| // Copyright 2007, Google Inc. |
| // All rights reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following disclaimer |
| // in the documentation and/or other materials provided with the |
| // distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: wan@google.com (Zhanyong Wan) |
| |
| // Google Mock - a framework for writing C++ mock classes. |
| // |
| // This file tests the built-in actions. |
| |
| #include "gmock/gmock-actions.h" |
| #include <algorithm> |
| #include <iterator> |
| #include <memory> |
| #include <string> |
| #include "gmock/gmock.h" |
| #include "gmock/internal/gmock-port.h" |
| #include "gtest/gtest.h" |
| #include "gtest/gtest-spi.h" |
| |
| namespace { |
| |
| // This list should be kept sorted. |
| using testing::Action; |
| using testing::ActionInterface; |
| using testing::Assign; |
| using testing::ByMove; |
| using testing::ByRef; |
| using testing::DefaultValue; |
| using testing::DoDefault; |
| using testing::IgnoreResult; |
| using testing::Invoke; |
| using testing::InvokeWithoutArgs; |
| using testing::MakePolymorphicAction; |
| using testing::Ne; |
| using testing::PolymorphicAction; |
| using testing::Return; |
| using testing::ReturnNull; |
| using testing::ReturnRef; |
| using testing::ReturnRefOfCopy; |
| using testing::SetArgPointee; |
| using testing::SetArgumentPointee; |
| using testing::_; |
| using testing::get; |
| using testing::internal::BuiltInDefaultValue; |
| using testing::internal::Int64; |
| using testing::internal::UInt64; |
| using testing::make_tuple; |
| using testing::tuple; |
| using testing::tuple_element; |
| |
| #if !GTEST_OS_WINDOWS_MOBILE |
| using testing::SetErrnoAndReturn; |
| #endif |
| |
| #if GTEST_HAS_PROTOBUF_ |
| using testing::internal::TestMessage; |
| #endif // GTEST_HAS_PROTOBUF_ |
| |
| // Tests that BuiltInDefaultValue<T*>::Get() returns NULL. |
| TEST(BuiltInDefaultValueTest, IsNullForPointerTypes) { |
| EXPECT_TRUE(BuiltInDefaultValue<int*>::Get() == NULL); |
| EXPECT_TRUE(BuiltInDefaultValue<const char*>::Get() == NULL); |
| EXPECT_TRUE(BuiltInDefaultValue<void*>::Get() == NULL); |
| } |
| |
| // Tests that BuiltInDefaultValue<T*>::Exists() return true. |
| TEST(BuiltInDefaultValueTest, ExistsForPointerTypes) { |
| EXPECT_TRUE(BuiltInDefaultValue<int*>::Exists()); |
| EXPECT_TRUE(BuiltInDefaultValue<const char*>::Exists()); |
| EXPECT_TRUE(BuiltInDefaultValue<void*>::Exists()); |
| } |
| |
| // Tests that BuiltInDefaultValue<T>::Get() returns 0 when T is a |
| // built-in numeric type. |
| TEST(BuiltInDefaultValueTest, IsZeroForNumericTypes) { |
| EXPECT_EQ(0U, BuiltInDefaultValue<unsigned char>::Get()); |
| EXPECT_EQ(0, BuiltInDefaultValue<signed char>::Get()); |
| EXPECT_EQ(0, BuiltInDefaultValue<char>::Get()); |
| #if GMOCK_HAS_SIGNED_WCHAR_T_ |
| EXPECT_EQ(0U, BuiltInDefaultValue<unsigned wchar_t>::Get()); |
| EXPECT_EQ(0, BuiltInDefaultValue<signed wchar_t>::Get()); |
| #endif |
| #if GMOCK_WCHAR_T_IS_NATIVE_ |
| EXPECT_EQ(0, BuiltInDefaultValue<wchar_t>::Get()); |
| #endif |
| EXPECT_EQ(0U, BuiltInDefaultValue<unsigned short>::Get()); // NOLINT |
| EXPECT_EQ(0, BuiltInDefaultValue<signed short>::Get()); // NOLINT |
| EXPECT_EQ(0, BuiltInDefaultValue<short>::Get()); // NOLINT |
| EXPECT_EQ(0U, BuiltInDefaultValue<unsigned int>::Get()); |
| EXPECT_EQ(0, BuiltInDefaultValue<signed int>::Get()); |
| EXPECT_EQ(0, BuiltInDefaultValue<int>::Get()); |
| EXPECT_EQ(0U, BuiltInDefaultValue<unsigned long>::Get()); // NOLINT |
| EXPECT_EQ(0, BuiltInDefaultValue<signed long>::Get()); // NOLINT |
| EXPECT_EQ(0, BuiltInDefaultValue<long>::Get()); // NOLINT |
| EXPECT_EQ(0U, BuiltInDefaultValue<UInt64>::Get()); |
| EXPECT_EQ(0, BuiltInDefaultValue<Int64>::Get()); |
| EXPECT_EQ(0, BuiltInDefaultValue<float>::Get()); |
| EXPECT_EQ(0, BuiltInDefaultValue<double>::Get()); |
| } |
| |
| // Tests that BuiltInDefaultValue<T>::Exists() returns true when T is a |
| // built-in numeric type. |
| TEST(BuiltInDefaultValueTest, ExistsForNumericTypes) { |
| EXPECT_TRUE(BuiltInDefaultValue<unsigned char>::Exists()); |
| EXPECT_TRUE(BuiltInDefaultValue<signed char>::Exists()); |
| EXPECT_TRUE(BuiltInDefaultValue<char>::Exists()); |
| #if GMOCK_HAS_SIGNED_WCHAR_T_ |
| EXPECT_TRUE(BuiltInDefaultValue<unsigned wchar_t>::Exists()); |
| EXPECT_TRUE(BuiltInDefaultValue<signed wchar_t>::Exists()); |
| #endif |
| #if GMOCK_WCHAR_T_IS_NATIVE_ |
| EXPECT_TRUE(BuiltInDefaultValue<wchar_t>::Exists()); |
| #endif |
| EXPECT_TRUE(BuiltInDefaultValue<unsigned short>::Exists()); // NOLINT |
| EXPECT_TRUE(BuiltInDefaultValue<signed short>::Exists()); // NOLINT |
| EXPECT_TRUE(BuiltInDefaultValue<short>::Exists()); // NOLINT |
| EXPECT_TRUE(BuiltInDefaultValue<unsigned int>::Exists()); |
| EXPECT_TRUE(BuiltInDefaultValue<signed int>::Exists()); |
| EXPECT_TRUE(BuiltInDefaultValue<int>::Exists()); |
| EXPECT_TRUE(BuiltInDefaultValue<unsigned long>::Exists()); // NOLINT |
| EXPECT_TRUE(BuiltInDefaultValue<signed long>::Exists()); // NOLINT |
| EXPECT_TRUE(BuiltInDefaultValue<long>::Exists()); // NOLINT |
| EXPECT_TRUE(BuiltInDefaultValue<UInt64>::Exists()); |
| EXPECT_TRUE(BuiltInDefaultValue<Int64>::Exists()); |
| EXPECT_TRUE(BuiltInDefaultValue<float>::Exists()); |
| EXPECT_TRUE(BuiltInDefaultValue<double>::Exists()); |
| } |
| |
| // Tests that BuiltInDefaultValue<bool>::Get() returns false. |
| TEST(BuiltInDefaultValueTest, IsFalseForBool) { |
| EXPECT_FALSE(BuiltInDefaultValue<bool>::Get()); |
| } |
| |
| // Tests that BuiltInDefaultValue<bool>::Exists() returns true. |
| TEST(BuiltInDefaultValueTest, BoolExists) { |
| EXPECT_TRUE(BuiltInDefaultValue<bool>::Exists()); |
| } |
| |
| // Tests that BuiltInDefaultValue<T>::Get() returns "" when T is a |
| // string type. |
| TEST(BuiltInDefaultValueTest, IsEmptyStringForString) { |
| #if GTEST_HAS_GLOBAL_STRING |
| EXPECT_EQ("", BuiltInDefaultValue< ::string>::Get()); |
| #endif // GTEST_HAS_GLOBAL_STRING |
| |
