId < NR_OF_TARGETS);
initiator_socket_type* decodeSocket = &initiator_socket[portId];
trans->set_address(trans->get_address() & getAddressMask(portId));
// Fill in the destination port
PendingTransactionsIterator it = mPendingTransactions.find(trans);
assert(it != mPendingTransactions.end());
it->second.to = decodeSocket;
phase_type phase = tlm::BEGIN_REQ;
sc_core::sc_time t = sc_core::SC_ZERO_TIME;
// FIXME: No limitation on number of pending transactions
// All targets (that return false) must support multiple transactions
switch ((*decodeSocket)->nb_transport_fw(*trans, phase, t)) {
case tlm::TLM_ACCEPTED:
case tlm::TLM_UPDATED:
// Transaction not yet finished
if (phase == tlm::BEGIN_REQ) {
// Request phase not yet finished
wait(mEndRequestEvent);
} else if (phase == tlm::END_REQ) {
// Request phase finished, but response phase not yet started
wait(t);
} else if (phase == tlm::BEGIN_RESP) {
mResponsePEQ.notify(*trans, t);
// Not needed to send END_REQ to initiator
continue;
} else { // END_RESP
assert(0); exit(1);
}
// only send END_REQ to initiator if BEGIN_RESP was not already send
if (it->second.from) {
phase = tlm::END_REQ;
t = sc_core::SC_ZERO_TIME;
(*it->second.from)->nb_transport_bw(*trans, phase, t);
}
break;
case tlm::TLM_COMPLETED:
// Transaction finished
mResponsePEQ.notify(*trans, t);
// reset to destination port (we must not send END_RESP to target)
it->second.to = 0;
wait(t);
break;
default:
assert(0); exit(1);
};
}
}
}
void ResponseThread()
{
while (true) {
wait(mResponsePEQ.get_event());
transaction_type* trans;
while ((trans = mResponsePEQ.get_next_transaction())!=0) {
PendingTransactionsIterator it = mPendingTransactions.find(trans);
assert(it != mPendingTransactions.end());
phase_type phase = tlm::BEGIN_RESP;
sc_core::sc_time t = sc_core::SC_ZERO_TIME;
target_socket_type* initiatorSocket = it->second.from;
// if BEGIN_RESP is send first we don't have to send END_REQ anymore
it->second.from = 0;
switch ((*initiatorSocket)->nb_transport_bw(*trans, phase, t)) {
case tlm::TLM_COMPLETED:
// Transaction finished
wait(t);
break;
case tlm::TLM_ACCEPTED:
case tlm::TLM_UPDATED:
// Transaction not yet finished
wait(mEndResponseEvent);
break;
default:
assert(0); exit(1);
};
// forward END_RESP to target
if (it->second.to) {
phase = tlm::END_RESP;
t = sc_core::SC_ZERO_TIME;
#if ( ! NDEBUG )
sync_enum_type r = (*it->second.to)->nb_transport_fw(*trans, phase, t);
#endif /* ! NDEBUG */
assert(r == tlm::TLM_COMPLETED);
}
mPendingTransactions.erase(it);
trans->release();
}
}
}
//
// interface methods
//
sync_enum_type initiatorNBTransport(int initiator_id,
transaction_type& trans,
phase_type& phase,
sc_core::sc_time& t)
{
if (phase == tlm::BEGIN_REQ) {
trans.acquire();
addPendingTransaction(trans, 0, initiator_id);
mRequestPEQ.notify(trans, t);
} else if (phase == tlm::END_RESP) {
mEndResponseEvent.notify(t);
return tlm::TLM_COMPLETED;
} else {
std::cout << "ERROR: '" << name()
<< "': Illegal phase received from initiator." << std::endl;
assert(false); exit(1);
}
return tlm::TLM_ACCEPTED;
}
sync_enum_type targetNBTransport(int portId,
transaction_type& trans,
phase_type& phase,
sc_core::sc_time& t)
{
if (phase != tlm::END_REQ && phase != tlm::BEGIN_RESP) {
std::cout << "ERROR: '" << name()
<< "': Illegal phase received from target." << std::endl;
assert(false); exit(1);
}
mEndRequestEvent.notify(t);
if (phase == tlm::BEGIN_RESP) {
mResponsePEQ.notify(trans, t);
}
return tlm::TLM_ACCEPTED;
}
unsigned int transportDebug(int initiator_id, transaction_type& trans)
{
unsigned int portId = decode(trans.get_address());
assert(portId < NR_OF_TARGETS);
initiator_socket_type* decodeSocket = &initiator_socket[portId];
trans.set_address( trans.get_address() & getAddressMask(portId) );
return (*decodeSocket)->transport_dbg(trans);
}
bool limitRange(unsigned int portId, sc_dt::uint64& low, sc_dt::uint64& high)
{
sc_dt::uint64 addressOffset = getAddressOffset(portId);
sc_dt::uint64 addressMask = getAddressMask(portId);
if (low > addressMask) {
// Range does not overlap with addressrange for this target
return false;
}
low += addressOffset;
if (high > addressMask) {
high = addressOffset + addressMask;
} else {
high += addressOffset;
}
return true;
}
bool getDMIPointer(int initiator_id,
transaction_type& trans,
tlm::tlm_dmi& dmi_data)
{
// FIXME: DMI not supported for AT bus?
sc_dt::uint64 address = trans.get_address();
unsigned int portId = decode(address);
assert(portId < NR_OF_TARGETS);
initiator_socket_type* decodeSocket = &initiator_socket[portId];
sc_dt::uint64 maskedAddress = address & getAddressMask(portId);
trans.set_address(maskedAddress);
bool result =
(*decodeSocket)->get_direct_mem_ptr(trans, dmi_data);
if (result)
{
// Range must contain address
assert(dmi_data.get_start_address() <= maskedAddress);
assert(dmi_data.get_end_address() >= maskedAddress);
}
// Should always succeed
sc_dt::uint64 start, end;
start = dmi_data.get_start_address();
end = dmi_data.get_end_address();
limitRange(portId, start, end);
dmi_data.set_start_address(start);
dmi_data.set_end_address(end);
return result;
}
void invalidateDMIPointers(int portId,
sc_dt::uint64 start_range,
sc_dt::uint64 end_range)
{
// FIXME: probably faster to always invalidate everything?
if ((portId >= 0) && !limitRange(portId, start_range, end_range)) {
// Range does not fall into address range of target
return;
}
for (unsigned int i = 0; i < NR_OF_INITIATORS; ++i) {
(target_socket[i])->invalidate_direct_mem_ptr(start_range, end_range);
}
}
private:
void addPendingTransaction(transaction_type& trans,
initiator_socket_type* to,
int initiatorId)
{
const ConnectionInfo info = { &target_socket[initiatorId], to };
assert(mPendingTransactions.find(&trans) == mPendingTransactions.end());
mPendingTransactions[&trans] = info;
}
private:
struct ConnectionInfo {
target_socket_type* from;
initiator_socket_type* to;
};
typedef std::map<transaction_type*, ConnectionInfo> PendingTransactions;
typedef typename PendingTransactions::iterator PendingTransactionsIterator;
typedef typename PendingTransactions::const_iterator PendingTransactionsConstIterator;
private:
PendingTransactions mPendingTransactions;
tlm_utils::peq_with_get<transaction_type> mRequestPEQ;
sc_core::sc_event mBeginRequestEvent;
sc_core::sc_event mEndRequestEvent;
tlm_utils::peq_with_get<transaction_type> mResponsePEQ;
sc_core::sc_event mBeginResponseEvent;
sc_core::sc_event mEndResponseEvent;
};
#endif