| /* |
| * Copyright (c) 2010, 2012, 2018 ARM Limited |
| * All rights reserved |
| * |
| * The license below extends only to copyright in the software and shall |
| * not be construed as granting a license to any other intellectual |
| * property including but not limited to intellectual property relating |
| * to a hardware implementation of the functionality of the software |
| * licensed hereunder. You may use the software subject to the license |
| * terms below provided that you ensure that this notice is replicated |
| * unmodified and in its entirety in all distributions of the software, |
| * modified or unmodified, in source code or in binary form. |
| * |
| * Copyright (c) 2007-2008 The Florida State University |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are |
| * met: redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer; |
| * redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution; |
| * neither the name of the copyright holders nor the names of its |
| * contributors may be used to endorse or promote products derived from |
| * this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| * Authors: Stephen Hines |
| * Ali Saidi |
| */ |
| |
| #include "arch/arm/process.hh" |
| |
| #include "arch/arm/isa_traits.hh" |
| #include "arch/arm/types.hh" |
| #include "base/loader/elf_object.hh" |
| #include "base/loader/object_file.hh" |
| #include "base/logging.hh" |
| #include "cpu/thread_context.hh" |
| #include "debug/Stack.hh" |
| #include "mem/page_table.hh" |
| #include "params/Process.hh" |
| #include "sim/aux_vector.hh" |
| #include "sim/byteswap.hh" |
| #include "sim/process_impl.hh" |
| #include "sim/syscall_return.hh" |
| #include "sim/system.hh" |
| |
| using namespace std; |
| using namespace ArmISA; |
| |
| ArmProcess::ArmProcess(ProcessParams *params, ObjectFile *objFile, |
| ObjectFile::Arch _arch) |
| : Process(params, |
| new EmulationPageTable(params->name, params->pid, PageBytes), |
| objFile), |
| arch(_arch) |
| { |
| fatal_if(params->useArchPT, "Arch page tables not implemented."); |
| } |
| |
| ArmProcess32::ArmProcess32(ProcessParams *params, ObjectFile *objFile, |
| ObjectFile::Arch _arch) |
| : ArmProcess(params, objFile, _arch) |
| { |
| Addr brk_point = roundUp(objFile->dataBase() + objFile->dataSize() + |
| objFile->bssSize(), PageBytes); |
| Addr stack_base = 0xbf000000L; |
| Addr max_stack_size = 8 * 1024 * 1024; |
| Addr next_thread_stack_base = stack_base - max_stack_size; |
| Addr mmap_end = 0x40000000L; |
| |
| memState = make_shared<MemState>(brk_point, stack_base, max_stack_size, |
| next_thread_stack_base, mmap_end); |
| } |
| |
| ArmProcess64::ArmProcess64(ProcessParams *params, ObjectFile *objFile, |
| ObjectFile::Arch _arch) |
| : ArmProcess(params, objFile, _arch) |
| { |
| Addr brk_point = roundUp(objFile->dataBase() + objFile->dataSize() + |
| objFile->bssSize(), PageBytes); |
| Addr stack_base = 0x7fffff0000L; |
| Addr max_stack_size = 8 * 1024 * 1024; |
| Addr next_thread_stack_base = stack_base - max_stack_size; |
| Addr mmap_end = 0x4000000000L; |
| |
| memState = make_shared<MemState>(brk_point, stack_base, max_stack_size, |
