| // Copyright 2008, Google Inc. |
| // All rights reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following disclaimer |
| // in the documentation and/or other materials provided with the |
| // distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| // Google Mock - a framework for writing C++ mock classes. |
| // |
| // This file tests the built-in matchers generated by a script. |
| |
| #include "gmock/gmock-generated-matchers.h" |
| |
| #include <list> |
| #include <map> |
| #include <set> |
| #include <sstream> |
| #include <string> |
| #include <utility> |
| #include <vector> |
| |
| #include "gmock/gmock.h" |
| #include "gtest/gtest.h" |
| #include "gtest/gtest-spi.h" |
| |
| namespace { |
| |
| using std::list; |
| using std::map; |
| using std::pair; |
| using std::set; |
| using std::stringstream; |
| using std::vector; |
| using testing::get; |
| using testing::make_tuple; |
| using testing::tuple; |
| using testing::_; |
| using testing::Args; |
| using testing::Contains; |
| using testing::ElementsAre; |
| using testing::ElementsAreArray; |
| using testing::Eq; |
| using testing::Ge; |
| using testing::Gt; |
| using testing::Le; |
| using testing::Lt; |
| using testing::MakeMatcher; |
| using testing::Matcher; |
| using testing::MatcherInterface; |
| using testing::MatchResultListener; |
| using testing::Ne; |
| using testing::Not; |
| using testing::Pointee; |
| using testing::PrintToString; |
| using testing::Ref; |
| using testing::StaticAssertTypeEq; |
| using testing::StrEq; |
| using testing::Value; |
| using testing::internal::ElementsAreArrayMatcher; |
| using testing::internal::string; |
| |
| // Returns the description of the given matcher. |
| template <typename T> |
| string Describe(const Matcher<T>& m) { |
| stringstream ss; |
| m.DescribeTo(&ss); |
| return ss.str(); |
| } |
| |
| // Returns the description of the negation of the given matcher. |
| template <typename T> |
| string DescribeNegation(const Matcher<T>& m) { |
| stringstream ss; |
| m.DescribeNegationTo(&ss); |
| return ss.str(); |
| } |
| |
| // Returns the reason why x matches, or doesn't match, m. |
| template <typename MatcherType, typename Value> |
| string Explain(const MatcherType& m, const Value& x) { |
| stringstream ss; |
| m.ExplainMatchResultTo(x, &ss); |
| return ss.str(); |
| } |
| |
| // Tests Args<k0, ..., kn>(m). |
| |
| TEST(ArgsTest, AcceptsZeroTemplateArg) { |
| const tuple<int, bool> t(5, true); |
| EXPECT_THAT(t, Args<>(Eq(tuple<>()))); |
| EXPECT_THAT(t, Not(Args<>(Ne(tuple<>())))); |
| } |
| |
| TEST(ArgsTest, AcceptsOneTemplateArg) { |
| const tuple<int, bool> t(5, true); |
| EXPECT_THAT(t, Args<0>(Eq(make_tuple(5)))); |
| EXPECT_THAT(t, Args<1>(Eq(make_tuple(true)))); |
| EXPECT_THAT(t, Not(Args<1>(Eq(make_tuple(false))))); |
| } |
| |
| TEST(ArgsTest, AcceptsTwoTemplateArgs) { |
| const tuple<short, int, long> t(4, 5, 6L); // NOLINT |
| |
| EXPECT_THAT(t, (Args<0, 1>(Lt()))); |
| EXPECT_THAT(t, (Args<1, 2>(Lt()))); |
| EXPECT_THAT(t, Not(Args<0, 2>(Gt()))); |
| } |
| |
| TEST(ArgsTest, AcceptsRepeatedTemplateArgs) { |
| const tuple<short, int, long> t(4, 5, 6L); // NOLINT |
| EXPECT_THAT(t, (Args<0, 0>(Eq()))); |
| EXPECT_THAT(t, Not(Args<1, 1>(Ne()))); |
| } |
| |
| TEST(ArgsTest, AcceptsDecreasingTemplateArgs) { |
| const tuple<short, int, long> t(4, 5, 6L); // NOLINT |
| EXPECT_THAT(t, (Args<2, 0>(Gt()))); |
| EXPECT_THAT(t, Not(Args<2, 1>(Lt()))); |
| } |
| |
| // The MATCHER*() macros trigger warning C4100 (unreferenced formal |
| // parameter) in MSVC with -W4. Unfortunately they cannot be fixed in |
| // the macro definition, as the warnings are generated when the macro |
| // is expanded and macro expansion cannot contain #pragma. Therefore |
| // we suppress them here. |
| #ifdef _MSC_VER |
| # pragma warning(push) |
| # pragma warning(disable:4100) |
| #endif |
| |
| MATCHER(SumIsZero, "") { |
| return get<0>(arg) + get<1>(arg) + get<2>(arg) == 0; |
| } |
| |
| TEST(ArgsTest, AcceptsMoreTemplateArgsThanArityOfOriginalTuple) { |
| EXPECT_THAT(make_tuple(-1, 2), (Args<0, 0, 1>(SumIsZero()))); |
| EXPECT_THAT(make_tuple(1, 2), Not(Args<0, 0, 1>(SumIsZero()))); |
| } |
| |
| TEST(ArgsTest, CanBeNested) { |
| const tuple<short, int, long, int> t(4, 5, 6L, 6); // NOLINT |
| EXPECT_THAT(t, (Args<1, 2, 3>(Args<1, 2>(Eq())))); |
| EXPECT_THAT(t, (Args<0, 1, 3>(Args<0, 2>(Lt())))); |
| } |
| |
| TEST(ArgsTest, CanMatchTupleByValue) { |
| typedef tuple<char, int, int> Tuple3; |
| const Matcher<Tuple3> m = Args<1, 2>(Lt()); |
| EXPECT_TRUE(m.Matches(Tuple3('a', 1, 2))); |
| EXPECT_FALSE(m.Matches(Tuple3('b', 2, 2))); |
| } |
| |
| TEST(ArgsTest, CanMatchTupleByReference) { |
| typedef tuple<char, char, int> Tuple3; |
| const Matcher<const Tuple3&> m = Args<0, 1>(Lt()); |
| EXPECT_TRUE(m.Matches(Tuple3('a', 'b', 2))); |
| EXPECT_FALSE(m.Matches(Tuple3('b', 'b', 2))); |
| } |
| |
| // Validates that arg is printed as str. |
| MATCHER_P(PrintsAs, str, "") { |
| return testing::PrintToString(arg) == str; |
| } |
| |
| TEST(ArgsTest, AcceptsTenTemplateArgs) { |
| EXPECT_THAT(make_tuple(0, 1L, 2, 3L, 4, 5, 6, 7, 8, 9), |
| (Args<9, 8, 7, 6, 5, 4, 3, 2, 1, 0>( |
| PrintsAs("(9, 8, 7, 6, 5, 4, 3, 2, 1, 0)")))); |
| EXPECT_THAT(make_tuple(0, 1L, 2, 3L, 4, 5, 6, 7, 8, 9), |
| Not(Args<9, 8, 7, 6, 5, 4, 3, 2, 1, 0>( |
| PrintsAs("(0, 8, 7, 6, 5, 4, 3, 2, 1, 0)")))); |
| } |
| |
| TEST(ArgsTest, DescirbesSelfCorrectly) { |