| EXPECT_EQ("", BuiltInDefaultValue< ::std::string>::Get()); |
| } |
| |
| // Tests that BuiltInDefaultValue<T>::Exists() returns true when T is a |
| // string type. |
| TEST(BuiltInDefaultValueTest, ExistsForString) { |
| #if GTEST_HAS_GLOBAL_STRING |
| EXPECT_TRUE(BuiltInDefaultValue< ::string>::Exists()); |
| #endif // GTEST_HAS_GLOBAL_STRING |
| |
| EXPECT_TRUE(BuiltInDefaultValue< ::std::string>::Exists()); |
| } |
| |
| // Tests that BuiltInDefaultValue<const T>::Get() returns the same |
| // value as BuiltInDefaultValue<T>::Get() does. |
| TEST(BuiltInDefaultValueTest, WorksForConstTypes) { |
| EXPECT_EQ("", BuiltInDefaultValue<const std::string>::Get()); |
| EXPECT_EQ(0, BuiltInDefaultValue<const int>::Get()); |
| EXPECT_TRUE(BuiltInDefaultValue<char* const>::Get() == NULL); |
| EXPECT_FALSE(BuiltInDefaultValue<const bool>::Get()); |
| } |
| |
| // A type that's default constructible. |
| class MyDefaultConstructible { |
| public: |
| MyDefaultConstructible() : value_(42) {} |
| |
| int value() const { return value_; } |
| |
| private: |
| int value_; |
| }; |
| |
| // A type that's not default constructible. |
| class MyNonDefaultConstructible { |
| public: |
| // Does not have a default ctor. |
| explicit MyNonDefaultConstructible(int a_value) : value_(a_value) {} |
| |
| int value() const { return value_; } |
| |
| private: |
| int value_; |
| }; |
| |
| #if GTEST_HAS_STD_TYPE_TRAITS_ |
| |
| TEST(BuiltInDefaultValueTest, ExistsForDefaultConstructibleType) { |
| EXPECT_TRUE(BuiltInDefaultValue<MyDefaultConstructible>::Exists()); |
| } |
| |
| TEST(BuiltInDefaultValueTest, IsDefaultConstructedForDefaultConstructibleType) { |
| EXPECT_EQ(42, BuiltInDefaultValue<MyDefaultConstructible>::Get().value()); |
| } |
| |
| #endif // GTEST_HAS_STD_TYPE_TRAITS_ |
| |
| TEST(BuiltInDefaultValueTest, DoesNotExistForNonDefaultConstructibleType) { |
| EXPECT_FALSE(BuiltInDefaultValue<MyNonDefaultConstructible>::Exists()); |
| } |
| |
| // Tests that BuiltInDefaultValue<T&>::Get() aborts the program. |
| TEST(BuiltInDefaultValueDeathTest, IsUndefinedForReferences) { |
| EXPECT_DEATH_IF_SUPPORTED({ |
| BuiltInDefaultValue<int&>::Get(); |
| }, ""); |
| EXPECT_DEATH_IF_SUPPORTED({ |
| BuiltInDefaultValue<const char&>::Get(); |
| }, ""); |
| } |
| |
| TEST(BuiltInDefaultValueDeathTest, IsUndefinedForNonDefaultConstructibleType) { |
| EXPECT_DEATH_IF_SUPPORTED({ |
| BuiltInDefaultValue<MyNonDefaultConstructible>::Get(); |
| }, ""); |
| } |
| |
| // Tests that DefaultValue<T>::IsSet() is false initially. |
| TEST(DefaultValueTest, IsInitiallyUnset) { |
| EXPECT_FALSE(DefaultValue<int>::IsSet()); |
| EXPECT_FALSE(DefaultValue<MyDefaultConstructible>::IsSet()); |
| EXPECT_FALSE(DefaultValue<const MyNonDefaultConstructible>::IsSet()); |
| } |
| |
| // Tests that DefaultValue<T> can be set and then unset. |
| TEST(DefaultValueTest, CanBeSetAndUnset) { |
| EXPECT_TRUE(DefaultValue<int>::Exists()); |
| EXPECT_FALSE(DefaultValue<const MyNonDefaultConstructible>::Exists()); |
| |
| DefaultValue<int>::Set(1); |
| DefaultValue<const MyNonDefaultConstructible>::Set( |
| MyNonDefaultConstructible(42)); |
| |
| EXPECT_EQ(1, DefaultValue<int>::Get()); |
| EXPECT_EQ(42, DefaultValue<const MyNonDefaultConstructible>::Get().value()); |
| |
| EXPECT_TRUE(DefaultValue<int>::Exists()); |
| EXPECT_TRUE(DefaultValue<const MyNonDefaultConstructible>::Exists()); |
| |
| DefaultValue<int>::Clear(); |
| DefaultValue<const MyNonDefaultConstructible>::Clear(); |
| |
| EXPECT_FALSE(DefaultValue<int>::IsSet()); |
| EXPECT_FALSE(DefaultValue<const MyNonDefaultConstructible>::IsSet()); |
| |
| EXPECT_TRUE(DefaultValue<int>::Exists()); |
| EXPECT_FALSE(DefaultValue<const MyNonDefaultConstructible>::Exists()); |
| } |
| |
| // Tests that DefaultValue<T>::Get() returns the |
| // BuiltInDefaultValue<T>::Get() when DefaultValue<T>::IsSet() is |
| // false. |
| TEST(DefaultValueDeathTest, GetReturnsBuiltInDefaultValueWhenUnset) { |
| EXPECT_FALSE(DefaultValue<int>::IsSet()); |
| EXPECT_TRUE(DefaultValue<int>::Exists()); |
| EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible>::IsSet()); |
| EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible>::Exists()); |
| |
| EXPECT_EQ(0, DefaultValue<int>::Get()); |
| |
| EXPECT_DEATH_IF_SUPPORTED({ |
| DefaultValue<MyNonDefaultConstructible>::Get(); |
| }, ""); |
| } |
| |
| #if GTEST_HAS_STD_UNIQUE_PTR_ |
| TEST(DefaultValueTest, GetWorksForMoveOnlyIfSet) { |
| EXPECT_TRUE(DefaultValue<std::unique_ptr<int>>::Exists()); |
| EXPECT_TRUE(DefaultValue<std::unique_ptr<int>>::Get() == NULL); |
| DefaultValue<std::unique_ptr<int>>::SetFactory([] { |
| return std::unique_ptr<int>(new int(42)); |
| }); |
| EXPECT_TRUE(DefaultValue<std::unique_ptr<int>>::Exists()); |
| std::unique_ptr<int> i = DefaultValue<std::unique_ptr<int>>::Get(); |
| EXPECT_EQ(42, *i); |
| } |
| #endif // GTEST_HAS_STD_UNIQUE_PTR_ |
| |
| // Tests that DefaultValue<void>::Get() returns void. |
| TEST(DefaultValueTest, GetWorksForVoid) { |
| return DefaultValue<void>::Get(); |
| } |
| |
| // Tests using DefaultValue with a reference type. |
| |
| // Tests that DefaultValue<T&>::IsSet() is false initially. |
| TEST(DefaultValueOfReferenceTest, IsInitiallyUnset) { |
| EXPECT_FALSE(DefaultValue<int&>::IsSet()); |
| EXPECT_FALSE(DefaultValue<MyDefaultConstructible&>::IsSet()); |
| EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::IsSet()); |
| } |
| |
| // Tests that DefaultValue<T&>::Exists is false initiallly. |
| TEST(DefaultValueOfReferenceTest, IsInitiallyNotExisting) { |
| EXPECT_FALSE(DefaultValue<int&>::Exists()); |
| EXPECT_FALSE(DefaultValue<MyDefaultConstructible&>::Exists()); |
| EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::Exists()); |
| } |
| |
| // Tests that DefaultValue<T&> can be set and then unset. |
| TEST(DefaultValueOfReferenceTest, CanBeSetAndUnset) { |
| int n = 1; |
| DefaultValue<const int&>::Set(n); |
| MyNonDefaultConstructible x(42); |