| next_thread_stack_base, mmap_end); |
| } |
| |
| void |
| ArmProcess32::initState() |
| { |
| Process::initState(); |
| argsInit<uint32_t>(PageBytes, INTREG_SP); |
| for (int i = 0; i < contextIds.size(); i++) { |
| ThreadContext * tc = system->getThreadContext(contextIds[i]); |
| CPACR cpacr = tc->readMiscReg(MISCREG_CPACR); |
| // Enable the floating point coprocessors. |
| cpacr.cp10 = 0x3; |
| cpacr.cp11 = 0x3; |
| tc->setMiscReg(MISCREG_CPACR, cpacr); |
| // Generically enable floating point support. |
| FPEXC fpexc = tc->readMiscReg(MISCREG_FPEXC); |
| fpexc.en = 1; |
| tc->setMiscReg(MISCREG_FPEXC, fpexc); |
| } |
| } |
| |
| void |
| ArmProcess64::initState() |
| { |
| Process::initState(); |
| argsInit<uint64_t>(PageBytes, INTREG_SP0); |
| for (int i = 0; i < contextIds.size(); i++) { |
| ThreadContext * tc = system->getThreadContext(contextIds[i]); |
| CPSR cpsr = tc->readMiscReg(MISCREG_CPSR); |
| cpsr.mode = MODE_EL0T; |
| tc->setMiscReg(MISCREG_CPSR, cpsr); |
| CPACR cpacr = tc->readMiscReg(MISCREG_CPACR_EL1); |
| // Enable the floating point coprocessors. |
| cpacr.cp10 = 0x3; |
| cpacr.cp11 = 0x3; |
| tc->setMiscReg(MISCREG_CPACR_EL1, cpacr); |
| // Generically enable floating point support. |
| FPEXC fpexc = tc->readMiscReg(MISCREG_FPEXC); |
| fpexc.en = 1; |
| tc->setMiscReg(MISCREG_FPEXC, fpexc); |
| } |
| } |
| |
| uint32_t |
| ArmProcess32::armHwcapImpl() const |
| { |
| enum ArmCpuFeature { |
| Arm_Swp = 1 << 0, |
| Arm_Half = 1 << 1, |
| Arm_Thumb = 1 << 2, |
| Arm_26Bit = 1 << 3, |
| Arm_FastMult = 1 << 4, |
| Arm_Fpa = 1 << 5, |
| Arm_Vfp = 1 << 6, |
| Arm_Edsp = 1 << 7, |
| Arm_Java = 1 << 8, |
| Arm_Iwmmxt = 1 << 9, |
| Arm_Crunch = 1 << 10, |
| Arm_ThumbEE = 1 << 11, |
| Arm_Neon = 1 << 12, |
| Arm_Vfpv3 = 1 << 13, |
| Arm_Vfpv3d16 = 1 << 14 |
| }; |
| |
| return Arm_Swp | Arm_Half | Arm_Thumb | Arm_FastMult | |
| Arm_Vfp | Arm_Edsp | Arm_ThumbEE | Arm_Neon | |
| Arm_Vfpv3 | Arm_Vfpv3d16; |
| } |
| |
| uint32_t |
| ArmProcess64::armHwcapImpl() const |
| { |
| // In order to know what these flags mean, please refer to Linux |
| // /Documentation/arm64/elf_hwcaps.txt text file. |
| enum ArmCpuFeature { |
| Arm_Fp = 1 << 0, |
| Arm_Asimd = 1 << 1, |
| Arm_Evtstrm = 1 << 2, |
| Arm_Aes = 1 << 3, |
| Arm_Pmull = 1 << 4, |
| Arm_Sha1 = 1 << 5, |
| Arm_Sha2 = 1 << 6, |
| Arm_Crc32 = 1 << 7, |
| Arm_Atomics = 1 << 8, |
| Arm_Fphp = 1 << 9, |
| Arm_Asimdhp = 1 << 10, |
| Arm_Cpuid = 1 << 11, |
| Arm_Asimdrdm = 1 << 12, |
| Arm_Jscvt = 1 << 13, |
| Arm_Fcma = 1 << 14, |
| Arm_Lrcpc = 1 << 15, |
| Arm_Dcpop = 1 << 16, |
| Arm_Sha3 = 1 << 17, |
| Arm_Sm3 = 1 << 18, |
| Arm_Sm4 = 1 << 19, |
| Arm_Asimddp = 1 << 20, |
| Arm_Sha512 = 1 << 21, |
| Arm_Sve = 1 << 22, |
| Arm_Asimdfhm = 1 << 23, |
| Arm_Dit = 1 << 24, |
| Arm_Uscat = 1 << 25, |
| Arm_Ilrcpc = 1 << 26, |
| Arm_Flagm = 1 << 27 |
| }; |
| |
| uint32_t hwcap = 0; |
| |
| ThreadContext *tc = system->getThreadContext(contextIds[0]); |
| |
| const AA64PFR0 pf_r0 = tc->readMiscReg(MISCREG_ID_AA64PFR0_EL1); |
| |
| hwcap |= (pf_r0.fp == 0) ? Arm_Fp : 0; |
| hwcap |= (pf_r0.fp == 1) ? Arm_Fphp | Arm_Fp : 0; |
