blob: 3b10f68a41e3af3d0a4e41f72fe314eeefaf2f66 [file] [log] [blame]
/*
* Copyright (c) 2010-2018 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Gabe Black
* Ali Saidi
*/
#include "arch/arm/isa.hh"
#include "arch/arm/pmu.hh"
#include "arch/arm/system.hh"
#include "arch/arm/tlb.hh"
#include "arch/arm/tlbi_op.hh"
#include "cpu/base.hh"
#include "cpu/checker/cpu.hh"
#include "debug/Arm.hh"
#include "debug/MiscRegs.hh"
#include "dev/arm/generic_timer.hh"
#include "dev/arm/gic_v3.hh"
#include "dev/arm/gic_v3_cpu_interface.hh"
#include "params/ArmISA.hh"
#include "sim/faults.hh"
#include "sim/stat_control.hh"
#include "sim/system.hh"
namespace ArmISA
{
ISA::ISA(Params *p)
: SimObject(p),
system(NULL),
_decoderFlavour(p->decoderFlavour),
_vecRegRenameMode(Enums::Full),
pmu(p->pmu),
haveGICv3CPUInterface(false),
impdefAsNop(p->impdef_nop)
{
miscRegs[MISCREG_SCTLR_RST] = 0;
// Hook up a dummy device if we haven't been configured with a
// real PMU. By using a dummy device, we don't need to check that
// the PMU exist every time we try to access a PMU register.
if (!pmu)
pmu = &dummyDevice;
// Give all ISA devices a pointer to this ISA
pmu->setISA(this);
system = dynamic_cast<ArmSystem *>(p->system);
// Cache system-level properties
if (FullSystem && system) {
highestELIs64 = system->highestELIs64();
haveSecurity = system->haveSecurity();
haveLPAE = system->haveLPAE();
haveCrypto = system->haveCrypto();
haveVirtualization = system->haveVirtualization();
haveLargeAsid64 = system->haveLargeAsid64();
physAddrRange = system->physAddrRange();
} else {
highestELIs64 = true; // ArmSystem::highestELIs64 does the same
haveSecurity = haveLPAE = haveVirtualization = false;
haveCrypto = true;
haveLargeAsid64 = false;
physAddrRange = 32; // dummy value
}
// Initial rename mode depends on highestEL
const_cast<Enums::VecRegRenameMode&>(_vecRegRenameMode) =
highestELIs64 ? Enums::Full : Enums::Elem;
initializeMiscRegMetadata();
preUnflattenMiscReg();
clear();
}
std::vector<struct ISA::MiscRegLUTEntry> ISA::lookUpMiscReg(NUM_MISCREGS);
const ArmISAParams *
ISA::params() const
{
return dynamic_cast<const Params *>(_params);
}
void
ISA::clear()
{
const Params *p(params());
SCTLR sctlr_rst = miscRegs[MISCREG_SCTLR_RST];
memset(miscRegs, 0, sizeof(miscRegs));
initID32(p);
// We always initialize AArch64 ID registers even
// if we are in AArch32. This is done since if we
// are in SE mode we don't know if our ArmProcess is
// AArch32 or AArch64
initID64(p);
// Start with an event in the mailbox
miscRegs[MISCREG_SEV_MAILBOX] = 1;
// Separate Instruction and Data TLBs
miscRegs[MISCREG_TLBTR] = 1;
MVFR0 mvfr0 = 0;
mvfr0.advSimdRegisters = 2;
mvfr0.singlePrecision = 2;
mvfr0.doublePrecision = 2;
mvfr0.vfpExceptionTrapping = 0;
mvfr0.divide = 1;
mvfr0.squareRoot = 1;
mvfr0.shortVectors = 1;
mvfr0.roundingModes = 1;
miscRegs[MISCREG_MVFR0] = mvfr0;
MVFR1 mvfr1 = 0;
mvfr1.flushToZero = 1;
mvfr1.defaultNaN = 1;
mvfr1.advSimdLoadStore = 1;
mvfr1.advSimdInteger = 1;
mvfr1.advSimdSinglePrecision = 1;
mvfr1.advSimdHalfPrecision = 1;
mvfr1.vfpHalfPrecision = 1;
miscRegs[MISCREG_MVFR1] = mvfr1;
// Reset values of PRRR and NMRR are implementation dependent
// @todo: PRRR and NMRR in secure state?