| DefaultValue<MyNonDefaultConstructible&>::Set(x); |
| |
| EXPECT_TRUE(DefaultValue<const int&>::Exists()); |
| EXPECT_TRUE(DefaultValue<MyNonDefaultConstructible&>::Exists()); |
| |
| EXPECT_EQ(&n, &(DefaultValue<const int&>::Get())); |
| EXPECT_EQ(&x, &(DefaultValue<MyNonDefaultConstructible&>::Get())); |
| |
| DefaultValue<const int&>::Clear(); |
| DefaultValue<MyNonDefaultConstructible&>::Clear(); |
| |
| EXPECT_FALSE(DefaultValue<const int&>::Exists()); |
| EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::Exists()); |
| |
| EXPECT_FALSE(DefaultValue<const int&>::IsSet()); |
| EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::IsSet()); |
| } |
| |
| // Tests that DefaultValue<T&>::Get() returns the |
| // BuiltInDefaultValue<T&>::Get() when DefaultValue<T&>::IsSet() is |
| // false. |
| TEST(DefaultValueOfReferenceDeathTest, GetReturnsBuiltInDefaultValueWhenUnset) { |
| EXPECT_FALSE(DefaultValue<int&>::IsSet()); |
| EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::IsSet()); |
| |
| EXPECT_DEATH_IF_SUPPORTED({ |
| DefaultValue<int&>::Get(); |
| }, ""); |
| EXPECT_DEATH_IF_SUPPORTED({ |
| DefaultValue<MyNonDefaultConstructible>::Get(); |
| }, ""); |
| } |
| |
| // Tests that ActionInterface can be implemented by defining the |
| // Perform method. |
| |
| typedef int MyGlobalFunction(bool, int); |
| |
| class MyActionImpl : public ActionInterface<MyGlobalFunction> { |
| public: |
| virtual int Perform(const tuple<bool, int>& args) { |
| return get<0>(args) ? get<1>(args) : 0; |
| } |
| }; |
| |
| TEST(ActionInterfaceTest, CanBeImplementedByDefiningPerform) { |
| MyActionImpl my_action_impl; |
| (void)my_action_impl; |
| } |
| |
| TEST(ActionInterfaceTest, MakeAction) { |
| Action<MyGlobalFunction> action = MakeAction(new MyActionImpl); |
| |
| // When exercising the Perform() method of Action<F>, we must pass |
| // it a tuple whose size and type are compatible with F's argument |
| // types. For example, if F is int(), then Perform() takes a |
| // 0-tuple; if F is void(bool, int), then Perform() takes a |
| // tuple<bool, int>, and so on. |
| EXPECT_EQ(5, action.Perform(make_tuple(true, 5))); |
| } |
| |
| // Tests that Action<F> can be contructed from a pointer to |
| // ActionInterface<F>. |
| TEST(ActionTest, CanBeConstructedFromActionInterface) { |
| Action<MyGlobalFunction> action(new MyActionImpl); |
| } |
| |
| // Tests that Action<F> delegates actual work to ActionInterface<F>. |
| TEST(ActionTest, DelegatesWorkToActionInterface) { |
| const Action<MyGlobalFunction> action(new MyActionImpl); |
| |
| EXPECT_EQ(5, action.Perform(make_tuple(true, 5))); |
| EXPECT_EQ(0, action.Perform(make_tuple(false, 1))); |
| } |
| |
| // Tests that Action<F> can be copied. |
| TEST(ActionTest, IsCopyable) { |
| Action<MyGlobalFunction> a1(new MyActionImpl); |
| Action<MyGlobalFunction> a2(a1); // Tests the copy constructor. |
| |
| // a1 should continue to work after being copied from. |
| EXPECT_EQ(5, a1.Perform(make_tuple(true, 5))); |
| EXPECT_EQ(0, a1.Perform(make_tuple(false, 1))); |
| |
| // a2 should work like the action it was copied from. |
| EXPECT_EQ(5, a2.Perform(make_tuple(true, 5))); |
| EXPECT_EQ(0, a2.Perform(make_tuple(false, 1))); |
| |
| a2 = a1; // Tests the assignment operator. |
| |
| // a1 should continue to work after being copied from. |
| EXPECT_EQ(5, a1.Perform(make_tuple(true, 5))); |
| EXPECT_EQ(0, a1.Perform(make_tuple(false, 1))); |
| |
| // a2 should work like the action it was copied from. |
| EXPECT_EQ(5, a2.Perform(make_tuple(true, 5))); |
| EXPECT_EQ(0, a2.Perform(make_tuple(false, 1))); |
| } |
| |
| // Tests that an Action<From> object can be converted to a |
| // compatible Action<To> object. |
| |
| class IsNotZero : public ActionInterface<bool(int)> { // NOLINT |
| public: |
| virtual bool Perform(const tuple<int>& arg) { |
| return get<0>(arg) != 0; |
| } |
| }; |
| |
| #if !GTEST_OS_SYMBIAN |
| // Compiling this test on Nokia's Symbian compiler fails with: |
| // 'Result' is not a member of class 'testing::internal::Function<int>' |
| // (point of instantiation: '@unnamed@gmock_actions_test_cc@:: |
| // ActionTest_CanBeConvertedToOtherActionType_Test::TestBody()') |
| // with no obvious fix. |
| TEST(ActionTest, CanBeConvertedToOtherActionType) { |
| const Action<bool(int)> a1(new IsNotZero); // NOLINT |
| const Action<int(char)> a2 = Action<int(char)>(a1); // NOLINT |
| EXPECT_EQ(1, a2.Perform(make_tuple('a'))); |
| EXPECT_EQ(0, a2.Perform(make_tuple('\0'))); |
| } |
| #endif // !GTEST_OS_SYMBIAN |
| |
| // The following two classes are for testing MakePolymorphicAction(). |
| |
| // Implements a polymorphic action that returns the second of the |
| // arguments it receives. |
| class ReturnSecondArgumentAction { |
| public: |
| // We want to verify that MakePolymorphicAction() can work with a |
| // polymorphic action whose Perform() method template is either |
| // const or not. This lets us verify the non-const case. |
| template <typename Result, typename ArgumentTuple> |
| Result Perform(const ArgumentTuple& args) { return get<1>(args); } |
| }; |
| |
| // Implements a polymorphic action that can be used in a nullary |
| // function to return 0. |
| class ReturnZeroFromNullaryFunctionAction { |
| public: |
| // For testing that MakePolymorphicAction() works when the |
| // implementation class' Perform() method template takes only one |
| // template parameter. |
| // |
| // We want to verify that MakePolymorphicAction() can work with a |
| // polymorphic action whose Perform() method template is either |
| // const or not. This lets us verify the const case. |
| template <typename Result> |
| Result Perform(const tuple<>&) const { return 0; } |
| }; |
| |
| // These functions verify that MakePolymorphicAction() returns a |
| // PolymorphicAction<T> where T is the argument's type. |
| |
| PolymorphicAction<ReturnSecondArgumentAction> ReturnSecondArgument() { |
| return MakePolymorphicAction(ReturnSecondArgumentAction()); |