| const Matcher<tuple<int, bool, char> > m = Args<2, 0>(Lt()); |
| EXPECT_EQ("are a tuple whose fields (#2, #0) are a pair where " |
| "the first < the second", |
| Describe(m)); |
| } |
| |
| TEST(ArgsTest, DescirbesNestedArgsCorrectly) { |
| const Matcher<const tuple<int, bool, char, int>&> m = |
| Args<0, 2, 3>(Args<2, 0>(Lt())); |
| EXPECT_EQ("are a tuple whose fields (#0, #2, #3) are a tuple " |
| "whose fields (#2, #0) are a pair where the first < the second", |
| Describe(m)); |
| } |
| |
| TEST(ArgsTest, DescribesNegationCorrectly) { |
| const Matcher<tuple<int, char> > m = Args<1, 0>(Gt()); |
| EXPECT_EQ("are a tuple whose fields (#1, #0) aren't a pair " |
| "where the first > the second", |
| DescribeNegation(m)); |
| } |
| |
| TEST(ArgsTest, ExplainsMatchResultWithoutInnerExplanation) { |
| const Matcher<tuple<bool, int, int> > m = Args<1, 2>(Eq()); |
| EXPECT_EQ("whose fields (#1, #2) are (42, 42)", |
| Explain(m, make_tuple(false, 42, 42))); |
| EXPECT_EQ("whose fields (#1, #2) are (42, 43)", |
| Explain(m, make_tuple(false, 42, 43))); |
| } |
| |
| // For testing Args<>'s explanation. |
| class LessThanMatcher : public MatcherInterface<tuple<char, int> > { |
| public: |
| virtual void DescribeTo(::std::ostream* os) const {} |
| |
| virtual bool MatchAndExplain(tuple<char, int> value, |
| MatchResultListener* listener) const { |
| const int diff = get<0>(value) - get<1>(value); |
| if (diff > 0) { |
| *listener << "where the first value is " << diff |
| << " more than the second"; |
| } |
| return diff < 0; |
| } |
| }; |
| |
| Matcher<tuple<char, int> > LessThan() { |
| return MakeMatcher(new LessThanMatcher); |
| } |
| |
| TEST(ArgsTest, ExplainsMatchResultWithInnerExplanation) { |
| const Matcher<tuple<char, int, int> > m = Args<0, 2>(LessThan()); |
| EXPECT_EQ("whose fields (#0, #2) are ('a' (97, 0x61), 42), " |
| "where the first value is 55 more than the second", |
| Explain(m, make_tuple('a', 42, 42))); |
| EXPECT_EQ("whose fields (#0, #2) are ('\\0', 43)", |
| Explain(m, make_tuple('\0', 42, 43))); |
| } |
| |
| // For testing ExplainMatchResultTo(). |
| class GreaterThanMatcher : public MatcherInterface<int> { |
| public: |
| explicit GreaterThanMatcher(int rhs) : rhs_(rhs) {} |
| |
| virtual void DescribeTo(::std::ostream* os) const { |
| *os << "is greater than " << rhs_; |
| } |
| |
| virtual bool MatchAndExplain(int lhs, |
| MatchResultListener* listener) const { |
| const int diff = lhs - rhs_; |
| if (diff > 0) { |
| *listener << "which is " << diff << " more than " << rhs_; |
| } else if (diff == 0) { |
| *listener << "which is the same as " << rhs_; |
| } else { |
| *listener << "which is " << -diff << " less than " << rhs_; |
| } |
| |
| return lhs > rhs_; |
| } |
| |
| private: |
| int rhs_; |
| }; |
| |
| Matcher<int> GreaterThan(int n) { |
| return MakeMatcher(new GreaterThanMatcher(n)); |
| } |
| |
| // Tests for ElementsAre(). |
| |
| TEST(ElementsAreTest, CanDescribeExpectingNoElement) { |
| Matcher<const vector<int>&> m = ElementsAre(); |
| EXPECT_EQ("is empty", Describe(m)); |
| } |
| |
| TEST(ElementsAreTest, CanDescribeExpectingOneElement) { |
| Matcher<vector<int> > m = ElementsAre(Gt(5)); |
| EXPECT_EQ("has 1 element that is > 5", Describe(m)); |
| } |
| |
| TEST(ElementsAreTest, CanDescribeExpectingManyElements) { |
| Matcher<list<string> > m = ElementsAre(StrEq("one"), "two"); |
| EXPECT_EQ("has 2 elements where\n" |
| "element #0 is equal to \"one\",\n" |
| "element #1 is equal to \"two\"", Describe(m)); |
| } |
| |
| TEST(ElementsAreTest, CanDescribeNegationOfExpectingNoElement) { |
| Matcher<vector<int> > m = ElementsAre(); |
| EXPECT_EQ("isn't empty", DescribeNegation(m)); |
| } |
| |
| TEST(ElementsAreTest, CanDescribeNegationOfExpectingOneElment) { |
| Matcher<const list<int>& > m = ElementsAre(Gt(5)); |
| EXPECT_EQ("doesn't have 1 element, or\n" |
| "element #0 isn't > 5", DescribeNegation(m)); |
| } |
| |
| TEST(ElementsAreTest, CanDescribeNegationOfExpectingManyElements) { |
| Matcher<const list<string>& > m = ElementsAre("one", "two"); |
| EXPECT_EQ("doesn't have 2 elements, or\n" |
| "element #0 isn't equal to \"one\", or\n" |
| "element #1 isn't equal to \"two\"", DescribeNegation(m)); |
| } |
| |
| TEST(ElementsAreTest, DoesNotExplainTrivialMatch) { |
| Matcher<const list<int>& > m = ElementsAre(1, Ne(2)); |
| |
| list<int> test_list; |
| test_list.push_back(1); |
| test_list.push_back(3); |
| EXPECT_EQ("", Explain(m, test_list)); // No need to explain anything. |
| } |
| |
| TEST(ElementsAreTest, ExplainsNonTrivialMatch) { |
| Matcher<const vector<int>& > m = |
| ElementsAre(GreaterThan(1), 0, GreaterThan(2)); |
| |
| const int a[] = { 10, 0, 100 }; |
| vector<int> test_vector(a, a + GTEST_ARRAY_SIZE_(a)); |
| EXPECT_EQ("whose element #0 matches, which is 9 more than 1,\n" |
| "and whose element #2 matches, which is 98 more than 2", |
| Explain(m, test_vector)); |
| } |
| |
| TEST(ElementsAreTest, CanExplainMismatchWrongSize) { |
| Matcher<const list<int>& > m = ElementsAre(1, 3); |
| |
| list<int> test_list; |
| // No need to explain when the container is empty. |
| EXPECT_EQ("", Explain(m, test_list)); |
| |
| test_list.push_back(1); |
| EXPECT_EQ("which has 1 element", Explain(m, test_list)); |
| } |
| |
| TEST(ElementsAreTest, CanExplainMismatchRightSize) { |
| Matcher<const vector<int>& > m = ElementsAre(1, GreaterThan(5)); |
| |
| vector<int> v; |
| v.push_back(2); |
