| /* |
| * Copyright (c) 2011-2012,2016-2017 ARM Limited |
| * All rights reserved |
| * |
| * The license below extends only to copyright in the software and shall |
| * not be construed as granting a license to any other intellectual |
| * property including but not limited to intellectual property relating |
| * to a hardware implementation of the functionality of the software |
| * licensed hereunder. You may use the software subject to the license |
| * terms below provided that you ensure that this notice is replicated |
| * unmodified and in its entirety in all distributions of the software, |
| * modified or unmodified, in source code or in binary form. |
| * |
| * Copyright (c) 2002-2005 The Regents of The University of Michigan |
| * Copyright (c) 2011 Regents of the University of California |
| * Copyright (c) 2013 Advanced Micro Devices, Inc. |
| * Copyright (c) 2013 Mark D. Hill and David A. Wood |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are |
| * met: redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer; |
| * redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution; |
| * neither the name of the copyright holders nor the names of its |
| * contributors may be used to endorse or promote products derived from |
| * this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| * Authors: Steve Reinhardt |
| * Nathan Binkert |
| * Rick Strong |
| */ |
| |
| #include "cpu/base.hh" |
| |
| #include <iostream> |
| #include <sstream> |
| #include <string> |
| |
| #include "arch/generic/tlb.hh" |
| #include "base/cprintf.hh" |
| #include "base/loader/symtab.hh" |
| #include "base/logging.hh" |
| #include "base/output.hh" |
| #include "base/trace.hh" |
| #include "cpu/checker/cpu.hh" |
| #include "cpu/cpuevent.hh" |
| #include "cpu/profile.hh" |
| #include "cpu/thread_context.hh" |
| #include "debug/Mwait.hh" |
| #include "debug/SyscallVerbose.hh" |
| #include "mem/page_table.hh" |
| #include "params/BaseCPU.hh" |
| #include "sim/clocked_object.hh" |
| #include "sim/full_system.hh" |
| #include "sim/process.hh" |
| #include "sim/sim_events.hh" |
| #include "sim/sim_exit.hh" |
| #include "sim/system.hh" |
| |
| // Hack |
| #include "sim/stat_control.hh" |
| |
| using namespace std; |
| |
| vector<BaseCPU *> BaseCPU::cpuList; |
| |
| // This variable reflects the max number of threads in any CPU. Be |
| // careful to only use it once all the CPUs that you care about have |
| // been initialized |
| int maxThreadsPerCPU = 1; |
| |
| CPUProgressEvent::CPUProgressEvent(BaseCPU *_cpu, Tick ival) |
| : Event(Event::Progress_Event_Pri), _interval(ival), lastNumInst(0), |
| cpu(_cpu), _repeatEvent(true) |
| { |
| if (_interval) |
| cpu->schedule(this, curTick() + _interval); |
| } |
| |
| void |
| CPUProgressEvent::process() |
| { |
| Counter temp = cpu->totalOps(); |
| |
| if (_repeatEvent) |
| cpu->schedule(this, curTick() + _interval); |
| |
| if (cpu->switchedOut()) { |
| return; |
| } |
| |
| #ifndef NDEBUG |
| double ipc = double(temp - lastNumInst) / (_interval / cpu->clockPeriod()); |
| |
| DPRINTFN("%s progress event, total committed:%i, progress insts committed: " |