| } |
| |
| PolymorphicAction<ReturnZeroFromNullaryFunctionAction> |
| ReturnZeroFromNullaryFunction() { |
| return MakePolymorphicAction(ReturnZeroFromNullaryFunctionAction()); |
| } |
| |
| // Tests that MakePolymorphicAction() turns a polymorphic action |
| // implementation class into a polymorphic action. |
| TEST(MakePolymorphicActionTest, ConstructsActionFromImpl) { |
| Action<int(bool, int, double)> a1 = ReturnSecondArgument(); // NOLINT |
| EXPECT_EQ(5, a1.Perform(make_tuple(false, 5, 2.0))); |
| } |
| |
| // Tests that MakePolymorphicAction() works when the implementation |
| // class' Perform() method template has only one template parameter. |
| TEST(MakePolymorphicActionTest, WorksWhenPerformHasOneTemplateParameter) { |
| Action<int()> a1 = ReturnZeroFromNullaryFunction(); |
| EXPECT_EQ(0, a1.Perform(make_tuple())); |
| |
| Action<void*()> a2 = ReturnZeroFromNullaryFunction(); |
| EXPECT_TRUE(a2.Perform(make_tuple()) == NULL); |
| } |
| |
| // Tests that Return() works as an action for void-returning |
| // functions. |
| TEST(ReturnTest, WorksForVoid) { |
| const Action<void(int)> ret = Return(); // NOLINT |
| return ret.Perform(make_tuple(1)); |
| } |
| |
| // Tests that Return(v) returns v. |
| TEST(ReturnTest, ReturnsGivenValue) { |
| Action<int()> ret = Return(1); // NOLINT |
| EXPECT_EQ(1, ret.Perform(make_tuple())); |
| |
| ret = Return(-5); |
| EXPECT_EQ(-5, ret.Perform(make_tuple())); |
| } |
| |
| // Tests that Return("string literal") works. |
| TEST(ReturnTest, AcceptsStringLiteral) { |
| Action<const char*()> a1 = Return("Hello"); |
| EXPECT_STREQ("Hello", a1.Perform(make_tuple())); |
| |
| Action<std::string()> a2 = Return("world"); |
| EXPECT_EQ("world", a2.Perform(make_tuple())); |
| } |
| |
| // Test struct which wraps a vector of integers. Used in |
| // 'SupportsWrapperReturnType' test. |
| struct IntegerVectorWrapper { |
| std::vector<int> * v; |
| IntegerVectorWrapper(std::vector<int>& _v) : v(&_v) {} // NOLINT |
| }; |
| |
| // Tests that Return() works when return type is a wrapper type. |
| TEST(ReturnTest, SupportsWrapperReturnType) { |
| // Initialize vector of integers. |
| std::vector<int> v; |
| for (int i = 0; i < 5; ++i) v.push_back(i); |
| |
| // Return() called with 'v' as argument. The Action will return the same data |
| // as 'v' (copy) but it will be wrapped in an IntegerVectorWrapper. |
| Action<IntegerVectorWrapper()> a = Return(v); |
| const std::vector<int>& result = *(a.Perform(make_tuple()).v); |
| EXPECT_THAT(result, ::testing::ElementsAre(0, 1, 2, 3, 4)); |
| } |
| |
| // Tests that Return(v) is covaraint. |
| |
| struct Base { |
| bool operator==(const Base&) { return true; } |
| }; |
| |
| struct Derived : public Base { |
| bool operator==(const Derived&) { return true; } |
| }; |
| |
| TEST(ReturnTest, IsCovariant) { |
| Base base; |
| Derived derived; |
| Action<Base*()> ret = Return(&base); |
| EXPECT_EQ(&base, ret.Perform(make_tuple())); |
| |
| ret = Return(&derived); |
| EXPECT_EQ(&derived, ret.Perform(make_tuple())); |
| } |
| |
| // Tests that the type of the value passed into Return is converted into T |
| // when the action is cast to Action<T(...)> rather than when the action is |
| // performed. See comments on testing::internal::ReturnAction in |
| // gmock-actions.h for more information. |
| class FromType { |
| public: |
| explicit FromType(bool* is_converted) : converted_(is_converted) {} |
| bool* converted() const { return converted_; } |
| |
| private: |
| bool* const converted_; |
| |
| GTEST_DISALLOW_ASSIGN_(FromType); |
| }; |
| |
| class ToType { |
| public: |
| // Must allow implicit conversion due to use in ImplicitCast_<T>. |
| ToType(const FromType& x) { *x.converted() = true; } // NOLINT |
| }; |
| |
| TEST(ReturnTest, ConvertsArgumentWhenConverted) { |
| bool converted = false; |
| FromType x(&converted); |
| Action<ToType()> action(Return(x)); |
| EXPECT_TRUE(converted) << "Return must convert its argument in its own " |
| << "conversion operator."; |
| converted = false; |
| action.Perform(tuple<>()); |
| EXPECT_FALSE(converted) << "Action must NOT convert its argument " |
| << "when performed."; |
| } |
| |
| class DestinationType {}; |
| |
| class SourceType { |
| public: |
| // Note: a non-const typecast operator. |
| operator DestinationType() { return DestinationType(); } |
| }; |
| |
| TEST(ReturnTest, CanConvertArgumentUsingNonConstTypeCastOperator) { |
| SourceType s; |
| Action<DestinationType()> action(Return(s)); |
| } |
| |
| // Tests that ReturnNull() returns NULL in a pointer-returning function. |
| TEST(ReturnNullTest, WorksInPointerReturningFunction) { |
| const Action<int*()> a1 = ReturnNull(); |
| EXPECT_TRUE(a1.Perform(make_tuple()) == NULL); |
| |
| const Action<const char*(bool)> a2 = ReturnNull(); // NOLINT |
| EXPECT_TRUE(a2.Perform(make_tuple(true)) == NULL); |
| } |
| |
| #if GTEST_HAS_STD_UNIQUE_PTR_ |
| // Tests that ReturnNull() returns NULL for shared_ptr and unique_ptr returning |
| // functions. |
| TEST(ReturnNullTest, WorksInSmartPointerReturningFunction) { |
| const Action<std::unique_ptr<const int>()> a1 = ReturnNull(); |
| EXPECT_TRUE(a1.Perform(make_tuple()) == nullptr); |
| |
| const Action<std::shared_ptr<int>(std::string)> a2 = ReturnNull(); |
| EXPECT_TRUE(a2.Perform(make_tuple("foo")) == nullptr); |
| } |
| #endif // GTEST_HAS_STD_UNIQUE_PTR_ |
| |
| // Tests that ReturnRef(v) works for reference types. |
| TEST(ReturnRefTest, WorksForReference) { |
| const int n = 0; |
| const Action<const int&(bool)> ret = ReturnRef(n); // NOLINT |
| |
| EXPECT_EQ(&n, &ret.Perform(make_tuple(true))); |
| } |
| |
| // Tests that ReturnRef(v) is covariant. |
| TEST(ReturnRefTest, IsCovariant) { |
| Base base; |
| Derived derived; |
| Action<Base&()> a = ReturnRef(base); |
| EXPECT_EQ(&base, &a.Perform(make_tuple())); |
| |
| a = ReturnRef(derived); |
| EXPECT_EQ(&derived, &a.Perform(make_tuple())); |