| hwcap |= (pf_r0.advsimd == 0) ? Arm_Asimd : 0; |
| hwcap |= (pf_r0.advsimd == 1) ? Arm_Asimdhp | Arm_Asimd : 0; |
| hwcap |= (pf_r0.sve >= 1) ? Arm_Sve : 0; |
| hwcap |= (pf_r0.dit >= 1) ? Arm_Dit : 0; |
| |
| const AA64ISAR0 isa_r0 = tc->readMiscReg(MISCREG_ID_AA64ISAR0_EL1); |
| |
| hwcap |= (isa_r0.aes >= 1) ? Arm_Aes : 0; |
| hwcap |= (isa_r0.aes >= 2) ? Arm_Pmull : 0; |
| hwcap |= (isa_r0.sha1 >= 1) ? Arm_Sha1 : 0; |
| hwcap |= (isa_r0.sha2 >= 1) ? Arm_Sha2 : 0; |
| hwcap |= (isa_r0.sha2 >= 2) ? Arm_Sha512 : 0; |
| hwcap |= (isa_r0.crc32 >= 1) ? Arm_Crc32 : 0; |
| hwcap |= (isa_r0.atomic >= 1) ? Arm_Atomics : 0; |
| hwcap |= (isa_r0.rdm >= 1) ? Arm_Asimdrdm : 0; |
| hwcap |= (isa_r0.sha3 >= 1) ? Arm_Sha3 : 0; |
| hwcap |= (isa_r0.sm3 >= 1) ? Arm_Sm3 : 0; |
| hwcap |= (isa_r0.sm4 >= 1) ? Arm_Sm4 : 0; |
| hwcap |= (isa_r0.dp >= 1) ? Arm_Asimddp : 0; |
| hwcap |= (isa_r0.fhm >= 1) ? Arm_Asimdfhm : 0; |
| hwcap |= (isa_r0.ts >= 1) ? Arm_Flagm : 0; |
| |
| const AA64ISAR1 isa_r1 = tc->readMiscReg(MISCREG_ID_AA64ISAR1_EL1); |
| |
| hwcap |= (isa_r1.dpb >= 1) ? Arm_Dcpop : 0; |
| hwcap |= (isa_r1.jscvt >= 1) ? Arm_Jscvt : 0; |
| hwcap |= (isa_r1.fcma >= 1) ? Arm_Fcma : 0; |
| hwcap |= (isa_r1.lrcpc >= 1) ? Arm_Lrcpc : 0; |
| hwcap |= (isa_r1.lrcpc >= 2) ? Arm_Ilrcpc : 0; |
| |
| const AA64MMFR2 mm_fr2 = tc->readMiscReg(MISCREG_ID_AA64MMFR2_EL1); |
| |
| hwcap |= (mm_fr2.at >= 1) ? Arm_Uscat : 0; |
| |
| return hwcap; |
| } |
| |
| template <class IntType> |
| void |
| ArmProcess::argsInit(int pageSize, IntRegIndex spIndex) |
| { |
| int intSize = sizeof(IntType); |
| |
| typedef AuxVector<IntType> auxv_t; |
| std::vector<auxv_t> auxv; |
| |
| string filename; |
| if (argv.size() < 1) |
| filename = ""; |
| else |
| filename = argv[0]; |
| |
| //We want 16 byte alignment |
| uint64_t align = 16; |
| |
| // Patch the ld_bias for dynamic executables. |
| updateBias(); |
| |
| // load object file into target memory |
| objFile->loadSections(initVirtMem); |
| |
| //Setup the auxilliary vectors. These will already have endian conversion. |
| //Auxilliary vectors are loaded only for elf formatted executables. |
| ElfObject * elfObject = dynamic_cast<ElfObject *>(objFile); |
| if (elfObject) { |
| |
| if (objFile->getOpSys() == ObjectFile::Linux) { |
| IntType features = armHwcap<IntType>(); |
| |
| //Bits which describe the system hardware capabilities |
| //XXX Figure out what these should be |
| auxv.push_back(auxv_t(M5_AT_HWCAP, features)); |
| //Frequency at which times() increments |
| auxv.push_back(auxv_t(M5_AT_CLKTCK, 0x64)); |
| //Whether to enable "secure mode" in the executable |
| auxv.push_back(auxv_t(M5_AT_SECURE, 0)); |
| // Pointer to 16 bytes of random data |
| auxv.push_back(auxv_t(M5_AT_RANDOM, 0)); |
| //The filename of the program |
| auxv.push_back(auxv_t(M5_AT_EXECFN, 0)); |
| //The string "v71" -- ARM v7 architecture |
| auxv.push_back(auxv_t(M5_AT_PLATFORM, 0)); |
| } |
| |
| //The system page size |
| auxv.push_back(auxv_t(M5_AT_PAGESZ, ArmISA::PageBytes)); |
| // For statically linked executables, this is the virtual address of the |