| "%lli, IPC: %0.8d\n", cpu->name(), temp, temp - lastNumInst, |
| ipc); |
| ipc = 0.0; |
| #else |
| cprintf("%lli: %s progress event, total committed:%i, progress insts " |
| "committed: %lli\n", curTick(), cpu->name(), temp, |
| temp - lastNumInst); |
| #endif |
| lastNumInst = temp; |
| } |
| |
| const char * |
| CPUProgressEvent::description() const |
| { |
| return "CPU Progress"; |
| } |
| |
| BaseCPU::BaseCPU(Params *p, bool is_checker) |
| : MemObject(p), instCnt(0), _cpuId(p->cpu_id), _socketId(p->socket_id), |
| _instMasterId(p->system->getMasterId(this, "inst")), |
| _dataMasterId(p->system->getMasterId(this, "data")), |
| _taskId(ContextSwitchTaskId::Unknown), _pid(invldPid), |
| _switchedOut(p->switched_out), _cacheLineSize(p->system->cacheLineSize()), |
| interrupts(p->interrupts), profileEvent(NULL), |
| numThreads(p->numThreads), system(p->system), |
| previousCycle(0), previousState(CPU_STATE_SLEEP), |
| functionTraceStream(nullptr), currentFunctionStart(0), |
| currentFunctionEnd(0), functionEntryTick(0), |
| addressMonitor(p->numThreads), |
| syscallRetryLatency(p->syscallRetryLatency), |
| pwrGatingLatency(p->pwr_gating_latency), |
| powerGatingOnIdle(p->power_gating_on_idle), |
| enterPwrGatingEvent([this]{ enterPwrGating(); }, name()) |
| { |
| // if Python did not provide a valid ID, do it here |
| if (_cpuId == -1 ) { |
| _cpuId = cpuList.size(); |
| } |
| |
| // add self to global list of CPUs |
| cpuList.push_back(this); |
| |
| DPRINTF(SyscallVerbose, "Constructing CPU with id %d, socket id %d\n", |
| _cpuId, _socketId); |
| |
| if (numThreads > maxThreadsPerCPU) |
| maxThreadsPerCPU = numThreads; |
| |
| // allocate per-thread instruction-based event queues |
| comInstEventQueue = new EventQueue *[numThreads]; |
| for (ThreadID tid = 0; tid < numThreads; ++tid) |
| comInstEventQueue[tid] = |
| new EventQueue("instruction-based event queue"); |
| |
| // |
| // set up instruction-count-based termination events, if any |
| // |
| if (p->max_insts_any_thread != 0) { |
| const char *cause = "a thread reached the max instruction count"; |
| for (ThreadID tid = 0; tid < numThreads; ++tid) |
| scheduleInstStop(tid, p->max_insts_any_thread, cause); |
| } |
| |
| // Set up instruction-count-based termination events for SimPoints |
| // Typically, there are more than one action points. |
| // Simulation.py is responsible to take the necessary actions upon |
| // exitting the simulation loop. |
| if (!p->simpoint_start_insts.empty()) { |
| const char *cause = "simpoint starting point found"; |
| for (size_t i = 0; i < p->simpoint_start_insts.size(); ++i) |
| scheduleInstStop(0, p->simpoint_start_insts[i], cause); |
| } |
| |
| if (p->max_insts_all_threads != 0) { |
| const char *cause = "all threads reached the max instruction count"; |
| |
| // allocate & initialize shared downcounter: each event will |
| // decrement this when triggered; simulation will terminate |
| // when counter reaches 0 |
| int *counter = new int; |
| *counter = numThreads; |
| for (ThreadID tid = 0; tid < numThreads; ++tid) { |
| Event *event = new CountedExitEvent(cause, *counter); |
| comInstEventQueue[tid]->schedule(event, p->max_insts_all_threads); |