| } |
| |
| // Tests that ReturnRefOfCopy(v) works for reference types. |
| TEST(ReturnRefOfCopyTest, WorksForReference) { |
| int n = 42; |
| const Action<const int&()> ret = ReturnRefOfCopy(n); |
| |
| EXPECT_NE(&n, &ret.Perform(make_tuple())); |
| EXPECT_EQ(42, ret.Perform(make_tuple())); |
| |
| n = 43; |
| EXPECT_NE(&n, &ret.Perform(make_tuple())); |
| EXPECT_EQ(42, ret.Perform(make_tuple())); |
| } |
| |
| // Tests that ReturnRefOfCopy(v) is covariant. |
| TEST(ReturnRefOfCopyTest, IsCovariant) { |
| Base base; |
| Derived derived; |
| Action<Base&()> a = ReturnRefOfCopy(base); |
| EXPECT_NE(&base, &a.Perform(make_tuple())); |
| |
| a = ReturnRefOfCopy(derived); |
| EXPECT_NE(&derived, &a.Perform(make_tuple())); |
| } |
| |
| // Tests that DoDefault() does the default action for the mock method. |
| |
| class MockClass { |
| public: |
| MockClass() {} |
| |
| MOCK_METHOD1(IntFunc, int(bool flag)); // NOLINT |
| MOCK_METHOD0(Foo, MyNonDefaultConstructible()); |
| #if GTEST_HAS_STD_UNIQUE_PTR_ |
| MOCK_METHOD0(MakeUnique, std::unique_ptr<int>()); |
| MOCK_METHOD0(MakeUniqueBase, std::unique_ptr<Base>()); |
| MOCK_METHOD0(MakeVectorUnique, std::vector<std::unique_ptr<int>>()); |
| #endif |
| |
| private: |
| GTEST_DISALLOW_COPY_AND_ASSIGN_(MockClass); |
| }; |
| |
| // Tests that DoDefault() returns the built-in default value for the |
| // return type by default. |
| TEST(DoDefaultTest, ReturnsBuiltInDefaultValueByDefault) { |
| MockClass mock; |
| EXPECT_CALL(mock, IntFunc(_)) |
| .WillOnce(DoDefault()); |
| EXPECT_EQ(0, mock.IntFunc(true)); |
| } |
| |
| // Tests that DoDefault() throws (when exceptions are enabled) or aborts |
| // the process when there is no built-in default value for the return type. |
| TEST(DoDefaultDeathTest, DiesForUnknowType) { |
| MockClass mock; |
| EXPECT_CALL(mock, Foo()) |
| .WillRepeatedly(DoDefault()); |
| #if GTEST_HAS_EXCEPTIONS |
| EXPECT_ANY_THROW(mock.Foo()); |
| #else |
| EXPECT_DEATH_IF_SUPPORTED({ |
| mock.Foo(); |
| }, ""); |
| #endif |
| } |
| |
| // Tests that using DoDefault() inside a composite action leads to a |
| // run-time error. |
| |
| void VoidFunc(bool /* flag */) {} |
| |
| TEST(DoDefaultDeathTest, DiesIfUsedInCompositeAction) { |
| MockClass mock; |
| EXPECT_CALL(mock, IntFunc(_)) |
| .WillRepeatedly(DoAll(Invoke(VoidFunc), |
| DoDefault())); |
| |
| // Ideally we should verify the error message as well. Sadly, |
| // EXPECT_DEATH() can only capture stderr, while Google Mock's |
| // errors are printed on stdout. Therefore we have to settle for |
| // not verifying the message. |
| EXPECT_DEATH_IF_SUPPORTED({ |
| mock.IntFunc(true); |
| }, ""); |
| } |
| |
| // Tests that DoDefault() returns the default value set by |
| // DefaultValue<T>::Set() when it's not overriden by an ON_CALL(). |
| TEST(DoDefaultTest, ReturnsUserSpecifiedPerTypeDefaultValueWhenThereIsOne) { |
| DefaultValue<int>::Set(1); |
| MockClass mock; |
| EXPECT_CALL(mock, IntFunc(_)) |
| .WillOnce(DoDefault()); |
| EXPECT_EQ(1, mock.IntFunc(false)); |
| DefaultValue<int>::Clear(); |
| } |
| |
| // Tests that DoDefault() does the action specified by ON_CALL(). |
| TEST(DoDefaultTest, DoesWhatOnCallSpecifies) { |
| MockClass mock; |
| ON_CALL(mock, IntFunc(_)) |
| .WillByDefault(Return(2)); |
| EXPECT_CALL(mock, IntFunc(_)) |
| .WillOnce(DoDefault()); |
| EXPECT_EQ(2, mock.IntFunc(false)); |
| } |
| |
| // Tests that using DoDefault() in ON_CALL() leads to a run-time failure. |
| TEST(DoDefaultTest, CannotBeUsedInOnCall) { |
| MockClass mock; |
| EXPECT_NONFATAL_FAILURE({ // NOLINT |
| ON_CALL(mock, IntFunc(_)) |
| .WillByDefault(DoDefault()); |
| }, "DoDefault() cannot be used in ON_CALL()"); |
| } |
| |
| // Tests that SetArgPointee<N>(v) sets the variable pointed to by |
| // the N-th (0-based) argument to v. |
| TEST(SetArgPointeeTest, SetsTheNthPointee) { |
| typedef void MyFunction(bool, int*, char*); |
| Action<MyFunction> a = SetArgPointee<1>(2); |
| |
| int n = 0; |
| char ch = '\0'; |
| a.Perform(make_tuple(true, &n, &ch)); |
| EXPECT_EQ(2, n); |
| EXPECT_EQ('\0', ch); |
| |
| a = SetArgPointee<2>('a'); |
| n = 0; |
| ch = '\0'; |
| a.Perform(make_tuple(true, &n, &ch)); |
| EXPECT_EQ(0, n); |
| EXPECT_EQ('a', ch); |
| } |
| |
| #if !((GTEST_GCC_VER_ && GTEST_GCC_VER_ < 40000) || GTEST_OS_SYMBIAN) |
| // Tests that SetArgPointee<N>() accepts a string literal. |
| // GCC prior to v4.0 and the Symbian compiler do not support this. |
| TEST(SetArgPointeeTest, AcceptsStringLiteral) { |
| typedef void MyFunction(std::string*, const char**); |
| Action<MyFunction> a = SetArgPointee<0>("hi"); |
| std::string str; |
| const char* ptr = NULL; |
| a.Perform(make_tuple(&str, &ptr)); |
| EXPECT_EQ("hi", str); |
| EXPECT_TRUE(ptr == NULL); |
| |
| a = SetArgPointee<1>("world"); |
| str = ""; |
| a.Perform(make_tuple(&str, &ptr)); |
| EXPECT_EQ("", str); |
| EXPECT_STREQ("world", ptr); |
| } |
| |
| TEST(SetArgPointeeTest, AcceptsWideStringLiteral) { |
| typedef void MyFunction(const wchar_t**); |
| Action<MyFunction> a = SetArgPointee<0>(L"world"); |
| const wchar_t* ptr = NULL; |
| a.Perform(make_tuple(&ptr)); |
| EXPECT_STREQ(L"world", ptr); |
| |
| # if GTEST_HAS_STD_WSTRING |
| |
| typedef void MyStringFunction(std::wstring*); |
| Action<MyStringFunction> a2 = SetArgPointee<0>(L"world"); |
| std::wstring str = L""; |
| a2.Perform(make_tuple(&str)); |
| EXPECT_EQ(L"world", str); |
| |
| # endif |
| } |
| #endif |
| |
| // Tests that SetArgPointee<N>() accepts a char pointer. |
| TEST(SetArgPointeeTest, AcceptsCharPointer) { |
| typedef void MyFunction(bool, std::string*, const char**); |
| const char* const hi = "hi"; |
| Action<MyFunction> a = SetArgPointee<1>(hi); |
| std::string str; |
| const char* ptr = NULL; |
| a.Perform(make_tuple(true, &str, &ptr)); |
| EXPECT_EQ("hi", str); |
| EXPECT_TRUE(ptr == NULL); |
| |
| char world_array[] = "world"; |
| char* const world = world_array; |
| a = SetArgPointee<2>(world); |