| v.push_back(1); |
| EXPECT_EQ("whose element #0 doesn't match", Explain(m, v)); |
| |
| v[0] = 1; |
| EXPECT_EQ("whose element #1 doesn't match, which is 4 less than 5", |
| Explain(m, v)); |
| } |
| |
| TEST(ElementsAreTest, MatchesOneElementVector) { |
| vector<string> test_vector; |
| test_vector.push_back("test string"); |
| |
| EXPECT_THAT(test_vector, ElementsAre(StrEq("test string"))); |
| } |
| |
| TEST(ElementsAreTest, MatchesOneElementList) { |
| list<string> test_list; |
| test_list.push_back("test string"); |
| |
| EXPECT_THAT(test_list, ElementsAre("test string")); |
| } |
| |
| TEST(ElementsAreTest, MatchesThreeElementVector) { |
| vector<string> test_vector; |
| test_vector.push_back("one"); |
| test_vector.push_back("two"); |
| test_vector.push_back("three"); |
| |
| EXPECT_THAT(test_vector, ElementsAre("one", StrEq("two"), _)); |
| } |
| |
| TEST(ElementsAreTest, MatchesOneElementEqMatcher) { |
| vector<int> test_vector; |
| test_vector.push_back(4); |
| |
| EXPECT_THAT(test_vector, ElementsAre(Eq(4))); |
| } |
| |
| TEST(ElementsAreTest, MatchesOneElementAnyMatcher) { |
| vector<int> test_vector; |
| test_vector.push_back(4); |
| |
| EXPECT_THAT(test_vector, ElementsAre(_)); |
| } |
| |
| TEST(ElementsAreTest, MatchesOneElementValue) { |
| vector<int> test_vector; |
| test_vector.push_back(4); |
| |
| EXPECT_THAT(test_vector, ElementsAre(4)); |
| } |
| |
| TEST(ElementsAreTest, MatchesThreeElementsMixedMatchers) { |
| vector<int> test_vector; |
| test_vector.push_back(1); |
| test_vector.push_back(2); |
| test_vector.push_back(3); |
| |
| EXPECT_THAT(test_vector, ElementsAre(1, Eq(2), _)); |
| } |
| |
| TEST(ElementsAreTest, MatchesTenElementVector) { |
| const int a[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }; |
| vector<int> test_vector(a, a + GTEST_ARRAY_SIZE_(a)); |
| |
| EXPECT_THAT(test_vector, |
| // The element list can contain values and/or matchers |
| // of different types. |
| ElementsAre(0, Ge(0), _, 3, 4, Ne(2), Eq(6), 7, 8, _)); |
| } |
| |
| TEST(ElementsAreTest, DoesNotMatchWrongSize) { |
| vector<string> test_vector; |
| test_vector.push_back("test string"); |
| test_vector.push_back("test string"); |
| |
| Matcher<vector<string> > m = ElementsAre(StrEq("test string")); |
| EXPECT_FALSE(m.Matches(test_vector)); |
| } |
| |
| TEST(ElementsAreTest, DoesNotMatchWrongValue) { |
| vector<string> test_vector; |
| test_vector.push_back("other string"); |
| |
| Matcher<vector<string> > m = ElementsAre(StrEq("test string")); |
| EXPECT_FALSE(m.Matches(test_vector)); |
| } |
| |
| TEST(ElementsAreTest, DoesNotMatchWrongOrder) { |
| vector<string> test_vector; |
| test_vector.push_back("one"); |
| test_vector.push_back("three"); |
| test_vector.push_back("two"); |
| |
| Matcher<vector<string> > m = ElementsAre( |
| StrEq("one"), StrEq("two"), StrEq("three")); |
| EXPECT_FALSE(m.Matches(test_vector)); |
| } |
| |
| TEST(ElementsAreTest, WorksForNestedContainer) { |
| const char* strings[] = { |
| "Hi", |
| "world" |
| }; |
| |
| vector<list<char> > nested; |
| for (size_t i = 0; i < GTEST_ARRAY_SIZE_(strings); i++) { |
| nested.push_back(list<char>(strings[i], strings[i] + strlen(strings[i]))); |
| } |
| |
| EXPECT_THAT(nested, ElementsAre(ElementsAre('H', Ne('e')), |
| ElementsAre('w', 'o', _, _, 'd'))); |
| EXPECT_THAT(nested, Not(ElementsAre(ElementsAre('H', 'e'), |
| ElementsAre('w', 'o', _, _, 'd')))); |
| } |
| |
| TEST(ElementsAreTest, WorksWithByRefElementMatchers) { |
| int a[] = { 0, 1, 2 }; |
| vector<int> v(a, a + GTEST_ARRAY_SIZE_(a)); |
| |
| EXPECT_THAT(v, ElementsAre(Ref(v[0]), Ref(v[1]), Ref(v[2]))); |
| EXPECT_THAT(v, Not(ElementsAre(Ref(v[0]), Ref(v[1]), Ref(a[2])))); |
| } |
| |
| TEST(ElementsAreTest, WorksWithContainerPointerUsingPointee) { |
| int a[] = { 0, 1, 2 }; |
| vector<int> v(a, a + GTEST_ARRAY_SIZE_(a)); |
| |
| EXPECT_THAT(&v, Pointee(ElementsAre(0, 1, _))); |
| EXPECT_THAT(&v, Not(Pointee(ElementsAre(0, _, 3)))); |
| } |
| |
| TEST(ElementsAreTest, WorksWithNativeArrayPassedByReference) { |
| int array[] = { 0, 1, 2 }; |
| EXPECT_THAT(array, ElementsAre(0, 1, _)); |
| EXPECT_THAT(array, Not(ElementsAre(1, _, _))); |
| EXPECT_THAT(array, Not(ElementsAre(0, _))); |
| } |
| |
| class NativeArrayPassedAsPointerAndSize { |
| public: |
| NativeArrayPassedAsPointerAndSize() {} |
| |
| MOCK_METHOD2(Helper, void(int* array, int size)); |
| |
| private: |
| GTEST_DISALLOW_COPY_AND_ASSIGN_(NativeArrayPassedAsPointerAndSize); |
| }; |
| |
| TEST(ElementsAreTest, WorksWithNativeArrayPassedAsPointerAndSize) { |
| int array[] = { 0, 1 }; |
| ::testing::tuple<int*, size_t> array_as_tuple(array, 2); |
| EXPECT_THAT(array_as_tuple, ElementsAre(0, 1)); |
| EXPECT_THAT(array_as_tuple, Not(ElementsAre(0))); |
| |
| NativeArrayPassedAsPointerAndSize helper; |
| EXPECT_CALL(helper, Helper(_, _)) |
| .With(ElementsAre(0, 1)); |
| helper.Helper(array, 2); |
| } |
| |
| TEST(ElementsAreTest, WorksWithTwoDimensionalNativeArray) { |
| const char a2[][3] = { "hi", "lo" }; |
| EXPECT_THAT(a2, ElementsAre(ElementsAre('h', 'i', '\0'), |
| ElementsAre('l', 'o', '\0'))); |
| EXPECT_THAT(a2, ElementsAre(StrEq("hi"), StrEq("lo"))); |
| EXPECT_THAT(a2, ElementsAre(Not(ElementsAre('h', 'o', '\0')), |
| ElementsAre('l', 'o', '\0'))); |
| } |
| |
| TEST(ElementsAreTest, AcceptsStringLiteral) { |
| string array[] = { "hi", "one", "two" }; |
| EXPECT_THAT(array, ElementsAre("hi", "one", "two")); |