| } |
| } |
| |
| // allocate per-thread load-based event queues |
| comLoadEventQueue = new EventQueue *[numThreads]; |
| for (ThreadID tid = 0; tid < numThreads; ++tid) |
| comLoadEventQueue[tid] = new EventQueue("load-based event queue"); |
| |
| // |
| // set up instruction-count-based termination events, if any |
| // |
| if (p->max_loads_any_thread != 0) { |
| const char *cause = "a thread reached the max load count"; |
| for (ThreadID tid = 0; tid < numThreads; ++tid) |
| scheduleLoadStop(tid, p->max_loads_any_thread, cause); |
| } |
| |
| if (p->max_loads_all_threads != 0) { |
| const char *cause = "all threads reached the max load count"; |
| // allocate & initialize shared downcounter: each event will |
| // decrement this when triggered; simulation will terminate |
| // when counter reaches 0 |
| int *counter = new int; |
| *counter = numThreads; |
| for (ThreadID tid = 0; tid < numThreads; ++tid) { |
| Event *event = new CountedExitEvent(cause, *counter); |
| comLoadEventQueue[tid]->schedule(event, p->max_loads_all_threads); |
| } |
| } |
| |
| functionTracingEnabled = false; |
| if (p->function_trace) { |
| const string fname = csprintf("ftrace.%s", name()); |
| functionTraceStream = simout.findOrCreate(fname)->stream(); |
| |
| currentFunctionStart = currentFunctionEnd = 0; |
| functionEntryTick = p->function_trace_start; |
| |
| if (p->function_trace_start == 0) { |
| functionTracingEnabled = true; |
| } else { |
| Event *event = new EventFunctionWrapper( |
| [this]{ enableFunctionTrace(); }, name(), true); |
| schedule(event, p->function_trace_start); |
| } |
| } |
| |
| // The interrupts should always be present unless this CPU is |
| // switched in later or in case it is a checker CPU |
| if (!params()->switched_out && !is_checker) { |
| fatal_if(interrupts.size() != numThreads, |
| "CPU %s has %i interrupt controllers, but is expecting one " |
| "per thread (%i)\n", |
| name(), interrupts.size(), numThreads); |
| for (ThreadID tid = 0; tid < numThreads; tid++) |
| interrupts[tid]->setCPU(this); |
| } |
| |
| if (FullSystem) { |
| if (params()->profile) |
| profileEvent = new EventFunctionWrapper( |
| [this]{ processProfileEvent(); }, |
| name()); |
| } |
| tracer = params()->tracer; |
| |
| if (params()->isa.size() != numThreads) { |
| fatal("Number of ISAs (%i) assigned to the CPU does not equal number " |
| "of threads (%i).\n", params()->isa.size(), numThreads); |
| } |
| } |
| |
| void |
| BaseCPU::enableFunctionTrace() |
| { |
| functionTracingEnabled = true; |
| } |
| |
| BaseCPU::~BaseCPU() |
| { |
| delete profileEvent; |
| delete[] comLoadEventQueue; |
| delete[] comInstEventQueue; |
| } |
| |
| void |
| BaseCPU::armMonitor(ThreadID tid, Addr address) |
| { |
| assert(tid < numThreads); |
| AddressMonitor &monitor = addressMonitor[tid]; |
| |
| monitor.armed = true; |
| monitor.vAddr = address; |
| monitor.pAddr = 0x0; |
| DPRINTF(Mwait,"[tid:%d] Armed monitor (vAddr=0x%lx)\n", tid, address); |
| } |
| |
| bool |
| BaseCPU::mwait(ThreadID tid, PacketPtr pkt) |
| { |
| assert(tid < numThreads); |
| AddressMonitor &monitor = addressMonitor[tid]; |
| |
| if (!monitor.gotWakeup) { |
