blob: fe7eaf0f80634a28d2601d118b74da9e3bf5a72a [file] [log] [blame]
// -*- mode:c++ -*-
// Copyright (c) 2011-2014, 2017 ARM Limited
// All rights reserved
//
// The license below extends only to copyright in the software and shall
// not be construed as granting a license to any other intellectual
// property including but not limited to intellectual property relating
// to a hardware implementation of the functionality of the software
// licensed hereunder. You may use the software subject to the license
// terms below provided that you ensure that this notice is replicated
// unmodified and in its entirety in all distributions of the software,
// modified or unmodified, in source code or in binary form.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met: redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer;
// redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution;
// neither the name of the copyright holders nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Authors: Gabe Black
let {{
header_output = ""
decoder_output = ""
exec_output = ""
class LoadInst64(LoadStoreInst):
execBase = 'Load64'
micro = False
def __init__(self, mnem, Name, size=4, sign=False, user=False,
literal=False, flavor="normal", top=False):
super(LoadInst64, self).__init__()
self.name = mnem
self.Name = Name
self.size = size
self.sign = sign
self.user = user
self.literal = literal
self.flavor = flavor
self.top = top
self.memFlags = ["ArmISA::TLB::MustBeOne"]
self.instFlags = []
self.codeBlobs = {"postacc_code" : ""}
# Add memory request flags where necessary
if self.user:
self.memFlags.append("ArmISA::TLB::UserMode")
if self.flavor == "dprefetch":
self.memFlags.append("Request::PREFETCH")
self.instFlags = ['IsDataPrefetch']
elif self.flavor == "iprefetch":
self.memFlags.append("Request::PREFETCH")
self.instFlags = ['IsInstPrefetch']
elif self.flavor == "mprefetch":
self.memFlags.append("((((dest>>3)&3)==2)? \
(Request::PF_EXCLUSIVE):(Request::PREFETCH))")
self.instFlags = ['IsDataPrefetch']
if self.micro:
self.instFlags.append("IsMicroop")
if self.flavor in ("acexp", "exp"):
# For exclusive pair ops alignment check is based on total size
self.memFlags.append("%d" % int(math.log(self.size, 2) + 1))
elif not (self.size == 16 and self.top):
# Only the first microop should perform alignment checking.
self.memFlags.append("%d" % int(math.log(self.size, 2)))
if self.flavor not in ("acquire", "acex", "exclusive",
"acexp", "exp"):
self.memFlags.append("ArmISA::TLB::AllowUnaligned")
if self.flavor in ("acquire", "acex", "acexp"):
self.instFlags.extend(["IsMemBarrier",
"IsWriteBarrier",
"IsReadBarrier"])
if self.flavor in ("acex", "exclusive", "exp", "acexp"):
self.memFlags.append("Request::LLSC")
def buildEACode(self):
# Address computation code
eaCode = ""
if self.flavor == "fp":
eaCode += vfp64EnabledCheckCode
if self.literal:
eaCode += "EA = RawPC"
else:
eaCode += SPAlignmentCheckCode + "EA = XBase"
if self.size == 16:
if self.top:
eaCode += " + (isBigEndian64(xc->tcBase()) ? 0 : 8)"
else:
eaCode += " + (isBigEndian64(xc->tcBase()) ? 8 : 0)"
if not self.post:
eaCode += self.offset
eaCode += ";"
self.codeBlobs["ea_code"] = eaCode
def emitHelper(self, base='Memory64', wbDecl=None):