| // program header tables if they appear in the executable image |
| auxv.push_back(auxv_t(M5_AT_PHDR, elfObject->programHeaderTable())); |
| // This is the size of a program header entry from the elf file. |
| auxv.push_back(auxv_t(M5_AT_PHENT, elfObject->programHeaderSize())); |
| // This is the number of program headers from the original elf file. |
| auxv.push_back(auxv_t(M5_AT_PHNUM, elfObject->programHeaderCount())); |
| // This is the base address of the ELF interpreter; it should be |
| // zero for static executables or contain the base address for |
| // dynamic executables. |
| auxv.push_back(auxv_t(M5_AT_BASE, getBias())); |
| //XXX Figure out what this should be. |
| auxv.push_back(auxv_t(M5_AT_FLAGS, 0)); |
| //The entry point to the program |
| auxv.push_back(auxv_t(M5_AT_ENTRY, objFile->entryPoint())); |
| //Different user and group IDs |
| auxv.push_back(auxv_t(M5_AT_UID, uid())); |
| auxv.push_back(auxv_t(M5_AT_EUID, euid())); |
| auxv.push_back(auxv_t(M5_AT_GID, gid())); |
| auxv.push_back(auxv_t(M5_AT_EGID, egid())); |
| } |
| |
| //Figure out how big the initial stack nedes to be |
| |
| // A sentry NULL void pointer at the top of the stack. |
| int sentry_size = intSize; |
| |
| string platform = "v71"; |
| int platform_size = platform.size() + 1; |
| |
| // Bytes for AT_RANDOM above, we'll just keep them 0 |
| int aux_random_size = 16; // as per the specification |
| |
| // The aux vectors are put on the stack in two groups. The first group are |
| // the vectors that are generated as the elf is loaded. The second group |
| // are the ones that were computed ahead of time and include the platform |
| // string. |
| int aux_data_size = filename.size() + 1; |
| |
| int env_data_size = 0; |
| for (int i = 0; i < envp.size(); ++i) { |
| env_data_size += envp[i].size() + 1; |
| } |
| int arg_data_size = 0; |
| for (int i = 0; i < argv.size(); ++i) { |
| arg_data_size += argv[i].size() + 1; |
| } |
| |
| int info_block_size = |
| sentry_size + env_data_size + arg_data_size + |
| aux_data_size + platform_size + aux_random_size; |
| |
| //Each auxilliary vector is two 4 byte words |
| int aux_array_size = intSize * 2 * (auxv.size() + 1); |
| |
| int envp_array_size = intSize * (envp.size() + 1); |
| int argv_array_size = intSize * (argv.size() + 1); |
| |
| int argc_size = intSize; |
| |
| //Figure out the size of the contents of the actual initial frame |
| int frame_size = |
| info_block_size + |
| aux_array_size + |
| envp_array_size + |
| argv_array_size + |
| argc_size; |
| |
| //There needs to be padding after the auxiliary vector data so that the |
| //very bottom of the stack is aligned properly. |
| int partial_size = frame_size; |
| int aligned_partial_size = roundUp(partial_size, align); |
| int aux_padding = aligned_partial_size - partial_size; |
| |
| int space_needed = frame_size + aux_padding; |
| |
| memState->setStackMin(memState->getStackBase() - space_needed); |
| memState->setStackMin(roundDown(memState->getStackMin(), align)); |
| memState->setStackSize(memState->getStackBase() - memState->getStackMin()); |
| |
| // map memory |