| str = ""; |
| a.Perform(make_tuple(true, &str, &ptr)); |
| EXPECT_EQ("", str); |
| EXPECT_EQ(world, ptr); |
| } |
| |
| TEST(SetArgPointeeTest, AcceptsWideCharPointer) { |
| typedef void MyFunction(bool, const wchar_t**); |
| const wchar_t* const hi = L"hi"; |
| Action<MyFunction> a = SetArgPointee<1>(hi); |
| const wchar_t* ptr = NULL; |
| a.Perform(make_tuple(true, &ptr)); |
| EXPECT_EQ(hi, ptr); |
| |
| # if GTEST_HAS_STD_WSTRING |
| |
| typedef void MyStringFunction(bool, std::wstring*); |
| wchar_t world_array[] = L"world"; |
| wchar_t* const world = world_array; |
| Action<MyStringFunction> a2 = SetArgPointee<1>(world); |
| std::wstring str; |
| a2.Perform(make_tuple(true, &str)); |
| EXPECT_EQ(world_array, str); |
| # endif |
| } |
| |
| #if GTEST_HAS_PROTOBUF_ |
| |
| // Tests that SetArgPointee<N>(proto_buffer) sets the v1 protobuf |
| // variable pointed to by the N-th (0-based) argument to proto_buffer. |
| TEST(SetArgPointeeTest, SetsTheNthPointeeOfProtoBufferType) { |
| TestMessage* const msg = new TestMessage; |
| msg->set_member("yes"); |
| TestMessage orig_msg; |
| orig_msg.CopyFrom(*msg); |
| |
| Action<void(bool, TestMessage*)> a = SetArgPointee<1>(*msg); |
| // SetArgPointee<N>(proto_buffer) makes a copy of proto_buffer |
| // s.t. the action works even when the original proto_buffer has |
| // died. We ensure this behavior by deleting msg before using the |
| // action. |
| delete msg; |
| |
| TestMessage dest; |
| EXPECT_FALSE(orig_msg.Equals(dest)); |
| a.Perform(make_tuple(true, &dest)); |
| EXPECT_TRUE(orig_msg.Equals(dest)); |
| } |
| |
| // Tests that SetArgPointee<N>(proto_buffer) sets the |
| // ::ProtocolMessage variable pointed to by the N-th (0-based) |
| // argument to proto_buffer. |
| TEST(SetArgPointeeTest, SetsTheNthPointeeOfProtoBufferBaseType) { |
| TestMessage* const msg = new TestMessage; |
| msg->set_member("yes"); |
| TestMessage orig_msg; |
| orig_msg.CopyFrom(*msg); |
| |
| Action<void(bool, ::ProtocolMessage*)> a = SetArgPointee<1>(*msg); |
| // SetArgPointee<N>(proto_buffer) makes a copy of proto_buffer |
| // s.t. the action works even when the original proto_buffer has |
| // died. We ensure this behavior by deleting msg before using the |
| // action. |
| delete msg; |
| |
| TestMessage dest; |
| ::ProtocolMessage* const dest_base = &dest; |
| EXPECT_FALSE(orig_msg.Equals(dest)); |
| a.Perform(make_tuple(true, dest_base)); |
| EXPECT_TRUE(orig_msg.Equals(dest)); |
| } |
| |
| // Tests that SetArgPointee<N>(proto2_buffer) sets the v2 |
| // protobuf variable pointed to by the N-th (0-based) argument to |
| // proto2_buffer. |
| TEST(SetArgPointeeTest, SetsTheNthPointeeOfProto2BufferType) { |
| using testing::internal::FooMessage; |
| FooMessage* const msg = new FooMessage; |
| msg->set_int_field(2); |
| msg->set_string_field("hi"); |
| FooMessage orig_msg; |
| orig_msg.CopyFrom(*msg); |
| |
| Action<void(bool, FooMessage*)> a = SetArgPointee<1>(*msg); |
| // SetArgPointee<N>(proto2_buffer) makes a copy of |
| // proto2_buffer s.t. the action works even when the original |
| // proto2_buffer has died. We ensure this behavior by deleting msg |
| // before using the action. |
| delete msg; |
| |
| FooMessage dest; |
| dest.set_int_field(0); |
| a.Perform(make_tuple(true, &dest)); |
| EXPECT_EQ(2, dest.int_field()); |
| EXPECT_EQ("hi", dest.string_field()); |
| } |
| |
| // Tests that SetArgPointee<N>(proto2_buffer) sets the |
| // proto2::Message variable pointed to by the N-th (0-based) argument |
| // to proto2_buffer. |
| TEST(SetArgPointeeTest, SetsTheNthPointeeOfProto2BufferBaseType) { |
| using testing::internal::FooMessage; |
| FooMessage* const msg = new FooMessage; |
| msg->set_int_field(2); |
| msg->set_string_field("hi"); |
| FooMessage orig_msg; |
| orig_msg.CopyFrom(*msg); |
| |
| Action<void(bool, ::proto2::Message*)> a = SetArgPointee<1>(*msg); |
| // SetArgPointee<N>(proto2_buffer) makes a copy of |
| // proto2_buffer s.t. the action works even when the original |
| // proto2_buffer has died. We ensure this behavior by deleting msg |
| // before using the action. |
| delete msg; |
| |
| FooMessage dest; |
| dest.set_int_field(0); |
| ::proto2::Message* const dest_base = &dest; |
| a.Perform(make_tuple(true, dest_base)); |
| EXPECT_EQ(2, dest.int_field()); |
| EXPECT_EQ("hi", dest.string_field()); |
| } |
| |
| #endif // GTEST_HAS_PROTOBUF_ |
| |
| // Tests that SetArgumentPointee<N>(v) sets the variable pointed to by |
| // the N-th (0-based) argument to v. |
| TEST(SetArgumentPointeeTest, SetsTheNthPointee) { |
| typedef void MyFunction(bool, int*, char*); |
| Action<MyFunction> a = SetArgumentPointee<1>(2); |
| |
| int n = 0; |
| char ch = '\0'; |
| a.Perform(make_tuple(true, &n, &ch)); |
| EXPECT_EQ(2, n); |
| EXPECT_EQ('\0', ch); |
| |
| a = SetArgumentPointee<2>('a'); |
| n = 0; |
| ch = '\0'; |
| a.Perform(make_tuple(true, &n, &ch)); |
| EXPECT_EQ(0, n); |
| EXPECT_EQ('a', ch); |
| } |
| |
| #if GTEST_HAS_PROTOBUF_ |
| |
| // Tests that SetArgumentPointee<N>(proto_buffer) sets the v1 protobuf |
| // variable pointed to by the N-th (0-based) argument to proto_buffer. |
| TEST(SetArgumentPointeeTest, SetsTheNthPointeeOfProtoBufferType) { |
| TestMessage* const msg = new TestMessage; |
| msg->set_member("yes"); |
| TestMessage orig_msg; |
| orig_msg.CopyFrom(*msg); |
| |
| Action<void(bool, TestMessage*)> a = SetArgumentPointee<1>(*msg); |
| // SetArgumentPointee<N>(proto_buffer) makes a copy of proto_buffer |
| // s.t. the action works even when the original proto_buffer has |
| // died. We ensure this behavior by deleting msg before using the |
| // action. |
| delete msg; |
| |
| TestMessage dest; |
| EXPECT_FALSE(orig_msg.Equals(dest)); |
| a.Perform(make_tuple(true, &dest)); |
| EXPECT_TRUE(orig_msg.Equals(dest)); |
| } |
| |
| // Tests that SetArgumentPointee<N>(proto_buffer) sets the |
| // ::ProtocolMessage variable pointed to by the N-th (0-based) |