global header_output, decoder_output, exec_output
# If this is a microop itself, don't allow anything that would
# require further microcoding.
if self.micro:
assert not wbDecl
fa_code = None
if not self.micro and self.flavor in ("normal", "widen", "acquire"):
fa_code = '''
fault->annotate(ArmFault::SAS, %s);
fault->annotate(ArmFault::SSE, %s);
fault->annotate(ArmFault::SRT, dest);
fault->annotate(ArmFault::SF, %s);
fault->annotate(ArmFault::AR, %s);
''' % ("0" if self.size == 1 else
"1" if self.size == 2 else
"2" if self.size == 4 else "3",
"true" if self.sign else "false",
"true" if (self.size == 8 or
self.flavor == "widen") else "false",
"true" if self.flavor == "acquire" else "false")
(newHeader, newDecoder, newExec) = \
self.fillTemplates(self.name, self.Name, self.codeBlobs,
self.memFlags, self.instFlags,
base, wbDecl, faCode=fa_code)
header_output += newHeader
decoder_output += newDecoder
exec_output += newExec
class LoadImmInst64(LoadInst64):
def __init__(self, *args, **kargs):
super(LoadImmInst64, self).__init__(*args, **kargs)
self.offset = " + imm"
self.wbDecl = "MicroAddXiUop(machInst, base, base, imm);"
class LoadRegInst64(LoadInst64):
def __init__(self, *args, **kargs):
super(LoadRegInst64, self).__init__(*args, **kargs)
self.offset = " + extendReg64(XOffset, type, shiftAmt, 64)"
self.wbDecl = \
"MicroAddXERegUop(machInst, base, base, " + \
" offset, type, shiftAmt);"
class LoadRawRegInst64(LoadInst64):
def __init__(self, *args, **kargs):
super(LoadRawRegInst64, self).__init__(*args, **kargs)
self.offset = ""
class LoadSingle64(LoadInst64):
def emit(self):
self.buildEACode()
accEpilogCode = None
# Code that actually handles the access
if self.flavor in ("dprefetch", "iprefetch", "mprefetch"):
accCode = 'uint64_t temp M5_VAR_USED = Mem%s;'
elif self.flavor == "fp":
accEpilogCode = '''
TheISA::ISA::zeroSveVecRegUpperPart(AA64FpDest,
ArmStaticInst::getCurSveVecLen<uint64_t>(
xc->tcBase()));
'''
if self.size in (1, 2, 4):
accCode = '''
AA64FpDestP0_uw = cSwap(Mem%s,
isBigEndian64(xc->tcBase()));
AA64FpDestP1_uw = 0;
AA64FpDestP2_uw = 0;
AA64FpDestP3_uw = 0;
'''
elif self.size == 8:
accCode = '''
uint64_t data = cSwap(Mem%s,
isBigEndian64(xc->tcBase()));
AA64FpDestP0_uw = (uint32_t)data;
AA64FpDestP1_uw = (data >> 32);
AA64FpDestP2_uw = 0;
AA64FpDestP3_uw = 0;
'''
elif self.size == 16:
accCode = '''
auto data = cSwap(Mem%s, isBigEndian64(xc->tcBase()));
AA64FpDestP0_uw = (uint32_t)data[0];
AA64FpDestP1_uw = (data[0] >> 32);
AA64FpDestP2_uw = (uint32_t)data[1];
AA64FpDestP3_uw = (data[1] >> 32);
'''
elif self.flavor == "widen" or self.size == 8:
accCode = "XDest = cSwap(Mem%s, isBigEndian64(xc->tcBase()));"
else:
accCode = "WDest = cSwap(Mem%s, isBigEndian64(xc->tcBase()));"
accCode = accCode % buildMemSuffix(self.sign, self.size)
self.codeBlobs["memacc_code"] = accCode
if accEpilogCode:
self.codeBlobs["memacc_epilog_code"] = accEpilogCode
# Push it out to the output files
wbDecl = None
if self.writeback and not self.micro:
wbDecl = self.wbDecl
self.emitHelper(self.base, wbDecl)
class LoadDouble64(LoadInst64):
def emit(self):
self.buildEACode()
accEpilogCode = None
# Code that actually handles the access
if self.flavor == "fp":
accEpilogCode = '''
TheISA::ISA::zeroSveVecRegUpperPart(AA64FpDest,
ArmStaticInst::getCurSveVecLen<uint64_t>(
xc->tcBase()));
TheISA::ISA::zeroSveVecRegUpperPart(AA64FpDest2,
ArmStaticInst::getCurSveVecLen<uint64_t>(
xc->tcBase()));
'''
if self.size == 4:
accCode = '''
uint64_t data = cSwap(Mem_ud, isBigEndian64(xc->tcBase()));
AA64FpDestP0_uw = isBigEndian64(xc->tcBase())
? (data >> 32)
: (uint32_t)data;
AA64FpDestP1_uw = 0;
AA64FpDestP2_uw = 0;
AA64FpDestP3_uw = 0;
AA64FpDest2P0_uw = isBigEndian64(xc->tcBase())
? (uint32_t)data
: (data >> 32);
AA64FpDest2P1_uw = 0;
AA64FpDest2P2_uw = 0;
AA64FpDest2P3_uw = 0;
'''
elif self.size == 8:
accCode = '''
uint64_t data_a = cSwap(Mem_tud[0],
isBigEndian64(xc->tcBase()));
uint64_t data_b = cSwap(Mem_tud[1],
isBigEndian64(xc->tcBase()));
AA64FpDestP0_uw = (uint32_t)data_a;
AA64FpDestP1_uw = (uint32_t)(data_a >> 32);
AA64FpDestP2_uw = 0;
AA64FpDestP3_uw = 0;
AA64FpDest2P0_uw = (uint32_t)data_b;
AA64FpDest2P1_uw = (uint32_t)(data_b >> 32);
AA64FpDest2P2_uw = 0;
AA64FpDest2P3_uw = 0;
'''
else:
if self.sign:
if self.size == 4:
accCode = '''
uint64_t data = cSwap(Mem_ud,
isBigEndian64(xc->tcBase()));
XDest = isBigEndian64(xc->tcBase())
? sext<32>(data >> 32)
: sext<32>((uint32_t)data);
XDest2 = isBigEndian64(xc->tcBase())
? sext<32>((uint32_t)data)
: sext<32>(data >> 32);
'''
elif self.size == 8:
accCode = '''
XDest = cSwap(Mem_tud[0],
isBigEndian64(xc->tcBase()));
XDest2 = cSwap(Mem_tud[1],
isBigEndian64(xc->tcBase()));
'''
else:
if self.size == 4:
accCode = '''
uint64_t data = cSwap(Mem_ud,
isBigEndian64(xc->tcBase()));
XDest = isBigEndian64(xc->tcBase())
? (data >> 32)
: (uint32_t)data;
XDest2 = isBigEndian64(xc->tcBase())
? (uint32_t)data
: (data >> 32);
'''
elif self.size == 8:
accCode = '''
XDest = cSwap(Mem_tud[0],
isBigEndian64(xc->tcBase()));
XDest2 = cSwap(Mem_tud[1],
isBigEndian64(xc->tcBase()));
'''
self.codeBlobs["memacc_code"] = accCode
if accEpilogCode:
self.codeBlobs["memacc_epilog_code"] = accEpilogCode
# Push it out to the output files
wbDecl = None
if self.writeback and not self.micro:
wbDecl = self.wbDecl
self.emitHelper(self.base, wbDecl)
class LoadImm64(LoadImmInst64, LoadSingle64):
decConstBase = 'LoadStoreImm64'
base = 'ArmISA::MemoryImm64'
writeback = False
post = False
class LoadPre64(LoadImmInst64, LoadSingle64):
decConstBase = 'LoadStoreImm64'
base = 'ArmISA::MemoryPreIndex64'
writeback = True
post = False
class LoadPost64(LoadImmInst64, LoadSingle64):
decConstBase = 'LoadStoreImm64'
base = 'ArmISA::MemoryPostIndex64'
writeback = True
post = True
class LoadReg64(LoadRegInst64, LoadSingle64):
decConstBase = 'LoadStoreReg64'
base = 'ArmISA::MemoryReg64'
writeback = False
post = False
class LoadRaw64(LoadRawRegInst64, LoadSingle64):