| EXPECT_THAT(array, Not(ElementsAre("hi", "one", "too"))); |
| } |
| |
| #ifndef _MSC_VER |
| |
| // The following test passes a value of type const char[] to a |
| // function template that expects const T&. Some versions of MSVC |
| // generates a compiler error C2665 for that. We believe it's a bug |
| // in MSVC. Therefore this test is #if-ed out for MSVC. |
| |
| // Declared here with the size unknown. Defined AFTER the following test. |
| extern const char kHi[]; |
| |
| TEST(ElementsAreTest, AcceptsArrayWithUnknownSize) { |
| // The size of kHi is not known in this test, but ElementsAre() should |
| // still accept it. |
| |
| string array1[] = { "hi" }; |
| EXPECT_THAT(array1, ElementsAre(kHi)); |
| |
| string array2[] = { "ho" }; |
| EXPECT_THAT(array2, Not(ElementsAre(kHi))); |
| } |
| |
| const char kHi[] = "hi"; |
| |
| #endif // _MSC_VER |
| |
| TEST(ElementsAreTest, MakesCopyOfArguments) { |
| int x = 1; |
| int y = 2; |
| // This should make a copy of x and y. |
| ::testing::internal::ElementsAreMatcher<testing::tuple<int, int> > |
| polymorphic_matcher = ElementsAre(x, y); |
| // Changing x and y now shouldn't affect the meaning of the above matcher. |
| x = y = 0; |
| const int array1[] = { 1, 2 }; |
| EXPECT_THAT(array1, polymorphic_matcher); |
| const int array2[] = { 0, 0 }; |
| EXPECT_THAT(array2, Not(polymorphic_matcher)); |
| } |
| |
| |
| // Tests for ElementsAreArray(). Since ElementsAreArray() shares most |
| // of the implementation with ElementsAre(), we don't test it as |
| // thoroughly here. |
| |
| TEST(ElementsAreArrayTest, CanBeCreatedWithValueArray) { |
| const int a[] = { 1, 2, 3 }; |
| |
| vector<int> test_vector(a, a + GTEST_ARRAY_SIZE_(a)); |
| EXPECT_THAT(test_vector, ElementsAreArray(a)); |
| |
| test_vector[2] = 0; |
| EXPECT_THAT(test_vector, Not(ElementsAreArray(a))); |
| } |
| |
| TEST(ElementsAreArrayTest, CanBeCreatedWithArraySize) { |
| const char* a[] = { "one", "two", "three" }; |
| |
| vector<string> test_vector(a, a + GTEST_ARRAY_SIZE_(a)); |
| EXPECT_THAT(test_vector, ElementsAreArray(a, GTEST_ARRAY_SIZE_(a))); |
| |
| const char** p = a; |
| test_vector[0] = "1"; |
| EXPECT_THAT(test_vector, Not(ElementsAreArray(p, GTEST_ARRAY_SIZE_(a)))); |
| } |
| |
| TEST(ElementsAreArrayTest, CanBeCreatedWithoutArraySize) { |
| const char* a[] = { "one", "two", "three" }; |
| |
| vector<string> test_vector(a, a + GTEST_ARRAY_SIZE_(a)); |
| EXPECT_THAT(test_vector, ElementsAreArray(a)); |
| |
| test_vector[0] = "1"; |
| EXPECT_THAT(test_vector, Not(ElementsAreArray(a))); |
| } |
| |
| TEST(ElementsAreArrayTest, CanBeCreatedWithMatcherArray) { |
| const Matcher<string> kMatcherArray[] = |
| { StrEq("one"), StrEq("two"), StrEq("three") }; |
| |
| vector<string> test_vector; |
| test_vector.push_back("one"); |
| test_vector.push_back("two"); |
| test_vector.push_back("three"); |
| EXPECT_THAT(test_vector, ElementsAreArray(kMatcherArray)); |
| |
| test_vector.push_back("three"); |
| EXPECT_THAT(test_vector, Not(ElementsAreArray(kMatcherArray))); |
| } |
| |
| TEST(ElementsAreArrayTest, CanBeCreatedWithVector) { |
| const int a[] = { 1, 2, 3 }; |
| vector<int> test_vector(a, a + GTEST_ARRAY_SIZE_(a)); |
| const vector<int> expected(a, a + GTEST_ARRAY_SIZE_(a)); |
| EXPECT_THAT(test_vector, ElementsAreArray(expected)); |
| test_vector.push_back(4); |
| EXPECT_THAT(test_vector, Not(ElementsAreArray(expected))); |
| } |
| |
| #if GTEST_HAS_STD_INITIALIZER_LIST_ |
| |
| TEST(ElementsAreArrayTest, TakesInitializerList) { |
| const int a[5] = { 1, 2, 3, 4, 5 }; |
| EXPECT_THAT(a, ElementsAreArray({ 1, 2, 3, 4, 5 })); |
| EXPECT_THAT(a, Not(ElementsAreArray({ 1, 2, 3, 5, 4 }))); |
| EXPECT_THAT(a, Not(ElementsAreArray({ 1, 2, 3, 4, 6 }))); |
| } |
| |
| TEST(ElementsAreArrayTest, TakesInitializerListOfCStrings) { |
| const string a[5] = { "a", "b", "c", "d", "e" }; |
| EXPECT_THAT(a, ElementsAreArray({ "a", "b", "c", "d", "e" })); |
| EXPECT_THAT(a, Not(ElementsAreArray({ "a", "b", "c", "e", "d" }))); |
| EXPECT_THAT(a, Not(ElementsAreArray({ "a", "b", "c", "d", "ef" }))); |
| } |
| |
| TEST(ElementsAreArrayTest, TakesInitializerListOfSameTypedMatchers) { |
| const int a[5] = { 1, 2, 3, 4, 5 }; |
| EXPECT_THAT(a, ElementsAreArray( |
| { Eq(1), Eq(2), Eq(3), Eq(4), Eq(5) })); |
| EXPECT_THAT(a, Not(ElementsAreArray( |
| { Eq(1), Eq(2), Eq(3), Eq(4), Eq(6) }))); |
| } |
| |
| TEST(ElementsAreArrayTest, |
| TakesInitializerListOfDifferentTypedMatchers) { |
| const int a[5] = { 1, 2, 3, 4, 5 }; |
| // The compiler cannot infer the type of the initializer list if its |
| // elements have different types. We must explicitly specify the |
| // unified element type in this case. |
| EXPECT_THAT(a, ElementsAreArray<Matcher<int> >( |
| { Eq(1), Ne(-2), Ge(3), Le(4), Eq(5) })); |
| EXPECT_THAT(a, Not(ElementsAreArray<Matcher<int> >( |
| { Eq(1), Ne(-2), Ge(3), Le(4), Eq(6) }))); |
| } |
| |
| #endif // GTEST_HAS_STD_INITIALIZER_LIST_ |
| |
| TEST(ElementsAreArrayTest, CanBeCreatedWithMatcherVector) { |
| const int a[] = { 1, 2, 3 }; |
| const Matcher<int> kMatchers[] = { Eq(1), Eq(2), Eq(3) }; |
| vector<int> test_vector(a, a + GTEST_ARRAY_SIZE_(a)); |
| const vector<Matcher<int> > expected( |
| kMatchers, kMatchers + GTEST_ARRAY_SIZE_(kMatchers)); |
| EXPECT_THAT(test_vector, ElementsAreArray(expected)); |
| test_vector.push_back(4); |
| EXPECT_THAT(test_vector, Not(ElementsAreArray(expected))); |
| } |
| |
