blob: 22945ecda6b4f5769348db5753eaec84f67cc491 [file] [log] [blame]
/*
* Copyright (c) 2014 The University of Wisconsin
*
* Copyright (c) 2006 INRIA (Institut National de Recherche en
* Informatique et en Automatique / French National Research Institute
* for Computer Science and Applied Mathematics)
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Vignyan Reddy, Dibakar Gope and Arthur Perais,
* from André Seznec's code.
*/
/* @file
* Implementation of a L-TAGE branch predictor
*/
#include "cpu/pred/ltage.hh"
#include "base/intmath.hh"
#include "base/logging.hh"
#include "base/random.hh"
#include "base/trace.hh"
#include "debug/Fetch.hh"
#include "debug/LTage.hh"
LTAGE::LTAGE(const LTAGEParams *params)
: TAGE(params),
logSizeLoopPred(params->logSizeLoopPred),
loopTableAgeBits(params->loopTableAgeBits),
loopTableConfidenceBits(params->loopTableConfidenceBits),
loopTableTagBits(params->loopTableTagBits),
loopTableIterBits(params->loopTableIterBits),
logLoopTableAssoc(params->logLoopTableAssoc),
confidenceThreshold((1 << loopTableConfidenceBits) - 1),
loopTagMask((1 << loopTableTagBits) - 1),
loopNumIterMask((1 << loopTableIterBits) - 1),
loopSetMask((1 << (logSizeLoopPred - logLoopTableAssoc)) - 1),
loopUseCounter(0),
withLoopBits(params->withLoopBits),
useDirectionBit(params->useDirectionBit),
useSpeculation(params->useSpeculation),
useHashing(params->useHashing)
{
// we use uint16_t type for these vales, so they cannot be more than
// 16 bits
assert(loopTableTagBits <= 16);
assert(loopTableIterBits <= 16);
assert(logSizeLoopPred >= logLoopTableAssoc);
ltable = new LoopEntry[ULL(1) << logSizeLoopPred];
}
int
LTAGE::lindex(Addr pc_in) const
{
// The loop table is implemented as a linear table
// If associativity is N (N being 1 << logLoopTableAssoc),
// the first N entries are for set 0, the next N entries are for set 1,
// and so on.
// Thus, this function calculates the set and then it gets left shifted
// by logLoopTableAssoc in order to return the index of the first of the
// N entries of the set
Addr mask = (ULL(1) << (logSizeLoopPred - logLoopTableAssoc)) - 1;
Addr pc = pc_in >> instShiftAmt;
if (useHashing) {
// copied from TAGE-SC-L
// (http://www.jilp.org/cbp2016/code/AndreSeznecLimited.tar.gz)
pc ^= (pc_in >> (instShiftAmt + logLoopTableAssoc));
}
return ((pc & mask) << logLoopTableAssoc);
}
int
LTAGE::finallindex(int index, int lowPcBits, int way) const
{
// copied from TAGE-SC-L
// (http://www.jilp.org/cbp2016/code/AndreSeznecLimited.tar.gz)
return (useHashing ? (index ^ ((lowPcBits >> way) << logLoopTableAssoc)) :
(index))
+ way;
}
//loop prediction: only used if high confidence
bool
LTAGE::getLoop(Addr pc, LTageBranchInfo* bi, bool speculative) const
{
bi->loopHit = -1;
bi->loopPredValid = false;
bi->loopIndex = lindex(pc);