| allocateMem(roundDown(memState->getStackMin(), pageSize), |
| roundUp(memState->getStackSize(), pageSize)); |
| |
| // map out initial stack contents |
| IntType sentry_base = memState->getStackBase() - sentry_size; |
| IntType aux_data_base = sentry_base - aux_data_size; |
| IntType env_data_base = aux_data_base - env_data_size; |
| IntType arg_data_base = env_data_base - arg_data_size; |
| IntType platform_base = arg_data_base - platform_size; |
| IntType aux_random_base = platform_base - aux_random_size; |
| IntType auxv_array_base = aux_random_base - aux_array_size - aux_padding; |
| IntType envp_array_base = auxv_array_base - envp_array_size; |
| IntType argv_array_base = envp_array_base - argv_array_size; |
| IntType argc_base = argv_array_base - argc_size; |
| |
| DPRINTF(Stack, "The addresses of items on the initial stack:\n"); |
| DPRINTF(Stack, "0x%x - aux data\n", aux_data_base); |
| DPRINTF(Stack, "0x%x - env data\n", env_data_base); |
| DPRINTF(Stack, "0x%x - arg data\n", arg_data_base); |
| DPRINTF(Stack, "0x%x - random data\n", aux_random_base); |
| DPRINTF(Stack, "0x%x - platform base\n", platform_base); |
| DPRINTF(Stack, "0x%x - auxv array\n", auxv_array_base); |
| DPRINTF(Stack, "0x%x - envp array\n", envp_array_base); |
| DPRINTF(Stack, "0x%x - argv array\n", argv_array_base); |
| DPRINTF(Stack, "0x%x - argc \n", argc_base); |
| DPRINTF(Stack, "0x%x - stack min\n", memState->getStackMin()); |
| |
| // write contents to stack |
| |
| // figure out argc |
| IntType argc = argv.size(); |
| IntType guestArgc = ArmISA::htog(argc); |
| |
| //Write out the sentry void * |
| IntType sentry_NULL = 0; |
| initVirtMem.writeBlob(sentry_base, |
| (uint8_t*)&sentry_NULL, sentry_size); |
| |
| //Fix up the aux vectors which point to other data |
| for (int i = auxv.size() - 1; i >= 0; i--) { |
| if (auxv[i].getHostAuxType() == M5_AT_PLATFORM) { |
| auxv[i].setAuxVal(platform_base); |
| initVirtMem.writeString(platform_base, platform.c_str()); |
| } else if (auxv[i].getHostAuxType() == M5_AT_EXECFN) { |
| auxv[i].setAuxVal(aux_data_base); |
| initVirtMem.writeString(aux_data_base, filename.c_str()); |
| } else if (auxv[i].getHostAuxType() == M5_AT_RANDOM) { |
| auxv[i].setAuxVal(aux_random_base); |
| // Just leave the value 0, we don't want randomness |
| } |
| } |
| |
| //Copy the aux stuff |
| for (int x = 0; x < auxv.size(); x++) { |
| initVirtMem.writeBlob(auxv_array_base + x * 2 * intSize, |
| (uint8_t*)&(auxv[x].getAuxType()), |
| intSize); |
| initVirtMem.writeBlob(auxv_array_base + (x * 2 + 1) * intSize, |
| (uint8_t*)&(auxv[x].getAuxVal()), |
| intSize); |
| } |
| //Write out the terminating zeroed auxilliary vector |
| const uint64_t zero = 0; |
| initVirtMem.writeBlob(auxv_array_base + 2 * intSize * auxv.size(), |
| (uint8_t*)&zero, 2 * intSize); |
| |
| copyStringArray(envp, envp_array_base, env_data_base, initVirtMem); |
| copyStringArray(argv, argv_array_base, arg_data_base, initVirtMem); |
| |
| initVirtMem.writeBlob(argc_base, (uint8_t*)&guestArgc, intSize); |
| |
| ThreadContext *tc = system->getThreadContext(contextIds[0]); |
| //Set the stack pointer register |