| TEST(ElementsAreArrayTest, CanBeCreatedWithIteratorRange) { |
| const int a[] = { 1, 2, 3 }; |
| const vector<int> test_vector(a, a + GTEST_ARRAY_SIZE_(a)); |
| const vector<int> expected(a, a + GTEST_ARRAY_SIZE_(a)); |
| EXPECT_THAT(test_vector, ElementsAreArray(expected.begin(), expected.end())); |
| // Pointers are iterators, too. |
| EXPECT_THAT(test_vector, ElementsAreArray(a, a + GTEST_ARRAY_SIZE_(a))); |
| // The empty range of NULL pointers should also be okay. |
| int* const null_int = NULL; |
| EXPECT_THAT(test_vector, Not(ElementsAreArray(null_int, null_int))); |
| EXPECT_THAT((vector<int>()), ElementsAreArray(null_int, null_int)); |
| } |
| |
| // Since ElementsAre() and ElementsAreArray() share much of the |
| // implementation, we only do a sanity test for native arrays here. |
| TEST(ElementsAreArrayTest, WorksWithNativeArray) { |
| ::std::string a[] = { "hi", "ho" }; |
| ::std::string b[] = { "hi", "ho" }; |
| |
| EXPECT_THAT(a, ElementsAreArray(b)); |
| EXPECT_THAT(a, ElementsAreArray(b, 2)); |
| EXPECT_THAT(a, Not(ElementsAreArray(b, 1))); |
| } |
| |
| TEST(ElementsAreArrayTest, SourceLifeSpan) { |
| const int a[] = { 1, 2, 3 }; |
| vector<int> test_vector(a, a + GTEST_ARRAY_SIZE_(a)); |
| vector<int> expect(a, a + GTEST_ARRAY_SIZE_(a)); |
| ElementsAreArrayMatcher<int> matcher_maker = |
| ElementsAreArray(expect.begin(), expect.end()); |
| EXPECT_THAT(test_vector, matcher_maker); |
| // Changing in place the values that initialized matcher_maker should not |
| // affect matcher_maker anymore. It should have made its own copy of them. |
| typedef vector<int>::iterator Iter; |
| for (Iter it = expect.begin(); it != expect.end(); ++it) { *it += 10; } |
| EXPECT_THAT(test_vector, matcher_maker); |
| test_vector.push_back(3); |
| EXPECT_THAT(test_vector, Not(matcher_maker)); |
| } |
| |
| // Tests for the MATCHER*() macro family. |
| |
| // Tests that a simple MATCHER() definition works. |
| |
| MATCHER(IsEven, "") { return (arg % 2) == 0; } |
| |
| TEST(MatcherMacroTest, Works) { |
| const Matcher<int> m = IsEven(); |
| EXPECT_TRUE(m.Matches(6)); |
| EXPECT_FALSE(m.Matches(7)); |
| |
| EXPECT_EQ("is even", Describe(m)); |
| EXPECT_EQ("not (is even)", DescribeNegation(m)); |
| EXPECT_EQ("", Explain(m, 6)); |
| EXPECT_EQ("", Explain(m, 7)); |
| } |
| |
| // This also tests that the description string can reference 'negation'. |
| MATCHER(IsEven2, negation ? "is odd" : "is even") { |
| if ((arg % 2) == 0) { |
| // Verifies that we can stream to result_listener, a listener |
| // supplied by the MATCHER macro implicitly. |
| *result_listener << "OK"; |
| return true; |
| } else { |
| *result_listener << "% 2 == " << (arg % 2); |
| return false; |
| } |
| } |
| |
| // This also tests that the description string can reference matcher |
| // parameters. |
| MATCHER_P2(EqSumOf, x, y, |
| string(negation ? "doesn't equal" : "equals") + " the sum of " + |
| PrintToString(x) + " and " + PrintToString(y)) { |
| if (arg == (x + y)) { |
| *result_listener << "OK"; |
| return true; |
| } else { |
| // Verifies that we can stream to the underlying stream of |
| // result_listener. |
| if (result_listener->stream() != NULL) { |
| *result_listener->stream() << "diff == " << (x + y - arg); |
| } |
| return false; |
| } |
| } |
| |
| // Tests that the matcher description can reference 'negation' and the |
| // matcher parameters. |
| TEST(MatcherMacroTest, DescriptionCanReferenceNegationAndParameters) { |
| const Matcher<int> m1 = IsEven2(); |
| EXPECT_EQ("is even", Describe(m1)); |
| EXPECT_EQ("is odd", DescribeNegation(m1)); |
| |
| const Matcher<int> m2 = EqSumOf(5, 9); |
| EXPECT_EQ("equals the sum of 5 and 9", Describe(m2)); |
| EXPECT_EQ("doesn't equal the sum of 5 and 9", DescribeNegation(m2)); |
| } |
| |
| // Tests explaining match result in a MATCHER* macro. |
| TEST(MatcherMacroTest, CanExplainMatchResult) { |
| const Matcher<int> m1 = IsEven2(); |
| EXPECT_EQ("OK", Explain(m1, 4)); |
| EXPECT_EQ("% 2 == 1", Explain(m1, 5)); |
| |
| const Matcher<int> m2 = EqSumOf(1, 2); |
| EXPECT_EQ("OK", Explain(m2, 3)); |
| EXPECT_EQ("diff == -1", Explain(m2, 4)); |
| } |
| |
| // Tests that the body of MATCHER() can reference the type of the |
| // value being matched. |
| |
| MATCHER(IsEmptyString, "") { |
| StaticAssertTypeEq< ::std::string, arg_type>(); |
| return arg == ""; |
| } |
| |
| MATCHER(IsEmptyStringByRef, "") { |
| StaticAssertTypeEq<const ::std::string&, arg_type>(); |
| return arg == ""; |
| } |
| |
| TEST(MatcherMacroTest, CanReferenceArgType) { |
| const Matcher< ::std::string> m1 = IsEmptyString(); |
| EXPECT_TRUE(m1.Matches("")); |
| |
| const Matcher<const ::std::string&> m2 = IsEmptyStringByRef(); |
| EXPECT_TRUE(m2.Matches("")); |
| } |
| |
| // Tests that MATCHER() can be used in a namespace. |
| |
| namespace matcher_test { |
| MATCHER(IsOdd, "") { return (arg % 2) != 0; } |
| } // namespace matcher_test |
| |
| TEST(MatcherMacroTest, WorksInNamespace) { |
| Matcher<int> m = matcher_test::IsOdd(); |
| EXPECT_FALSE(m.Matches(4)); |
| EXPECT_TRUE(m.Matches(5)); |
| } |
| |
| // Tests that Value() can be used to compose matchers. |
| MATCHER(IsPositiveOdd, "") { |
| return Value(arg, matcher_test::IsOdd()) && arg > 0; |
| } |
| |
| TEST(MatcherMacroTest, CanBeComposedUsingValue) { |
| EXPECT_THAT(3, IsPositiveOdd()); |
| EXPECT_THAT(4, Not(IsPositiveOdd())); |
| EXPECT_THAT(-1, Not(IsPositiveOdd())); |
| } |
| |
| // Tests that a simple MATCHER_P() definition works. |