| int block_size = cacheLineSize(); |
| uint64_t mask = ~((uint64_t)(block_size - 1)); |
| |
| assert(pkt->req->hasPaddr()); |
| monitor.pAddr = pkt->getAddr() & mask; |
| monitor.waiting = true; |
| |
| DPRINTF(Mwait,"[tid:%d] mwait called (vAddr=0x%lx, " |
| "line's paddr=0x%lx)\n", tid, monitor.vAddr, monitor.pAddr); |
| return true; |
| } else { |
| monitor.gotWakeup = false; |
| return false; |
| } |
| } |
| |
| void |
| BaseCPU::mwaitAtomic(ThreadID tid, ThreadContext *tc, BaseTLB *dtb) |
| { |
| assert(tid < numThreads); |
| AddressMonitor &monitor = addressMonitor[tid]; |
| |
| RequestPtr req = std::make_shared<Request>(); |
| |
| Addr addr = monitor.vAddr; |
| int block_size = cacheLineSize(); |
| uint64_t mask = ~((uint64_t)(block_size - 1)); |
| int size = block_size; |
| |
| //The address of the next line if it crosses a cache line boundary. |
| Addr secondAddr = roundDown(addr + size - 1, block_size); |
| |
| if (secondAddr > addr) |
| size = secondAddr - addr; |
| |
| req->setVirt(0, addr, size, 0x0, dataMasterId(), tc->instAddr()); |
| |
| // translate to physical address |
| Fault fault = dtb->translateAtomic(req, tc, BaseTLB::Read); |
| assert(fault == NoFault); |
| |
| monitor.pAddr = req->getPaddr() & mask; |
| monitor.waiting = true; |
| |
| DPRINTF(Mwait,"[tid:%d] mwait called (vAddr=0x%lx, line's paddr=0x%lx)\n", |
| tid, monitor.vAddr, monitor.pAddr); |
| } |
| |
| void |
| BaseCPU::init() |
| { |
| if (!params()->switched_out) { |
| registerThreadContexts(); |
| |
| verifyMemoryMode(); |
| } |
| } |
| |
| void |
| BaseCPU::startup() |
| { |
| if (FullSystem) { |
| if (!params()->switched_out && profileEvent) |
| schedule(profileEvent, curTick()); |
| } |
| |
| if (params()->progress_interval) { |
| new CPUProgressEvent(this, params()->progress_interval); |
| } |
| |
| if (_switchedOut) |
| ClockedObject::pwrState(Enums::PwrState::OFF); |
| |
| // Assumption CPU start to operate instantaneously without any latency |
| if (ClockedObject::pwrState() == Enums::PwrState::UNDEFINED) |
| ClockedObject::pwrState(Enums::PwrState::ON); |
| |
| } |
| |
| ProbePoints::PMUUPtr |
| BaseCPU::pmuProbePoint(const char *name) |
| { |
| ProbePoints::PMUUPtr ptr; |
| ptr.reset(new ProbePoints::PMU(getProbeManager(), name)); |
| |
| return ptr; |
| } |
| |
| void |
| BaseCPU::regProbePoints() |
| { |
| ppAllCycles = pmuProbePoint("Cycles"); |
| ppActiveCycles = pmuProbePoint("ActiveCycles"); |
| |
| ppRetiredInsts = pmuProbePoint("RetiredInsts"); |
| ppRetiredLoads = pmuProbePoint("RetiredLoads"); |
| ppRetiredStores = pmuProbePoint("RetiredStores"); |
| ppRetiredBranches = pmuProbePoint("RetiredBranches"); |
| |
| ppSleeping = new ProbePointArg<bool>(this->getProbeManager(), |
| "Sleeping"); |
| } |
| |
| void |
| BaseCPU::probeInstCommit(const StaticInstPtr &inst) |
| { |
| if (!inst->isMicroop() || inst->isLastMicroop()) |
| ppRetiredInsts->notify(1); |
| |
| |
| if (inst->isLoad()) |
| ppRetiredLoads->notify(1); |
| |
| if (inst->isStore() || inst->isAtomic()) |
| ppRetiredStores->notify(1); |
| |
| if (inst->isControl()) |
| ppRetiredBranches->notify(1); |
| } |
| |
| void |
| BaseCPU::regStats() |
| { |
| MemObject::regStats(); |