| // argument to proto_buffer. |
| TEST(SetArgumentPointeeTest, SetsTheNthPointeeOfProtoBufferBaseType) { |
| TestMessage* const msg = new TestMessage; |
| msg->set_member("yes"); |
| TestMessage orig_msg; |
| orig_msg.CopyFrom(*msg); |
| |
| Action<void(bool, ::ProtocolMessage*)> a = SetArgumentPointee<1>(*msg); |
| // SetArgumentPointee<N>(proto_buffer) makes a copy of proto_buffer |
| // s.t. the action works even when the original proto_buffer has |
| // died. We ensure this behavior by deleting msg before using the |
| // action. |
| delete msg; |
| |
| TestMessage dest; |
| ::ProtocolMessage* const dest_base = &dest; |
| EXPECT_FALSE(orig_msg.Equals(dest)); |
| a.Perform(make_tuple(true, dest_base)); |
| EXPECT_TRUE(orig_msg.Equals(dest)); |
| } |
| |
| // Tests that SetArgumentPointee<N>(proto2_buffer) sets the v2 |
| // protobuf variable pointed to by the N-th (0-based) argument to |
| // proto2_buffer. |
| TEST(SetArgumentPointeeTest, SetsTheNthPointeeOfProto2BufferType) { |
| using testing::internal::FooMessage; |
| FooMessage* const msg = new FooMessage; |
| msg->set_int_field(2); |
| msg->set_string_field("hi"); |
| FooMessage orig_msg; |
| orig_msg.CopyFrom(*msg); |
| |
| Action<void(bool, FooMessage*)> a = SetArgumentPointee<1>(*msg); |
| // SetArgumentPointee<N>(proto2_buffer) makes a copy of |
| // proto2_buffer s.t. the action works even when the original |
| // proto2_buffer has died. We ensure this behavior by deleting msg |
| // before using the action. |
| delete msg; |
| |
| FooMessage dest; |
| dest.set_int_field(0); |
| a.Perform(make_tuple(true, &dest)); |
| EXPECT_EQ(2, dest.int_field()); |
| EXPECT_EQ("hi", dest.string_field()); |
| } |
| |
| // Tests that SetArgumentPointee<N>(proto2_buffer) sets the |
| // proto2::Message variable pointed to by the N-th (0-based) argument |
| // to proto2_buffer. |
| TEST(SetArgumentPointeeTest, SetsTheNthPointeeOfProto2BufferBaseType) { |
| using testing::internal::FooMessage; |
| FooMessage* const msg = new FooMessage; |
| msg->set_int_field(2); |
| msg->set_string_field("hi"); |
| FooMessage orig_msg; |
| orig_msg.CopyFrom(*msg); |
| |
| Action<void(bool, ::proto2::Message*)> a = SetArgumentPointee<1>(*msg); |
| // SetArgumentPointee<N>(proto2_buffer) makes a copy of |
| // proto2_buffer s.t. the action works even when the original |
| // proto2_buffer has died. We ensure this behavior by deleting msg |
| // before using the action. |
| delete msg; |
| |
| FooMessage dest; |
| dest.set_int_field(0); |
| ::proto2::Message* const dest_base = &dest; |
| a.Perform(make_tuple(true, dest_base)); |
| EXPECT_EQ(2, dest.int_field()); |
| EXPECT_EQ("hi", dest.string_field()); |
| } |
| |
| #endif // GTEST_HAS_PROTOBUF_ |
| |
| // Sample functions and functors for testing Invoke() and etc. |
| int Nullary() { return 1; } |
| |
| class NullaryFunctor { |
| public: |
| int operator()() { return 2; } |
| }; |
| |
| bool g_done = false; |
| void VoidNullary() { g_done = true; } |
| |
| class VoidNullaryFunctor { |
| public: |
| void operator()() { g_done = true; } |
| }; |
| |
| class Foo { |
| public: |
| Foo() : value_(123) {} |
| |
| int Nullary() const { return value_; } |
| |
| private: |
| int value_; |
| }; |
| |
| // Tests InvokeWithoutArgs(function). |
| TEST(InvokeWithoutArgsTest, Function) { |
| // As an action that takes one argument. |
| Action<int(int)> a = InvokeWithoutArgs(Nullary); // NOLINT |
| EXPECT_EQ(1, a.Perform(make_tuple(2))); |
| |
| // As an action that takes two arguments. |
| Action<int(int, double)> a2 = InvokeWithoutArgs(Nullary); // NOLINT |
| EXPECT_EQ(1, a2.Perform(make_tuple(2, 3.5))); |
| |
| // As an action that returns void. |
| Action<void(int)> a3 = InvokeWithoutArgs(VoidNullary); // NOLINT |
| g_done = false; |
| a3.Perform(make_tuple(1)); |
| EXPECT_TRUE(g_done); |
| } |
| |
| // Tests InvokeWithoutArgs(functor). |
| TEST(InvokeWithoutArgsTest, Functor) { |
| // As an action that takes no argument. |
| Action<int()> a = InvokeWithoutArgs(NullaryFunctor()); // NOLINT |
| EXPECT_EQ(2, a.Perform(make_tuple())); |
| |
| // As an action that takes three arguments. |
| Action<int(int, double, char)> a2 = // NOLINT |
| InvokeWithoutArgs(NullaryFunctor()); |
| EXPECT_EQ(2, a2.Perform(make_tuple(3, 3.5, 'a'))); |
| |
| // As an action that returns void. |
| Action<void()> a3 = InvokeWithoutArgs(VoidNullaryFunctor()); |
| g_done = false; |
| a3.Perform(make_tuple()); |
| EXPECT_TRUE(g_done); |
| } |
| |
| // Tests InvokeWithoutArgs(obj_ptr, method). |
| TEST(InvokeWithoutArgsTest, Method) { |
| Foo foo; |
| Action<int(bool, char)> a = // NOLINT |
| InvokeWithoutArgs(&foo, &Foo::Nullary); |
| EXPECT_EQ(123, a.Perform(make_tuple(true, 'a'))); |
| } |
| |
| // Tests using IgnoreResult() on a polymorphic action. |
| TEST(IgnoreResultTest, PolymorphicAction) { |
| Action<void(int)> a = IgnoreResult(Return(5)); // NOLINT |
| a.Perform(make_tuple(1)); |
| } |
| |
| // Tests using IgnoreResult() on a monomorphic action. |
| |
| int ReturnOne() { |
| g_done = true; |
| return 1; |
| } |
| |
| TEST(IgnoreResultTest, MonomorphicAction) { |
| g_done = false; |
| Action<void()> a = IgnoreResult(Invoke(ReturnOne)); |
| a.Perform(make_tuple()); |
| EXPECT_TRUE(g_done); |
| } |
| |
| // Tests using IgnoreResult() on an action that returns a class type. |
| |
| MyNonDefaultConstructible ReturnMyNonDefaultConstructible(double /* x */) { |
| g_done = true; |
| return MyNonDefaultConstructible(42); |
| } |
| |
| TEST(IgnoreResultTest, ActionReturningClass) { |
| g_done = false; |
| Action<void(int)> a = |
| IgnoreResult(Invoke(ReturnMyNonDefaultConstructible)); // NOLINT |
| a.Perform(make_tuple(2)); |
| EXPECT_TRUE(g_done); |
| } |
| |
| TEST(AssignTest, Int) { |
| int x = 0; |
| Action<void(int)> a = Assign(&x, 5); |
| a.Perform(make_tuple(0)); |
| EXPECT_EQ(5, x); |
| } |
| |
| TEST(AssignTest, String) { |
| ::std::string x; |
| Action<void(void)> a = Assign(&x, "Hello, world"); |