| |
| MATCHER_P(IsGreaterThan32And, n, "") { return arg > 32 && arg > n; } |
| |
| TEST(MatcherPMacroTest, Works) { |
| const Matcher<int> m = IsGreaterThan32And(5); |
| EXPECT_TRUE(m.Matches(36)); |
| EXPECT_FALSE(m.Matches(5)); |
| |
| EXPECT_EQ("is greater than 32 and 5", Describe(m)); |
| EXPECT_EQ("not (is greater than 32 and 5)", DescribeNegation(m)); |
| EXPECT_EQ("", Explain(m, 36)); |
| EXPECT_EQ("", Explain(m, 5)); |
| } |
| |
| // Tests that the description is calculated correctly from the matcher name. |
| MATCHER_P(_is_Greater_Than32and_, n, "") { return arg > 32 && arg > n; } |
| |
| TEST(MatcherPMacroTest, GeneratesCorrectDescription) { |
| const Matcher<int> m = _is_Greater_Than32and_(5); |
| |
| EXPECT_EQ("is greater than 32 and 5", Describe(m)); |
| EXPECT_EQ("not (is greater than 32 and 5)", DescribeNegation(m)); |
| EXPECT_EQ("", Explain(m, 36)); |
| EXPECT_EQ("", Explain(m, 5)); |
| } |
| |
| // Tests that a MATCHER_P matcher can be explicitly instantiated with |
| // a reference parameter type. |
| |
| class UncopyableFoo { |
| public: |
| explicit UncopyableFoo(char value) : value_(value) {} |
| private: |
| UncopyableFoo(const UncopyableFoo&); |
| void operator=(const UncopyableFoo&); |
| |
| char value_; |
| }; |
| |
| MATCHER_P(ReferencesUncopyable, variable, "") { return &arg == &variable; } |
| |
| TEST(MatcherPMacroTest, WorksWhenExplicitlyInstantiatedWithReference) { |
| UncopyableFoo foo1('1'), foo2('2'); |
| const Matcher<const UncopyableFoo&> m = |
| ReferencesUncopyable<const UncopyableFoo&>(foo1); |
| |
| EXPECT_TRUE(m.Matches(foo1)); |
| EXPECT_FALSE(m.Matches(foo2)); |
| |
| // We don't want the address of the parameter printed, as most |
| // likely it will just annoy the user. If the address is |
| // interesting, the user should consider passing the parameter by |
| // pointer instead. |
| EXPECT_EQ("references uncopyable 1-byte object <31>", Describe(m)); |
| } |
| |
| |
| // Tests that the body of MATCHER_Pn() can reference the parameter |
| // types. |
| |
| MATCHER_P3(ParamTypesAreIntLongAndChar, foo, bar, baz, "") { |
| StaticAssertTypeEq<int, foo_type>(); |
| StaticAssertTypeEq<long, bar_type>(); // NOLINT |
| StaticAssertTypeEq<char, baz_type>(); |
| return arg == 0; |
| } |
| |
| TEST(MatcherPnMacroTest, CanReferenceParamTypes) { |
| EXPECT_THAT(0, ParamTypesAreIntLongAndChar(10, 20L, 'a')); |
| } |
| |
| // Tests that a MATCHER_Pn matcher can be explicitly instantiated with |
| // reference parameter types. |
| |
| MATCHER_P2(ReferencesAnyOf, variable1, variable2, "") { |
| return &arg == &variable1 || &arg == &variable2; |
| } |
| |
| TEST(MatcherPnMacroTest, WorksWhenExplicitlyInstantiatedWithReferences) { |
| UncopyableFoo foo1('1'), foo2('2'), foo3('3'); |
| const Matcher<const UncopyableFoo&> m = |
| ReferencesAnyOf<const UncopyableFoo&, const UncopyableFoo&>(foo1, foo2); |
| |
| EXPECT_TRUE(m.Matches(foo1)); |
| EXPECT_TRUE(m.Matches(foo2)); |
| EXPECT_FALSE(m.Matches(foo3)); |
| } |
| |
| TEST(MatcherPnMacroTest, |
| GeneratesCorretDescriptionWhenExplicitlyInstantiatedWithReferences) { |
| UncopyableFoo foo1('1'), foo2('2'); |
| const Matcher<const UncopyableFoo&> m = |
| ReferencesAnyOf<const UncopyableFoo&, const UncopyableFoo&>(foo1, foo2); |
| |
| // We don't want the addresses of the parameters printed, as most |
| // likely they will just annoy the user. If the addresses are |
| // interesting, the user should consider passing the parameters by |
| // pointers instead. |
| EXPECT_EQ("references any of (1-byte object <31>, 1-byte object <32>)", |
| Describe(m)); |
| } |
| |
| // Tests that a simple MATCHER_P2() definition works. |
| |
| MATCHER_P2(IsNotInClosedRange, low, hi, "") { return arg < low || arg > hi; } |
| |
| TEST(MatcherPnMacroTest, Works) { |
| const Matcher<const long&> m = IsNotInClosedRange(10, 20); // NOLINT |
| EXPECT_TRUE(m.Matches(36L)); |
| EXPECT_FALSE(m.Matches(15L)); |
| |
| EXPECT_EQ("is not in closed range (10, 20)", Describe(m)); |
| EXPECT_EQ("not (is not in closed range (10, 20))", DescribeNegation(m)); |
| EXPECT_EQ("", Explain(m, 36L)); |
| EXPECT_EQ("", Explain(m, 15L)); |
| } |
| |
| // Tests that MATCHER*() definitions can be overloaded on the number |
| // of parameters; also tests MATCHER_Pn() where n >= 3. |
| |
| MATCHER(EqualsSumOf, "") { return arg == 0; } |
| MATCHER_P(EqualsSumOf, a, "") { return arg == a; } |
| MATCHER_P2(EqualsSumOf, a, b, "") { return arg == a + b; } |
| MATCHER_P3(EqualsSumOf, a, b, c, "") { return arg == a + b + c; } |
| MATCHER_P4(EqualsSumOf, a, b, c, d, "") { return arg == a + b + c + d; } |
| MATCHER_P5(EqualsSumOf, a, b, c, d, e, "") { return arg == a + b + c + d + e; } |
| MATCHER_P6(EqualsSumOf, a, b, c, d, e, f, "") { |
| return arg == a + b + c + d + e + f; |
| } |
| MATCHER_P7(EqualsSumOf, a, b, c, d, e, f, g, "") { |
| return arg == a + b + c + d + e + f + g; |
| } |
| MATCHER_P8(EqualsSumOf, a, b, c, d, e, f, g, h, "") { |
| return arg == a + b + c + d + e + f + g + h; |
| } |
| MATCHER_P9(EqualsSumOf, a, b, c, d, e, f, g, h, i, "") { |
| return arg == a + b + c + d + e + f + g + h + i; |
| } |
| MATCHER_P10(EqualsSumOf, a, b, c, d, e, f, g, h, i, j, "") { |
| return arg == a + b + c + d + e + f + g + h + i + j; |
| } |
| |
| TEST(MatcherPnMacroTest, CanBeOverloadedOnNumberOfParameters) { |
| EXPECT_THAT(0, EqualsSumOf()); |
| EXPECT_THAT(1, EqualsSumOf(1)); |