| tc->setIntReg(spIndex, memState->getStackMin()); |
| //A pointer to a function to run when the program exits. We'll set this |
| //to zero explicitly to make sure this isn't used. |
| tc->setIntReg(ArgumentReg0, 0); |
| //Set argument regs 1 and 2 to argv[0] and envp[0] respectively |
| if (argv.size() > 0) { |
| tc->setIntReg(ArgumentReg1, arg_data_base + arg_data_size - |
| argv[argv.size() - 1].size() - 1); |
| } else { |
| tc->setIntReg(ArgumentReg1, 0); |
| } |
| if (envp.size() > 0) { |
| tc->setIntReg(ArgumentReg2, env_data_base + env_data_size - |
| envp[envp.size() - 1].size() - 1); |
| } else { |
| tc->setIntReg(ArgumentReg2, 0); |
| } |
| |
| PCState pc; |
| pc.thumb(arch == ObjectFile::Thumb); |
| pc.nextThumb(pc.thumb()); |
| pc.aarch64(arch == ObjectFile::Arm64); |
| pc.nextAArch64(pc.aarch64()); |
| pc.set(getStartPC() & ~mask(1)); |
| tc->pcState(pc); |
| |
| //Align the "stackMin" to a page boundary. |
| memState->setStackMin(roundDown(memState->getStackMin(), pageSize)); |
| } |
| |
| RegVal |
| ArmProcess32::getSyscallArg(ThreadContext *tc, int &i) |
| { |
| assert(i < 6); |
| return tc->readIntReg(ArgumentReg0 + i++); |
| } |
| |
| RegVal |
| ArmProcess64::getSyscallArg(ThreadContext *tc, int &i) |
| { |
| assert(i < 8); |
| return tc->readIntReg(ArgumentReg0 + i++); |
| } |
| |
| RegVal |
| ArmProcess32::getSyscallArg(ThreadContext *tc, int &i, int width) |
| { |
| assert(width == 32 || width == 64); |
| if (width == 32) |
| return getSyscallArg(tc, i); |
| |
| // 64 bit arguments are passed starting in an even register |
| if (i % 2 != 0) |
| i++; |
| |
| // Registers r0-r6 can be used |
| assert(i < 5); |
| uint64_t val; |
| val = tc->readIntReg(ArgumentReg0 + i++); |
| val |= ((uint64_t)tc->readIntReg(ArgumentReg0 + i++) << 32); |
| return val; |
| } |
| |
| RegVal |
| ArmProcess64::getSyscallArg(ThreadContext *tc, int &i, int width) |
| { |
| return getSyscallArg(tc, i); |
| } |
| |
| |
| void |
| ArmProcess32::setSyscallArg(ThreadContext *tc, int i, RegVal val) |
| { |
| assert(i < 6); |
| tc->setIntReg(ArgumentReg0 + i, val); |
| } |
| |
| void |
| ArmProcess64::setSyscallArg(ThreadContext *tc, int i, RegVal val) |
| { |
| assert(i < 8); |
| tc->setIntReg(ArgumentReg0 + i, val); |
| } |
| |
| void |
| ArmProcess32::setSyscallReturn(ThreadContext *tc, SyscallReturn sysret) |
| { |
| |
| if (objFile->getOpSys() == ObjectFile::FreeBSD) { |
| // Decode return value |
| if (sysret.encodedValue() >= 0) |
| // FreeBSD checks the carry bit to determine if syscall is succeeded |
| tc->setCCReg(CCREG_C, 0); |
| else { |
| sysret = -sysret.encodedValue(); |
| } |
| } |
| |
| tc->setIntReg(ReturnValueReg, sysret.encodedValue()); |
| } |
| |
| void |
| ArmProcess64::setSyscallReturn(ThreadContext *tc, SyscallReturn sysret) |
| { |
| |
| if (objFile->getOpSys() == ObjectFile::FreeBSD) { |
| // Decode return value |
| if (sysret.encodedValue() >= 0) |
| // FreeBSD checks the carry bit to determine if syscall is succeeded |
| tc->setCCReg(CCREG_C, 0); |
| else { |
| sysret = -sysret.encodedValue(); |
| } |
| } |
| |
| tc->setIntReg(ReturnValueReg, sysret.encodedValue()); |
| } |