| a.Perform(make_tuple()); |
| EXPECT_EQ("Hello, world", x); |
| } |
| |
| TEST(AssignTest, CompatibleTypes) { |
| double x = 0; |
| Action<void(int)> a = Assign(&x, 5); |
| a.Perform(make_tuple(0)); |
| EXPECT_DOUBLE_EQ(5, x); |
| } |
| |
| #if !GTEST_OS_WINDOWS_MOBILE |
| |
| class SetErrnoAndReturnTest : public testing::Test { |
| protected: |
| virtual void SetUp() { errno = 0; } |
| virtual void TearDown() { errno = 0; } |
| }; |
| |
| TEST_F(SetErrnoAndReturnTest, Int) { |
| Action<int(void)> a = SetErrnoAndReturn(ENOTTY, -5); |
| EXPECT_EQ(-5, a.Perform(make_tuple())); |
| EXPECT_EQ(ENOTTY, errno); |
| } |
| |
| TEST_F(SetErrnoAndReturnTest, Ptr) { |
| int x; |
| Action<int*(void)> a = SetErrnoAndReturn(ENOTTY, &x); |
| EXPECT_EQ(&x, a.Perform(make_tuple())); |
| EXPECT_EQ(ENOTTY, errno); |
| } |
| |
| TEST_F(SetErrnoAndReturnTest, CompatibleTypes) { |
| Action<double()> a = SetErrnoAndReturn(EINVAL, 5); |
| EXPECT_DOUBLE_EQ(5.0, a.Perform(make_tuple())); |
| EXPECT_EQ(EINVAL, errno); |
| } |
| |
| #endif // !GTEST_OS_WINDOWS_MOBILE |
| |
| // Tests ByRef(). |
| |
| // Tests that ReferenceWrapper<T> is copyable. |
| TEST(ByRefTest, IsCopyable) { |
| const std::string s1 = "Hi"; |
| const std::string s2 = "Hello"; |
| |
| ::testing::internal::ReferenceWrapper<const std::string> ref_wrapper = |
| ByRef(s1); |
| const std::string& r1 = ref_wrapper; |
| EXPECT_EQ(&s1, &r1); |
| |
| // Assigns a new value to ref_wrapper. |
| ref_wrapper = ByRef(s2); |
| const std::string& r2 = ref_wrapper; |
| EXPECT_EQ(&s2, &r2); |
| |
| ::testing::internal::ReferenceWrapper<const std::string> ref_wrapper1 = |
| ByRef(s1); |
| // Copies ref_wrapper1 to ref_wrapper. |
| ref_wrapper = ref_wrapper1; |
| const std::string& r3 = ref_wrapper; |
| EXPECT_EQ(&s1, &r3); |
| } |
| |
| // Tests using ByRef() on a const value. |
| TEST(ByRefTest, ConstValue) { |
| const int n = 0; |
| // int& ref = ByRef(n); // This shouldn't compile - we have a |
| // negative compilation test to catch it. |
| const int& const_ref = ByRef(n); |
| EXPECT_EQ(&n, &const_ref); |
| } |
| |
| // Tests using ByRef() on a non-const value. |
| TEST(ByRefTest, NonConstValue) { |
| int n = 0; |
| |
| // ByRef(n) can be used as either an int&, |
| int& ref = ByRef(n); |
| EXPECT_EQ(&n, &ref); |
| |
| // or a const int&. |
| const int& const_ref = ByRef(n); |
| EXPECT_EQ(&n, &const_ref); |
| } |
| |
| // Tests explicitly specifying the type when using ByRef(). |
| TEST(ByRefTest, ExplicitType) { |
| int n = 0; |
| const int& r1 = ByRef<const int>(n); |
| EXPECT_EQ(&n, &r1); |
| |
| // ByRef<char>(n); // This shouldn't compile - we have a negative |
| // compilation test to catch it. |
| |
| Derived d; |
| Derived& r2 = ByRef<Derived>(d); |
| EXPECT_EQ(&d, &r2); |
| |
| const Derived& r3 = ByRef<const Derived>(d); |
| EXPECT_EQ(&d, &r3); |
| |
| Base& r4 = ByRef<Base>(d); |
| EXPECT_EQ(&d, &r4); |
| |
| const Base& r5 = ByRef<const Base>(d); |
| EXPECT_EQ(&d, &r5); |
| |
| // The following shouldn't compile - we have a negative compilation |
| // test for it. |
| // |
| // Base b; |
| // ByRef<Derived>(b); |
| } |
| |
| // Tests that Google Mock prints expression ByRef(x) as a reference to x. |
| TEST(ByRefTest, PrintsCorrectly) { |
| int n = 42; |
| ::std::stringstream expected, actual; |
| testing::internal::UniversalPrinter<const int&>::Print(n, &expected); |
| testing::internal::UniversalPrint(ByRef(n), &actual); |
| EXPECT_EQ(expected.str(), actual.str()); |
| } |
| |
| #if GTEST_HAS_STD_UNIQUE_PTR_ |
| |
| std::unique_ptr<int> UniquePtrSource() { |
| return std::unique_ptr<int>(new int(19)); |
| } |
| |
| std::vector<std::unique_ptr<int>> VectorUniquePtrSource() { |
| std::vector<std::unique_ptr<int>> out; |
| out.emplace_back(new int(7)); |
| return out; |
| } |
| |
| TEST(MockMethodTest, CanReturnMoveOnlyValue_Return) { |
| MockClass mock; |
| std::unique_ptr<int> i(new int(19)); |
| EXPECT_CALL(mock, MakeUnique()).WillOnce(Return(ByMove(std::move(i)))); |
| EXPECT_CALL(mock, MakeVectorUnique()) |
| .WillOnce(Return(ByMove(VectorUniquePtrSource()))); |
| Derived* d = new Derived; |
| EXPECT_CALL(mock, MakeUniqueBase()) |
| .WillOnce(Return(ByMove(std::unique_ptr<Derived>(d)))); |
| |
| std::unique_ptr<int> result1 = mock.MakeUnique(); |
| EXPECT_EQ(19, *result1); |
| |
| std::vector<std::unique_ptr<int>> vresult = mock.MakeVectorUnique(); |
| EXPECT_EQ(1u, vresult.size()); |
| EXPECT_NE(nullptr, vresult[0]); |
| EXPECT_EQ(7, *vresult[0]); |
| |
| std::unique_ptr<Base> result2 = mock.MakeUniqueBase(); |
| EXPECT_EQ(d, result2.get()); |
| } |
| |
| TEST(MockMethodTest, CanReturnMoveOnlyValue_DoAllReturn) { |
| testing::MockFunction<void()> mock_function; |
| MockClass mock; |
| std::unique_ptr<int> i(new int(19)); |
| EXPECT_CALL(mock_function, Call()); |
| EXPECT_CALL(mock, MakeUnique()).WillOnce(DoAll( |
| InvokeWithoutArgs(&mock_function, &testing::MockFunction<void()>::Call), |
| Return(ByMove(std::move(i))))); |
| |
| std::unique_ptr<int> result1 = mock.MakeUnique(); |
| EXPECT_EQ(19, *result1); |
| } |
| |
| TEST(MockMethodTest, CanReturnMoveOnlyValue_Invoke) { |
| MockClass mock; |
| |
| // Check default value |
| DefaultValue<std::unique_ptr<int>>::SetFactory([] { |
| return std::unique_ptr<int>(new int(42)); |
| }); |
| EXPECT_EQ(42, *mock.MakeUnique()); |
| |
| EXPECT_CALL(mock, MakeUnique()).WillRepeatedly(Invoke(UniquePtrSource)); |
| EXPECT_CALL(mock, MakeVectorUnique()) |
| .WillRepeatedly(Invoke(VectorUniquePtrSource)); |
| std::unique_ptr<int> result1 = mock.MakeUnique(); |
| EXPECT_EQ(19, *result1); |
| std::unique_ptr<int> result2 = mock.MakeUnique(); |
| EXPECT_EQ(19, *result2); |
| EXPECT_NE(result1, result2); |
| |
| std::vector<std::unique_ptr<int>> vresult = mock.MakeVectorUnique(); |
| EXPECT_EQ(1u, vresult.size()); |
| EXPECT_NE(nullptr, vresult[0]); |
| EXPECT_EQ(7, *vresult[0]); |
| } |
| |
| #endif // GTEST_HAS_STD_UNIQUE_PTR_ |
| |
| } // Unnamed namespace |