| |
| using namespace Stats; |
| |
| numCycles |
| .name(name() + ".numCycles") |
| .desc("number of cpu cycles simulated") |
| ; |
| |
| numWorkItemsStarted |
| .name(name() + ".numWorkItemsStarted") |
| .desc("number of work items this cpu started") |
| ; |
| |
| numWorkItemsCompleted |
| .name(name() + ".numWorkItemsCompleted") |
| .desc("number of work items this cpu completed") |
| ; |
| |
| int size = threadContexts.size(); |
| if (size > 1) { |
| for (int i = 0; i < size; ++i) { |
| stringstream namestr; |
| ccprintf(namestr, "%s.ctx%d", name(), i); |
| threadContexts[i]->regStats(namestr.str()); |
| } |
| } else if (size == 1) |
| threadContexts[0]->regStats(name()); |
| } |
| |
| BaseMasterPort & |
| BaseCPU::getMasterPort(const string &if_name, PortID idx) |
| { |
| // Get the right port based on name. This applies to all the |
| // subclasses of the base CPU and relies on their implementation |
| // of getDataPort and getInstPort. In all cases there methods |
| // return a MasterPort pointer. |
| if (if_name == "dcache_port") |
| return getDataPort(); |
| else if (if_name == "icache_port") |
| return getInstPort(); |
| else |
| return MemObject::getMasterPort(if_name, idx); |
| } |
| |
| void |
| BaseCPU::registerThreadContexts() |
| { |
| assert(system->multiThread || numThreads == 1); |
| |
| ThreadID size = threadContexts.size(); |
| for (ThreadID tid = 0; tid < size; ++tid) { |
| ThreadContext *tc = threadContexts[tid]; |
| |
| if (system->multiThread) { |
| tc->setContextId(system->registerThreadContext(tc)); |
| } else { |
| tc->setContextId(system->registerThreadContext(tc, _cpuId)); |
| } |
| |
| if (!FullSystem) |
| tc->getProcessPtr()->assignThreadContext(tc->contextId()); |
| } |
| } |
| |
| void |
| BaseCPU::deschedulePowerGatingEvent() |
| { |
| if (enterPwrGatingEvent.scheduled()){ |
| deschedule(enterPwrGatingEvent); |
| } |
| } |
| |
| void |
| BaseCPU::schedulePowerGatingEvent() |
| { |
| for (auto tc : threadContexts) { |
| if (tc->status() == ThreadContext::Active) |
| return; |
| } |
| |
| if (ClockedObject::pwrState() == Enums::PwrState::CLK_GATED && |
| powerGatingOnIdle) { |
| assert(!enterPwrGatingEvent.scheduled()); |
| // Schedule a power gating event when clock gated for the specified |
| // amount of time |
| schedule(enterPwrGatingEvent, clockEdge(pwrGatingLatency)); |
| } |
| } |
| |
| int |
| BaseCPU::findContext(ThreadContext *tc) |
| { |
| ThreadID size = threadContexts.size(); |
| for (ThreadID tid = 0; tid < size; ++tid) { |
| if (tc == threadContexts[tid]) |
| return tid; |
| } |
| return 0; |
| } |
| |
| void |
| BaseCPU::activateContext(ThreadID thread_num) |
| { |
| // Squash enter power gating event while cpu gets activated |
| if (enterPwrGatingEvent.scheduled()) |
| deschedule(enterPwrGatingEvent); |
| // For any active thread running, update CPU power state to active (ON) |
| ClockedObject::pwrState(Enums::PwrState::ON); |
| |
| updateCycleCounters(CPU_STATE_WAKEUP); |
| } |
| |
| void |
| BaseCPU::suspendContext(ThreadID thread_num) |
| { |
| // Check if all threads are suspended |
| for (auto t : threadContexts) { |
| if (t->status() != ThreadContext::Suspended) { |
