| /* |
| tests/test_numpy_vectorize.cpp -- auto-vectorize functions over NumPy array |
| arguments |
| |
| Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch> |
| |
| All rights reserved. Use of this source code is governed by a |
| BSD-style license that can be found in the LICENSE file. |
| */ |
| |
| #include "pybind11_tests.h" |
| #include <pybind11/numpy.h> |
| |
| double my_func(int x, float y, double z) { |
| py::print("my_func(x:int={}, y:float={:.0f}, z:float={:.0f})"_s.format(x, y, z)); |
| return (float) x*y*z; |
| } |
| |
| TEST_SUBMODULE(numpy_vectorize, m) { |
| try { py::module::import("numpy"); } |
| catch (...) { return; } |
| |
| // test_vectorize, test_docs, test_array_collapse |
| // Vectorize all arguments of a function (though non-vector arguments are also allowed) |
| m.def("vectorized_func", py::vectorize(my_func)); |
| |
| // Vectorize a lambda function with a capture object (e.g. to exclude some arguments from the vectorization) |
| m.def("vectorized_func2", |
| [](py::array_t<int> x, py::array_t<float> y, float z) { |
| return py::vectorize([z](int x, float y) { return my_func(x, y, z); })(x, y); |
| } |
| ); |
| |
| // Vectorize a complex-valued function |
| m.def("vectorized_func3", py::vectorize( |
| [](std::complex<double> c) { return c * std::complex<double>(2.f); } |
| )); |
| |
| // test_type_selection |
| // Numpy function which only accepts specific data types |
| m.def("selective_func", [](py::array_t<int, py::array::c_style>) { return "Int branch taken."; }); |
| m.def("selective_func", [](py::array_t<float, py::array::c_style>) { return "Float branch taken."; }); |
| m.def("selective_func", [](py::array_t<std::complex<float>, py::array::c_style>) { return "Complex float branch taken."; }); |
| |
| |
| // test_passthrough_arguments |
| // Passthrough test: references and non-pod types should be automatically passed through (in the |
| // function definition below, only `b`, `d`, and `g` are vectorized): |
| struct NonPODClass { |
| NonPODClass(int v) : value{v} {} |
| int value; |
| }; |
| py::class_<NonPODClass>(m, "NonPODClass").def(py::init<int>()); |
| m.def("vec_passthrough", py::vectorize( |
| [](double *a, double b, py::array_t<double> c, const int &d, int &e, NonPODClass f, const double g) { |
| return *a + b + c.at(0) + d + e + f.value + g; |
| } |
| )); |
| |
| // test_method_vectorization |
| struct VectorizeTestClass { |
| VectorizeTestClass(int v) : value{v} {}; |
| float method(int x, float y) { return y + (float) (x + value); } |
| int value = 0; |
| }; |
| py::class_<VectorizeTestClass> vtc(m, "VectorizeTestClass"); |
| vtc .def(py::init<int>()) |
| .def_readwrite("value", &VectorizeTestClass::value); |
| |
| // Automatic vectorizing of methods |
| vtc.def("method", py::vectorize(&VectorizeTestClass::method)); |
| |
| // test_trivial_broadcasting |
| // Internal optimization test for whether the input is trivially broadcastable: |
| py::enum_<py::detail::broadcast_trivial>(m, "trivial") |
| .value("f_trivial", py::detail::broadcast_trivial::f_trivial) |
| .value("c_trivial", py::detail::broadcast_trivial::c_trivial) |
| .value("non_trivial", py::detail::broadcast_trivial::non_trivial); |
| m.def("vectorized_is_trivial", []( |
| py::array_t<int, py::array::forcecast> arg1, |
| py::array_t<float, py::array::forcecast> arg2, |
| py::array_t<double, py::array::forcecast> arg3 |
| ) { |
| ssize_t ndim; |
| std::vector<ssize_t> shape; |
| std::array<py::buffer_info, 3> buffers {{ arg1.request(), arg2.request(), arg3.request() }}; |
| return py::detail::broadcast(buffers, ndim, shape); |
| }); |
| } |