unsigned pcShift = instShiftAmt + logSizeLoopPred - logLoopTableAssoc;
bi->loopTag = ((pc) >> pcShift) & loopTagMask;
if (useHashing) {
bi->loopTag ^= ((pc >> (pcShift + logSizeLoopPred)) & loopTagMask);
bi->loopLowPcBits = (pc >> pcShift) & loopSetMask;
}
for (int i = 0; i < (1 << logLoopTableAssoc); i++) {
int idx = finallindex(bi->loopIndex, bi->loopLowPcBits, i);
if (ltable[idx].tag == bi->loopTag) {
bi->loopHit = i;
bi->loopPredValid =
ltable[idx].confidence == confidenceThreshold;
uint16_t iter = speculative ? ltable[idx].currentIterSpec
: ltable[idx].currentIter;
if ((iter + 1) == ltable[idx].numIter) {
return useDirectionBit ? !(ltable[idx].dir) : false;
} else {
return useDirectionBit ? (ltable[idx].dir) : true;
}
}
}
return false;
}
void
LTAGE::specLoopUpdate(bool taken, LTageBranchInfo* bi)
{
if (bi->loopHit>=0) {
int index = finallindex(bi->loopIndex, bi->loopLowPcBits, bi->loopHit);
if (taken != ltable[index].dir) {
ltable[index].currentIterSpec = 0;
} else {
ltable[index].currentIterSpec =
(ltable[index].currentIterSpec + 1) & loopNumIterMask;
}
}
}
void
LTAGE::loopUpdate(Addr pc, bool taken, LTageBranchInfo* bi)
{
int idx = finallindex(bi->loopIndex, bi->loopLowPcBits, bi->loopHit);
if (bi->loopHit >= 0) {
//already a hit
if (bi->loopPredValid) {
if (taken != bi->loopPred) {
// free the entry
ltable[idx].numIter = 0;
ltable[idx].age = 0;
ltable[idx].confidence = 0;
ltable[idx].currentIter = 0;
return;
} else if (bi->loopPred != bi->tageBranchInfo->tagePred) {
DPRINTF(LTage, "Loop Prediction success:%lx\n",pc);
TAGEBase::unsignedCtrUpdate(ltable[idx].age, true,
loopTableAgeBits);
}
}
ltable[idx].currentIter =
(ltable[idx].currentIter + 1) & loopNumIterMask;
if (ltable[idx].currentIter > ltable[idx].numIter) {
ltable[idx].confidence = 0;
if (ltable[idx].numIter != 0) {
// free the entry
ltable[idx].numIter = 0;
ltable[idx].age = 0;
ltable[idx].confidence = 0;
}
}
if (taken != (useDirectionBit ? ltable[idx].dir : true)) {
if (ltable[idx].currentIter == ltable[idx].numIter) {
DPRINTF(LTage, "Loop End predicted successfully:%lx\n", pc);
TAGEBase::unsignedCtrUpdate(ltable[idx].confidence, true,
loopTableConfidenceBits);
//just do not predict when the loop count is 1 or 2
if (ltable[idx].numIter < 3) {
// free the entry
ltable[idx].dir = taken; // ignored if no useDirectionBit
ltable[idx].numIter = 0;
ltable[idx].age = 0;
ltable[idx].confidence = 0;
}
} else {
DPRINTF(LTage, "Loop End predicted incorrectly:%lx\n", pc);
if (ltable[idx].numIter == 0) {
// first complete nest;
ltable[idx].confidence = 0;
ltable[idx].numIter = ltable[idx].currentIter;
} else {
//not the same number of iterations as last time: free the
//entry
ltable[idx].numIter = 0;
ltable[idx].age = 0;
ltable[idx].confidence = 0;
}
}
ltable[idx].currentIter = 0;
}
} else if (useDirectionBit ?
((bi->loopPredValid ?