| return; |
| } |
| } |
| |
| // All CPU thread are suspended, update cycle count |
| updateCycleCounters(CPU_STATE_SLEEP); |
| |
| // All CPU threads suspended, enter lower power state for the CPU |
| ClockedObject::pwrState(Enums::PwrState::CLK_GATED); |
| |
| // If pwrGatingLatency is set to 0 then this mechanism is disabled |
| if (powerGatingOnIdle) { |
| // Schedule power gating event when clock gated for pwrGatingLatency |
| // cycles |
| schedule(enterPwrGatingEvent, clockEdge(pwrGatingLatency)); |
| } |
| } |
| |
| void |
| BaseCPU::haltContext(ThreadID thread_num) |
| { |
| updateCycleCounters(BaseCPU::CPU_STATE_SLEEP); |
| } |
| |
| void |
| BaseCPU::enterPwrGating(void) |
| { |
| ClockedObject::pwrState(Enums::PwrState::OFF); |
| } |
| |
| void |
| BaseCPU::switchOut() |
| { |
| assert(!_switchedOut); |
| _switchedOut = true; |
| if (profileEvent && profileEvent->scheduled()) |
| deschedule(profileEvent); |
| |
| // Flush all TLBs in the CPU to avoid having stale translations if |
| // it gets switched in later. |
| flushTLBs(); |
| |
| // Go to the power gating state |
| ClockedObject::pwrState(Enums::PwrState::OFF); |
| } |
| |
| void |
| BaseCPU::takeOverFrom(BaseCPU *oldCPU) |
| { |
| assert(threadContexts.size() == oldCPU->threadContexts.size()); |
| assert(_cpuId == oldCPU->cpuId()); |
| assert(_switchedOut); |
| assert(oldCPU != this); |
| _pid = oldCPU->getPid(); |
| _taskId = oldCPU->taskId(); |
| // Take over the power state of the switchedOut CPU |
| ClockedObject::pwrState(oldCPU->pwrState()); |
| |
| previousState = oldCPU->previousState; |
| previousCycle = oldCPU->previousCycle; |
| |
| _switchedOut = false; |
| |
| ThreadID size = threadContexts.size(); |
| for (ThreadID i = 0; i < size; ++i) { |
| ThreadContext *newTC = threadContexts[i]; |
| ThreadContext *oldTC = oldCPU->threadContexts[i]; |
| |
| newTC->takeOverFrom(oldTC); |
| |
| CpuEvent::replaceThreadContext(oldTC, newTC); |
| |
| assert(newTC->contextId() == oldTC->contextId()); |
| assert(newTC->threadId() == oldTC->threadId()); |
| system->replaceThreadContext(newTC, newTC->contextId()); |
| |
| /* This code no longer works since the zero register (e.g., |
| * r31 on Alpha) doesn't necessarily contain zero at this |
| * point. |
| if (DTRACE(Context)) |
| ThreadContext::compare(oldTC, newTC); |
| */ |
| |
| BaseMasterPort *old_itb_port = oldTC->getITBPtr()->getMasterPort(); |
| BaseMasterPort *old_dtb_port = oldTC->getDTBPtr()->getMasterPort(); |
| BaseMasterPort *new_itb_port = newTC->getITBPtr()->getMasterPort(); |
| BaseMasterPort *new_dtb_port = newTC->getDTBPtr()->getMasterPort(); |
| |
| // Move over any table walker ports if they exist |
| if (new_itb_port) { |
| assert(!new_itb_port->isConnected()); |
| assert(old_itb_port); |
| assert(old_itb_port->isConnected()); |
| BaseSlavePort &slavePort = old_itb_port->getSlavePort(); |
| old_itb_port->unbind(); |
| new_itb_port->bind(slavePort); |
| } |
| if (new_dtb_port) { |
| assert(!new_dtb_port->isConnected()); |
| assert(old_dtb_port); |
| assert(old_dtb_port->isConnected()); |
| BaseSlavePort &slavePort = old_dtb_port->getSlavePort(); |
| old_dtb_port->unbind(); |