miscRegs[MISCREG_PRRR_NS] =
(1 << 19) | // 19
(0 << 18) | // 18
(0 << 17) | // 17
(1 << 16) | // 16
(2 << 14) | // 15:14
(0 << 12) | // 13:12
(2 << 10) | // 11:10
(2 << 8) | // 9:8
(2 << 6) | // 7:6
(2 << 4) | // 5:4
(1 << 2) | // 3:2
0; // 1:0
miscRegs[MISCREG_NMRR_NS] =
(1 << 30) | // 31:30
(0 << 26) | // 27:26
(0 << 24) | // 25:24
(3 << 22) | // 23:22
(2 << 20) | // 21:20
(0 << 18) | // 19:18
(0 << 16) | // 17:16
(1 << 14) | // 15:14
(0 << 12) | // 13:12
(2 << 10) | // 11:10
(0 << 8) | // 9:8
(3 << 6) | // 7:6
(2 << 4) | // 5:4
(0 << 2) | // 3:2
0; // 1:0
if (FullSystem && system->highestELIs64()) {
// Initialize AArch64 state
clear64(p);
return;
}
// Initialize AArch32 state...
clear32(p, sctlr_rst);
}
void
ISA::clear32(const ArmISAParams *p, const SCTLR &sctlr_rst)
{
CPSR cpsr = 0;
cpsr.mode = MODE_USER;
if (FullSystem) {
miscRegs[MISCREG_MVBAR] = system->resetAddr();
}
miscRegs[MISCREG_CPSR] = cpsr;
updateRegMap(cpsr);
SCTLR sctlr = 0;
sctlr.te = (bool) sctlr_rst.te;
sctlr.nmfi = (bool) sctlr_rst.nmfi;
sctlr.v = (bool) sctlr_rst.v;
sctlr.u = 1;
sctlr.xp = 1;
sctlr.rao2 = 1;
sctlr.rao3 = 1;
sctlr.rao4 = 0xf; // SCTLR[6:3]
sctlr.uci = 1;
sctlr.dze = 1;
miscRegs[MISCREG_SCTLR_NS] = sctlr;
miscRegs[MISCREG_SCTLR_RST] = sctlr_rst;
miscRegs[MISCREG_HCPTR] = 0;
miscRegs[MISCREG_CPACR] = 0;
miscRegs[MISCREG_FPSID] = p->fpsid;
if (haveLPAE) {
TTBCR ttbcr = miscRegs[MISCREG_TTBCR_NS];
ttbcr.eae = 0;
miscRegs[MISCREG_TTBCR_NS] = ttbcr;
// Enforce consistency with system-level settings
miscRegs[MISCREG_ID_MMFR0] = (miscRegs[MISCREG_ID_MMFR0] & ~0xf) | 0x5;
}
if (haveSecurity) {
miscRegs[MISCREG_SCTLR_S] = sctlr;
miscRegs[MISCREG_SCR] = 0;
miscRegs[MISCREG_VBAR_S] = 0;
} else {
// we're always non-secure
miscRegs[MISCREG_SCR] = 1;
}
//XXX We need to initialize the rest of the state.