bi->loopPred : bi->tageBranchInfo->tagePred) != taken) :
taken) {
//try to allocate an entry on taken branch
int nrand = TAGEBase::getRandom();
for (int i = 0; i < (1 << logLoopTableAssoc); i++) {
int loop_hit = (nrand + i) & ((1 << logLoopTableAssoc) - 1);
idx = bi->loopIndex + loop_hit;
if (ltable[idx].age == 0) {
DPRINTF(LTage, "Allocating loop pred entry for branch %lx\n",
pc);
ltable[idx].dir = !taken; // ignored if no useDirectionBit
ltable[idx].tag = bi->loopTag;
ltable[idx].numIter = 0;
ltable[idx].age = (1 << loopTableAgeBits) - 1;
ltable[idx].confidence = 0;
ltable[idx].currentIter = 1;
break;
}
else
ltable[idx].age--;
}
}
}
//prediction
bool
LTAGE::predict(ThreadID tid, Addr branch_pc, bool cond_branch, void* &b)
{
LTageBranchInfo *bi = new LTageBranchInfo(*tage);
b = (void*)(bi);
bool pred_taken = tage->tagePredict(tid, branch_pc, cond_branch,
bi->tageBranchInfo);
if (cond_branch) {
// loop prediction
bi->loopPred = getLoop(branch_pc, bi, useSpeculation);
if ((loopUseCounter >= 0) && bi->loopPredValid) {
pred_taken = bi->loopPred;
bi->tageBranchInfo->provider = LOOP;
}
DPRINTF(LTage, "Predict for %lx: taken?:%d, loopTaken?:%d, "
"loopValid?:%d, loopUseCounter:%d, tagePred:%d, altPred:%d\n",
branch_pc, pred_taken, bi->loopPred, bi->loopPredValid,
loopUseCounter, bi->tageBranchInfo->tagePred,
bi->tageBranchInfo->altTaken);
if (useSpeculation) {
specLoopUpdate(pred_taken, bi);
}
}
return pred_taken;
}
void
LTAGE::update(ThreadID tid, Addr branch_pc, bool taken, void* bp_history,
bool squashed, const StaticInstPtr & inst, Addr corrTarget)
{
assert(bp_history);
LTageBranchInfo* bi = static_cast<LTageBranchInfo*>(bp_history);
if (squashed) {
if (tage->isSpeculativeUpdateEnabled()) {
// This restores the global history, then update it
// and recomputes the folded histories.
tage->squash(tid, taken, bi->tageBranchInfo, corrTarget);
squashLoop(bi);
}
return;
}
int nrand = TAGEBase::getRandom() & 3;
if (bi->tageBranchInfo->condBranch) {
DPRINTF(LTage, "Updating tables for branch:%lx; taken?:%d\n",
branch_pc, taken);
tage->updateStats(taken, bi->tageBranchInfo);
// update stats
if (bi->tageBranchInfo->provider == LOOP) {
if (taken == bi->loopPred) {
loopPredictorCorrect++;
} else {
loopPredictorWrong++;
}
}
// cond Branch Update
if (useSpeculation) {
// recalculate loop prediction without speculation
// It is ok to overwrite the loop prediction fields in bi
// as the stats have already been updated with the previous
// values
bi->loopPred = getLoop(branch_pc, bi, false);
}
if (bi->loopPredValid) {
if (bi->tageBranchInfo->tagePred != bi->loopPred) {
TAGEBase::ctrUpdate(loopUseCounter,
(bi->loopPred == taken),
withLoopBits);
}
}
loopUpdate(branch_pc, taken, bi);
tage->condBranchUpdate(tid, branch_pc, taken, bi->tageBranchInfo,
nrand, corrTarget);
}
tage->updateHistories(tid, branch_pc, taken, bi->tageBranchInfo, false,
inst, corrTarget);
delete bi;
}
void
LTAGE::squashLoop(LTageBranchInfo* bi)
{
if (bi->tageBranchInfo->condBranch) {
if (bi->loopHit >= 0) {
int idx = finallindex(bi->loopIndex,
bi->loopLowPcBits,
bi->loopHit);
ltable[idx].currentIterSpec = bi->currentIter;
}
}
}
void
LTAGE::squash(ThreadID tid, void *bp_history)
{
LTageBranchInfo* bi = (LTageBranchInfo*)(bp_history);
if (bi->tageBranchInfo->condBranch) {
squashLoop(bi);
}
TAGE::squash(tid, bp_history);
}
void
LTAGE::regStats()
{
TAGE::regStats();
loopPredictorCorrect
.name(name() + ".loopPredictorCorrect")
.desc("Number of times the loop predictor is the provider and "
"the prediction is correct");
loopPredictorWrong
.name(name() + ".loopPredictorWrong")
.desc("Number of times the loop predictor is the provider and "
"the prediction is wrong");
}
LTAGE*
LTAGEParams::create()
{
return new LTAGE(this);
}