| new_dtb_port->bind(slavePort); |
| } |
| newTC->getITBPtr()->takeOverFrom(oldTC->getITBPtr()); |
| newTC->getDTBPtr()->takeOverFrom(oldTC->getDTBPtr()); |
| |
| // Checker whether or not we have to transfer CheckerCPU |
| // objects over in the switch |
| CheckerCPU *oldChecker = oldTC->getCheckerCpuPtr(); |
| CheckerCPU *newChecker = newTC->getCheckerCpuPtr(); |
| if (oldChecker && newChecker) { |
| BaseMasterPort *old_checker_itb_port = |
| oldChecker->getITBPtr()->getMasterPort(); |
| BaseMasterPort *old_checker_dtb_port = |
| oldChecker->getDTBPtr()->getMasterPort(); |
| BaseMasterPort *new_checker_itb_port = |
| newChecker->getITBPtr()->getMasterPort(); |
| BaseMasterPort *new_checker_dtb_port = |
| newChecker->getDTBPtr()->getMasterPort(); |
| |
| newChecker->getITBPtr()->takeOverFrom(oldChecker->getITBPtr()); |
| newChecker->getDTBPtr()->takeOverFrom(oldChecker->getDTBPtr()); |
| |
| // Move over any table walker ports if they exist for checker |
| if (new_checker_itb_port) { |
| assert(!new_checker_itb_port->isConnected()); |
| assert(old_checker_itb_port); |
| assert(old_checker_itb_port->isConnected()); |
| BaseSlavePort &slavePort = |
| old_checker_itb_port->getSlavePort(); |
| old_checker_itb_port->unbind(); |
| new_checker_itb_port->bind(slavePort); |
| } |
| if (new_checker_dtb_port) { |
| assert(!new_checker_dtb_port->isConnected()); |
| assert(old_checker_dtb_port); |
| assert(old_checker_dtb_port->isConnected()); |
| BaseSlavePort &slavePort = |
| old_checker_dtb_port->getSlavePort(); |
| old_checker_dtb_port->unbind(); |
| new_checker_dtb_port->bind(slavePort); |
| } |
| } |
| } |
| |
| interrupts = oldCPU->interrupts; |
| for (ThreadID tid = 0; tid < numThreads; tid++) { |
| interrupts[tid]->setCPU(this); |
| } |
| oldCPU->interrupts.clear(); |
| |
| if (FullSystem) { |
| for (ThreadID i = 0; i < size; ++i) |
| threadContexts[i]->profileClear(); |
| |
| if (profileEvent) |
| schedule(profileEvent, curTick()); |
| } |
| |
| // All CPUs have an instruction and a data port, and the new CPU's |
| // ports are dangling while the old CPU has its ports connected |
| // already. Unbind the old CPU and then bind the ports of the one |
| // we are switching to. |
| assert(!getInstPort().isConnected()); |
| assert(oldCPU->getInstPort().isConnected()); |
| BaseSlavePort &inst_peer_port = oldCPU->getInstPort().getSlavePort(); |
| oldCPU->getInstPort().unbind(); |
| getInstPort().bind(inst_peer_port); |
| |
| assert(!getDataPort().isConnected()); |
| assert(oldCPU->getDataPort().isConnected()); |
| BaseSlavePort &data_peer_port = oldCPU->getDataPort().getSlavePort(); |
| oldCPU->getDataPort().unbind(); |
| getDataPort().bind(data_peer_port); |
| } |
| |
| void |
| BaseCPU::flushTLBs() |
| { |
| for (ThreadID i = 0; i < threadContexts.size(); ++i) { |
| ThreadContext &tc(*threadContexts[i]); |
| CheckerCPU *checker(tc.getCheckerCpuPtr()); |
| |
| tc.getITBPtr()->flushAll(); |
| tc.getDTBPtr()->flushAll(); |
| if (checker) { |
| checker->getITBPtr()->flushAll(); |
| checker->getDTBPtr()->flushAll(); |
| } |
| } |
| } |
| |
| void |
| BaseCPU::processProfileEvent() |
| { |
| ThreadID size = threadContexts.size(); |
| |