| EXPECT_THAT(12, EqualsSumOf(10, 2)); |
| EXPECT_THAT(123, EqualsSumOf(100, 20, 3)); |
| EXPECT_THAT(1234, EqualsSumOf(1000, 200, 30, 4)); |
| EXPECT_THAT(12345, EqualsSumOf(10000, 2000, 300, 40, 5)); |
| EXPECT_THAT("abcdef", |
| EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f')); |
| EXPECT_THAT("abcdefg", |
| EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f', 'g')); |
| EXPECT_THAT("abcdefgh", |
| EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f', 'g', |
| "h")); |
| EXPECT_THAT("abcdefghi", |
| EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f', 'g', |
| "h", 'i')); |
| EXPECT_THAT("abcdefghij", |
| EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f', 'g', |
| "h", 'i', ::std::string("j"))); |
| |
| EXPECT_THAT(1, Not(EqualsSumOf())); |
| EXPECT_THAT(-1, Not(EqualsSumOf(1))); |
| EXPECT_THAT(-12, Not(EqualsSumOf(10, 2))); |
| EXPECT_THAT(-123, Not(EqualsSumOf(100, 20, 3))); |
| EXPECT_THAT(-1234, Not(EqualsSumOf(1000, 200, 30, 4))); |
| EXPECT_THAT(-12345, Not(EqualsSumOf(10000, 2000, 300, 40, 5))); |
| EXPECT_THAT("abcdef ", |
| Not(EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f'))); |
| EXPECT_THAT("abcdefg ", |
| Not(EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f', |
| 'g'))); |
| EXPECT_THAT("abcdefgh ", |
| Not(EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f', 'g', |
| "h"))); |
| EXPECT_THAT("abcdefghi ", |
| Not(EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f', 'g', |
| "h", 'i'))); |
| EXPECT_THAT("abcdefghij ", |
| Not(EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f', 'g', |
| "h", 'i', ::std::string("j")))); |
| } |
| |
| // Tests that a MATCHER_Pn() definition can be instantiated with any |
| // compatible parameter types. |
| TEST(MatcherPnMacroTest, WorksForDifferentParameterTypes) { |
| EXPECT_THAT(123, EqualsSumOf(100L, 20, static_cast<char>(3))); |
| EXPECT_THAT("abcd", EqualsSumOf(::std::string("a"), "b", 'c', "d")); |
| |
| EXPECT_THAT(124, Not(EqualsSumOf(100L, 20, static_cast<char>(3)))); |
| EXPECT_THAT("abcde", Not(EqualsSumOf(::std::string("a"), "b", 'c', "d"))); |
| } |
| |
| // Tests that the matcher body can promote the parameter types. |
| |
| MATCHER_P2(EqConcat, prefix, suffix, "") { |
| // The following lines promote the two parameters to desired types. |
| std::string prefix_str(prefix); |
| char suffix_char = static_cast<char>(suffix); |
| return arg == prefix_str + suffix_char; |
| } |
| |
| TEST(MatcherPnMacroTest, SimpleTypePromotion) { |
| Matcher<std::string> no_promo = |
| EqConcat(std::string("foo"), 't'); |
| Matcher<const std::string&> promo = |
| EqConcat("foo", static_cast<int>('t')); |
| EXPECT_FALSE(no_promo.Matches("fool")); |
| EXPECT_FALSE(promo.Matches("fool")); |
| EXPECT_TRUE(no_promo.Matches("foot")); |
| EXPECT_TRUE(promo.Matches("foot")); |
| } |
| |
| // Verifies the type of a MATCHER*. |
| |
| TEST(MatcherPnMacroTest, TypesAreCorrect) { |
| // EqualsSumOf() must be assignable to a EqualsSumOfMatcher variable. |
| EqualsSumOfMatcher a0 = EqualsSumOf(); |
| |
| // EqualsSumOf(1) must be assignable to a EqualsSumOfMatcherP variable. |
| EqualsSumOfMatcherP<int> a1 = EqualsSumOf(1); |
| |
| // EqualsSumOf(p1, ..., pk) must be assignable to a EqualsSumOfMatcherPk |
| // variable, and so on. |
| EqualsSumOfMatcherP2<int, char> a2 = EqualsSumOf(1, '2'); |
| EqualsSumOfMatcherP3<int, int, char> a3 = EqualsSumOf(1, 2, '3'); |
| EqualsSumOfMatcherP4<int, int, int, char> a4 = EqualsSumOf(1, 2, 3, '4'); |
| EqualsSumOfMatcherP5<int, int, int, int, char> a5 = |
| EqualsSumOf(1, 2, 3, 4, '5'); |
| EqualsSumOfMatcherP6<int, int, int, int, int, char> a6 = |
| EqualsSumOf(1, 2, 3, 4, 5, '6'); |
| EqualsSumOfMatcherP7<int, int, int, int, int, int, char> a7 = |
| EqualsSumOf(1, 2, 3, 4, 5, 6, '7'); |
| EqualsSumOfMatcherP8<int, int, int, int, int, int, int, char> a8 = |
| EqualsSumOf(1, 2, 3, 4, 5, 6, 7, '8'); |
| EqualsSumOfMatcherP9<int, int, int, int, int, int, int, int, char> a9 = |
| EqualsSumOf(1, 2, 3, 4, 5, 6, 7, 8, '9'); |
| EqualsSumOfMatcherP10<int, int, int, int, int, int, int, int, int, char> a10 = |
| EqualsSumOf(1, 2, 3, 4, 5, 6, 7, 8, 9, '0'); |
| |
| // Avoid "unused variable" warnings. |
| (void)a0; |
| (void)a1; |
| (void)a2; |
| (void)a3; |
| (void)a4; |
| (void)a5; |
| (void)a6; |
| (void)a7; |
| (void)a8; |
| (void)a9; |
| (void)a10; |
| } |
| |
| // Tests that matcher-typed parameters can be used in Value() inside a |
| // MATCHER_Pn definition. |
| |
| // Succeeds if arg matches exactly 2 of the 3 matchers. |
| MATCHER_P3(TwoOf, m1, m2, m3, "") { |
| const int count = static_cast<int>(Value(arg, m1)) |
| + static_cast<int>(Value(arg, m2)) + static_cast<int>(Value(arg, m3)); |
| return count == 2; |
| } |
| |
| TEST(MatcherPnMacroTest, CanUseMatcherTypedParameterInValue) { |
| EXPECT_THAT(42, TwoOf(Gt(0), Lt(50), Eq(10))); |
| EXPECT_THAT(0, Not(TwoOf(Gt(-1), Lt(1), Eq(0)))); |
| } |
| |
| // Tests Contains(). |
| |
| TEST(ContainsTest, ListMatchesWhenElementIsInContainer) { |
| list<int> some_list; |
| some_list.push_back(3); |
| some_list.push_back(1); |
| some_list.push_back(2); |
| EXPECT_THAT(some_list, Contains(1)); |
| EXPECT_THAT(some_list, Contains(Gt(2.5))); |
| EXPECT_THAT(some_list, Contains(Eq(2.0f))); |
| |
| list<string> another_list; |
| another_list.push_back("fee"); |
| another_list.push_back("fie"); |
| another_list.push_back("foe"); |
| another_list.push_back("fum"); |