decConstBase = 'LoadStoreRaw64'
base = 'ArmISA::MemoryRaw64'
writeback = False
post = False
class LoadEx64(LoadRawRegInst64, LoadSingle64):
decConstBase = 'LoadStoreEx64'
base = 'ArmISA::MemoryEx64'
writeback = False
post = False
class LoadLit64(LoadImmInst64, LoadSingle64):
decConstBase = 'LoadStoreLit64'
base = 'ArmISA::MemoryLiteral64'
writeback = False
post = False
def buildLoads64(mnem, NameBase, size, sign, flavor="normal"):
LoadImm64(mnem, NameBase + "_IMM", size, sign, flavor=flavor).emit()
LoadPre64(mnem, NameBase + "_PRE", size, sign, flavor=flavor).emit()
LoadPost64(mnem, NameBase + "_POST", size, sign, flavor=flavor).emit()
LoadReg64(mnem, NameBase + "_REG", size, sign, flavor=flavor).emit()
buildLoads64("ldrb", "LDRB64", 1, False)
buildLoads64("ldrsb", "LDRSBW64", 1, True)
buildLoads64("ldrsb", "LDRSBX64", 1, True, flavor="widen")
buildLoads64("ldrh", "LDRH64", 2, False)
buildLoads64("ldrsh", "LDRSHW64", 2, True)
buildLoads64("ldrsh", "LDRSHX64", 2, True, flavor="widen")
buildLoads64("ldrsw", "LDRSW64", 4, True, flavor="widen")
buildLoads64("ldr", "LDRW64", 4, False)
buildLoads64("ldr", "LDRX64", 8, False)
buildLoads64("ldr", "LDRBFP64", 1, False, flavor="fp")
buildLoads64("ldr", "LDRHFP64", 2, False, flavor="fp")
buildLoads64("ldr", "LDRSFP64", 4, False, flavor="fp")
buildLoads64("ldr", "LDRDFP64", 8, False, flavor="fp")
LoadImm64("prfm", "PRFM64_IMM", 8, flavor="mprefetch").emit()
LoadReg64("prfm", "PRFM64_REG", 8, flavor="mprefetch").emit()
LoadLit64("prfm", "PRFM64_LIT", 8, literal=True,
flavor="mprefetch").emit()
LoadImm64("prfum", "PRFUM64_IMM", 8, flavor="mprefetch").emit()
LoadImm64("ldurb", "LDURB64_IMM", 1, False).emit()
LoadImm64("ldursb", "LDURSBW64_IMM", 1, True).emit()
LoadImm64("ldursb", "LDURSBX64_IMM", 1, True, flavor="widen").emit()
LoadImm64("ldurh", "LDURH64_IMM", 2, False).emit()
LoadImm64("ldursh", "LDURSHW64_IMM", 2, True).emit()
LoadImm64("ldursh", "LDURSHX64_IMM", 2, True, flavor="widen").emit()
LoadImm64("ldursw", "LDURSW64_IMM", 4, True, flavor="widen").emit()
LoadImm64("ldur", "LDURW64_IMM", 4, False).emit()
LoadImm64("ldur", "LDURX64_IMM", 8, False).emit()
LoadImm64("ldur", "LDURBFP64_IMM", 1, flavor="fp").emit()
LoadImm64("ldur", "LDURHFP64_IMM", 2, flavor="fp").emit()
LoadImm64("ldur", "LDURSFP64_IMM", 4, flavor="fp").emit()
LoadImm64("ldur", "LDURDFP64_IMM", 8, flavor="fp").emit()
LoadImm64("ldtrb", "LDTRB64_IMM", 1, False, True).emit()
LoadImm64("ldtrsb", "LDTRSBW64_IMM", 1, True, True).emit()
LoadImm64("ldtrsb", "LDTRSBX64_IMM", 1, True, True, flavor="widen").emit()
LoadImm64("ldtrh", "LDTRH64_IMM", 2, False, True).emit()
LoadImm64("ldtrsh", "LDTRSHW64_IMM", 2, True, True).emit()
LoadImm64("ldtrsh", "LDTRSHX64_IMM", 2, True, True, flavor="widen").emit()
LoadImm64("ldtrsw", "LDTRSW64_IMM", 4, True, flavor="widen").emit()
LoadImm64("ldtr", "LDTRW64_IMM", 4, False, True).emit()
LoadImm64("ldtr", "LDTRX64_IMM", 8, False, True).emit()
LoadLit64("ldrsw", "LDRSWL64_LIT", 4, True, \