| for (ThreadID i = 0; i < size; ++i) |
| threadContexts[i]->profileSample(); |
| |
| schedule(profileEvent, curTick() + params()->profile); |
| } |
| |
| void |
| BaseCPU::serialize(CheckpointOut &cp) const |
| { |
| SERIALIZE_SCALAR(instCnt); |
| |
| if (!_switchedOut) { |
| /* Unlike _pid, _taskId is not serialized, as they are dynamically |
| * assigned unique ids that are only meaningful for the duration of |
| * a specific run. We will need to serialize the entire taskMap in |
| * system. */ |
| SERIALIZE_SCALAR(_pid); |
| |
| // Serialize the threads, this is done by the CPU implementation. |
| for (ThreadID i = 0; i < numThreads; ++i) { |
| ScopedCheckpointSection sec(cp, csprintf("xc.%i", i)); |
| interrupts[i]->serialize(cp); |
| serializeThread(cp, i); |
| } |
| } |
| } |
| |
| void |
| BaseCPU::unserialize(CheckpointIn &cp) |
| { |
| UNSERIALIZE_SCALAR(instCnt); |
| |
| if (!_switchedOut) { |
| UNSERIALIZE_SCALAR(_pid); |
| |
| // Unserialize the threads, this is done by the CPU implementation. |
| for (ThreadID i = 0; i < numThreads; ++i) { |
| ScopedCheckpointSection sec(cp, csprintf("xc.%i", i)); |
| interrupts[i]->unserialize(cp); |
| unserializeThread(cp, i); |
| } |
| } |
| } |
| |
| void |
| BaseCPU::scheduleInstStop(ThreadID tid, Counter insts, const char *cause) |
| { |
| const Tick now(comInstEventQueue[tid]->getCurTick()); |
| Event *event(new LocalSimLoopExitEvent(cause, 0)); |
| |
| comInstEventQueue[tid]->schedule(event, now + insts); |
| } |
| |
| uint64_t |
| BaseCPU::getCurrentInstCount(ThreadID tid) |
| { |
| return Tick(comInstEventQueue[tid]->getCurTick()); |
| } |
| |
| AddressMonitor::AddressMonitor() { |
| armed = false; |
| waiting = false; |
| gotWakeup = false; |
| } |
| |
| bool AddressMonitor::doMonitor(PacketPtr pkt) { |
| assert(pkt->req->hasPaddr()); |
| if (armed && waiting) { |
| if (pAddr == pkt->getAddr()) { |
| DPRINTF(Mwait,"pAddr=0x%lx invalidated: waking up core\n", |
| pkt->getAddr()); |
| waiting = false; |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| void |
| BaseCPU::scheduleLoadStop(ThreadID tid, Counter loads, const char *cause) |
| { |
| const Tick now(comLoadEventQueue[tid]->getCurTick()); |
| Event *event(new LocalSimLoopExitEvent(cause, 0)); |
| |
| comLoadEventQueue[tid]->schedule(event, now + loads); |
| } |
| |
| |
| void |
| BaseCPU::traceFunctionsInternal(Addr pc) |
| { |
| if (!debugSymbolTable) |
| return; |
| |
| // if pc enters different function, print new function symbol and |
| // update saved range. Otherwise do nothing. |
| if (pc < currentFunctionStart || pc >= currentFunctionEnd) { |
| string sym_str; |
| bool found = debugSymbolTable->findNearestSymbol(pc, sym_str, |
| currentFunctionStart, |
| currentFunctionEnd); |
| |
| if (!found) { |
| // no symbol found: use addr as label |
| sym_str = csprintf("0x%x", pc); |
| currentFunctionStart = pc; |
| currentFunctionEnd = pc + 1; |
| } |
| |
| ccprintf(*functionTraceStream, " (%d)\n%d: %s", |
| curTick() - functionEntryTick, curTick(), sym_str); |
| functionEntryTick = curTick(); |
| } |
| } |
| |
| bool |
| BaseCPU::waitForRemoteGDB() const |
| { |
| return params()->wait_for_remote_gdb; |
| } |