| EXPECT_THAT(another_list, Contains(string("fee"))); |
| } |
| |
| TEST(ContainsTest, ListDoesNotMatchWhenElementIsNotInContainer) { |
| list<int> some_list; |
| some_list.push_back(3); |
| some_list.push_back(1); |
| EXPECT_THAT(some_list, Not(Contains(4))); |
| } |
| |
| TEST(ContainsTest, SetMatchesWhenElementIsInContainer) { |
| set<int> some_set; |
| some_set.insert(3); |
| some_set.insert(1); |
| some_set.insert(2); |
| EXPECT_THAT(some_set, Contains(Eq(1.0))); |
| EXPECT_THAT(some_set, Contains(Eq(3.0f))); |
| EXPECT_THAT(some_set, Contains(2)); |
| |
| set<const char*> another_set; |
| another_set.insert("fee"); |
| another_set.insert("fie"); |
| another_set.insert("foe"); |
| another_set.insert("fum"); |
| EXPECT_THAT(another_set, Contains(Eq(string("fum")))); |
| } |
| |
| TEST(ContainsTest, SetDoesNotMatchWhenElementIsNotInContainer) { |
| set<int> some_set; |
| some_set.insert(3); |
| some_set.insert(1); |
| EXPECT_THAT(some_set, Not(Contains(4))); |
| |
| set<const char*> c_string_set; |
| c_string_set.insert("hello"); |
| EXPECT_THAT(c_string_set, Not(Contains(string("hello").c_str()))); |
| } |
| |
| TEST(ContainsTest, ExplainsMatchResultCorrectly) { |
| const int a[2] = { 1, 2 }; |
| Matcher<const int (&)[2]> m = Contains(2); |
| EXPECT_EQ("whose element #1 matches", Explain(m, a)); |
| |
| m = Contains(3); |
| EXPECT_EQ("", Explain(m, a)); |
| |
| m = Contains(GreaterThan(0)); |
| EXPECT_EQ("whose element #0 matches, which is 1 more than 0", Explain(m, a)); |
| |
| m = Contains(GreaterThan(10)); |
| EXPECT_EQ("", Explain(m, a)); |
| } |
| |
| TEST(ContainsTest, DescribesItselfCorrectly) { |
| Matcher<vector<int> > m = Contains(1); |
| EXPECT_EQ("contains at least one element that is equal to 1", Describe(m)); |
| |
| Matcher<vector<int> > m2 = Not(m); |
| EXPECT_EQ("doesn't contain any element that is equal to 1", Describe(m2)); |
| } |
| |
| TEST(ContainsTest, MapMatchesWhenElementIsInContainer) { |
| map<const char*, int> my_map; |
| const char* bar = "a string"; |
| my_map[bar] = 2; |
| EXPECT_THAT(my_map, Contains(pair<const char* const, int>(bar, 2))); |
| |
| map<string, int> another_map; |
| another_map["fee"] = 1; |
| another_map["fie"] = 2; |
| another_map["foe"] = 3; |
| another_map["fum"] = 4; |
| EXPECT_THAT(another_map, Contains(pair<const string, int>(string("fee"), 1))); |
| EXPECT_THAT(another_map, Contains(pair<const string, int>("fie", 2))); |
| } |
| |
| TEST(ContainsTest, MapDoesNotMatchWhenElementIsNotInContainer) { |
| map<int, int> some_map; |
| some_map[1] = 11; |
| some_map[2] = 22; |
| EXPECT_THAT(some_map, Not(Contains(pair<const int, int>(2, 23)))); |
| } |
| |
| TEST(ContainsTest, ArrayMatchesWhenElementIsInContainer) { |
| const char* string_array[] = { "fee", "fie", "foe", "fum" }; |
| EXPECT_THAT(string_array, Contains(Eq(string("fum")))); |
| } |
| |
| TEST(ContainsTest, ArrayDoesNotMatchWhenElementIsNotInContainer) { |
| int int_array[] = { 1, 2, 3, 4 }; |
| EXPECT_THAT(int_array, Not(Contains(5))); |
| } |
| |
| TEST(ContainsTest, AcceptsMatcher) { |
| const int a[] = { 1, 2, 3 }; |
| EXPECT_THAT(a, Contains(Gt(2))); |
| EXPECT_THAT(a, Not(Contains(Gt(4)))); |
| } |
| |
| TEST(ContainsTest, WorksForNativeArrayAsTuple) { |
| const int a[] = { 1, 2 }; |
| const int* const pointer = a; |
| EXPECT_THAT(make_tuple(pointer, 2), Contains(1)); |
| EXPECT_THAT(make_tuple(pointer, 2), Not(Contains(Gt(3)))); |
| } |
| |
| TEST(ContainsTest, WorksForTwoDimensionalNativeArray) { |
| int a[][3] = { { 1, 2, 3 }, { 4, 5, 6 } }; |
| EXPECT_THAT(a, Contains(ElementsAre(4, 5, 6))); |
| EXPECT_THAT(a, Contains(Contains(5))); |
| EXPECT_THAT(a, Not(Contains(ElementsAre(3, 4, 5)))); |
| EXPECT_THAT(a, Contains(Not(Contains(5)))); |
| } |
| |
| TEST(AllOfTest, HugeMatcher) { |
| // Verify that using AllOf with many arguments doesn't cause |
| // the compiler to exceed template instantiation depth limit. |
| EXPECT_THAT(0, testing::AllOf(_, _, _, _, _, _, _, _, _, |
| testing::AllOf(_, _, _, _, _, _, _, _, _, _))); |
| } |
| |
| TEST(AnyOfTest, HugeMatcher) { |
| // Verify that using AnyOf with many arguments doesn't cause |
| // the compiler to exceed template instantiation depth limit. |
| EXPECT_THAT(0, testing::AnyOf(_, _, _, _, _, _, _, _, _, |
| testing::AnyOf(_, _, _, _, _, _, _, _, _, _))); |
| } |
| |
| namespace adl_test { |
| |
| // Verifies that the implementation of ::testing::AllOf and ::testing::AnyOf |
| // don't issue unqualified recursive calls. If they do, the argument dependent |
| // name lookup will cause AllOf/AnyOf in the 'adl_test' namespace to be found |
| // as a candidate and the compilation will break due to an ambiguous overload. |
| |
| // The matcher must be in the same namespace as AllOf/AnyOf to make argument |
| // dependent lookup find those. |
| MATCHER(M, "") { return true; } |
| |
| template <typename T1, typename T2> |
| bool AllOf(const T1& t1, const T2& t2) { return true; } |
| |
| TEST(AllOfTest, DoesNotCallAllOfUnqualified) { |
| EXPECT_THAT(42, testing::AllOf( |
| M(), M(), M(), M(), M(), M(), M(), M(), M(), M())); |
| } |
| |
| template <typename T1, typename T2> bool |
| AnyOf(const T1& t1, const T2& t2) { return true; } |
| |
| TEST(AnyOfTest, DoesNotCallAnyOfUnqualified) { |
| EXPECT_THAT(42, testing::AnyOf( |
| M(), M(), M(), M(), M(), M(), M(), M(), M(), M())); |
| } |
| |
| } // namespace adl_test |
| |
| #ifdef _MSC_VER |
| # pragma warning(pop) |
| #endif |
| |
| } // namespace |