literal=True, flavor="widen").emit()
LoadLit64("ldr", "LDRWL64_LIT", 4, False, literal=True).emit()
LoadLit64("ldr", "LDRXL64_LIT", 8, False, literal=True).emit()
LoadLit64("ldr", "LDRSFP64_LIT", 4, literal=True, flavor="fp").emit()
LoadLit64("ldr", "LDRDFP64_LIT", 8, literal=True, flavor="fp").emit()
LoadRaw64("ldar", "LDARX64", 8, flavor="acquire").emit()
LoadRaw64("ldar", "LDARW64", 4, flavor="acquire").emit()
LoadRaw64("ldarh", "LDARH64", 2, flavor="acquire").emit()
LoadRaw64("ldarb", "LDARB64", 1, flavor="acquire").emit()
LoadEx64("ldaxr", "LDAXRX64", 8, flavor="acex").emit()
LoadEx64("ldaxr", "LDAXRW64", 4, flavor="acex").emit()
LoadEx64("ldaxrh", "LDAXRH64", 2, flavor="acex").emit()
LoadEx64("ldaxrb", "LDAXRB64", 1, flavor="acex").emit()
LoadEx64("ldxr", "LDXRX64", 8, flavor="exclusive").emit()
LoadEx64("ldxr", "LDXRW64", 4, flavor="exclusive").emit()
LoadEx64("ldxrh", "LDXRH64", 2, flavor="exclusive").emit()
LoadEx64("ldxrb", "LDXRB64", 1, flavor="exclusive").emit()
LoadRaw64("ldapr", "LDAPRX64", 8, flavor="acquire").emit()
LoadRaw64("ldapr", "LDAPRW64", 4, flavor="acquire").emit()
LoadRaw64("ldaprh", "LDAPRH64", 2, flavor="acquire").emit()
LoadRaw64("ldaprb", "LDAPRB64", 1, flavor="acquire").emit()
class LoadImmU64(LoadImm64):
decConstBase = 'LoadStoreImmU64'
micro = True
class LoadImmDU64(LoadImmInst64, LoadDouble64):
decConstBase = 'LoadStoreImmDU64'
base = 'ArmISA::MemoryDImm64'
micro = True
post = False
writeback = False
class LoadImmDouble64(LoadImmInst64, LoadDouble64):
decConstBase = 'LoadStoreImmDU64'
base = 'ArmISA::MemoryDImm64'
micro = False
post = False
writeback = False
class LoadRegU64(LoadReg64):
decConstBase = 'LoadStoreRegU64'
micro = True
class LoadLitU64(LoadLit64):
decConstBase = 'LoadStoreLitU64'
micro = True
LoadImmDU64("ldp_uop", "MicroLdPairUop", 8).emit()
LoadImmDU64("ldp_fp8_uop", "MicroLdPairFp8Uop", 8, flavor="fp").emit()
LoadImmU64("ldfp16_uop", "MicroLdFp16Uop", 16, flavor="fp").emit()
LoadReg64("ldfp16reg_uop", "MicroLdFp16RegUop", 16, flavor="fp").emit()
LoadImmDouble64("ldaxp", "LDAXPW64", 4, flavor="acexp").emit()
LoadImmDouble64("ldaxp", "LDAXPX64", 8, flavor="acexp").emit()
LoadImmDouble64("ldxp", "LDXPW64", 4, flavor="exp").emit()
LoadImmDouble64("ldxp", "LDXPX64", 8, flavor="exp").emit()
LoadImmU64("ldrxi_uop", "MicroLdrXImmUop", 8).emit()
LoadRegU64("ldrxr_uop", "MicroLdrXRegUop", 8).emit()
LoadLitU64("ldrxl_uop", "MicroLdrXLitUop", 8, literal=True).emit()
LoadImmU64("ldrfpxi_uop", "MicroLdrFpXImmUop", 8, flavor="fp").emit()
LoadRegU64("ldrfpxr_uop", "MicroLdrFpXRegUop", 8, flavor="fp").emit()
LoadLitU64("ldrfpxl_uop", "MicroLdrFpXLitUop", 8, literal=True,
flavor="fp").emit()
LoadLitU64("ldfp16_lit__uop", "MicroLdFp16LitUop",
16, literal=True, flavor="fp").emit()
LoadImmDU64("ldrduxi_uop", "MicroLdrDUXImmUop", 4, sign=False).emit()
LoadImmDU64("ldrdsxi_uop", "MicroLdrDSXImmUop", 4, sign=True).emit()
LoadImmDU64("ldrdfpxi_uop", "MicroLdrDFpXImmUop", 4, flavor="fp").emit()
}};