}
void
ISA::clear64(const ArmISAParams *p)
{
CPSR cpsr = 0;
Addr rvbar = system->resetAddr();
switch (system->highestEL()) {
// Set initial EL to highest implemented EL using associated stack
// pointer (SP_ELx); set RVBAR_ELx to implementation defined reset
// value
case EL3:
cpsr.mode = MODE_EL3H;
miscRegs[MISCREG_RVBAR_EL3] = rvbar;
break;
case EL2:
cpsr.mode = MODE_EL2H;
miscRegs[MISCREG_RVBAR_EL2] = rvbar;
break;
case EL1:
cpsr.mode = MODE_EL1H;
miscRegs[MISCREG_RVBAR_EL1] = rvbar;
break;
default:
panic("Invalid highest implemented exception level");
break;
}
// Initialize rest of CPSR
cpsr.daif = 0xf; // Mask all interrupts
cpsr.ss = 0;
cpsr.il = 0;
miscRegs[MISCREG_CPSR] = cpsr;
updateRegMap(cpsr);
// Initialize other control registers
miscRegs[MISCREG_MPIDR_EL1] = 0x80000000;
if (haveSecurity) {
miscRegs[MISCREG_SCTLR_EL3] = 0x30c50830;
miscRegs[MISCREG_SCR_EL3] = 0x00000030; // RES1 fields
} else if (haveVirtualization) {
// also MISCREG_SCTLR_EL2 (by mapping)
miscRegs[MISCREG_HSCTLR] = 0x30c50830;
} else {
// also MISCREG_SCTLR_EL1 (by mapping)
miscRegs[MISCREG_SCTLR_NS] = 0x30d00800 | 0x00050030; // RES1 | init
// Always non-secure
miscRegs[MISCREG_SCR_EL3] = 1;
}
}
void
ISA::initID32(const ArmISAParams *p)
{
// Initialize configurable default values
miscRegs[MISCREG_MIDR] = p->midr;
miscRegs[MISCREG_MIDR_EL1] = p->midr;
miscRegs[MISCREG_VPIDR] = p->midr;
miscRegs[MISCREG_ID_ISAR0] = p->id_isar0;
miscRegs[MISCREG_ID_ISAR1] = p->id_isar1;
miscRegs[MISCREG_ID_ISAR2] = p->id_isar2;
miscRegs[MISCREG_ID_ISAR3] = p->id_isar3;
miscRegs[MISCREG_ID_ISAR4] = p->id_isar4;
miscRegs[MISCREG_ID_ISAR5] = p->id_isar5;
miscRegs[MISCREG_ID_MMFR0] = p->id_mmfr0;
miscRegs[MISCREG_ID_MMFR1] = p->id_mmfr1;
miscRegs[MISCREG_ID_MMFR2] = p->id_mmfr2;
miscRegs[MISCREG_ID_MMFR3] = p->id_mmfr3;
miscRegs[MISCREG_ID_ISAR5] = insertBits(
miscRegs[MISCREG_ID_ISAR5], 19, 4,
haveCrypto ? 0x1112 : 0x0);
}
void
ISA::initID64(const ArmISAParams *p)
{
// Initialize configurable id registers
miscRegs[MISCREG_ID_AA64AFR0_EL1] = p->id_aa64afr0_el1;
miscRegs[MISCREG_ID_AA64AFR1_EL1] = p->id_aa64afr1_el1;
miscRegs[MISCREG_ID_AA64DFR0_EL1] =
(p->id_aa64dfr0_el1 & 0xfffffffffffff0ffULL) |
(p->pmu ? 0x0000000000000100ULL : 0); // Enable PMUv3
miscRegs[MISCREG_ID_AA64DFR1_EL1] = p->id_aa64dfr1_el1;
miscRegs[MISCREG_ID_AA64ISAR0_EL1] = p->id_aa64isar0_el1;
miscRegs[MISCREG_ID_AA64ISAR1_EL1] = p->id_aa64isar1_el1;
miscRegs[MISCREG_ID_AA64MMFR0_EL1] = p->id_aa64mmfr0_el1;
miscRegs[MISCREG_ID_AA64MMFR1_EL1] = p->id_aa64mmfr1_el1;
miscRegs[MISCREG_ID_AA64MMFR2_EL1] = p->id_aa64mmfr2_el1;
miscRegs[MISCREG_ID_DFR0_EL1] =
(p->pmu ? 0x03000000ULL : 0); // Enable PMUv3
miscRegs[MISCREG_ID_DFR0] = miscRegs[MISCREG_ID_DFR0_EL1];
// Enforce consistency with system-level settings...
// EL3
miscRegs[MISCREG_ID_AA64PFR0_EL1] = insertBits(
miscRegs[MISCREG_ID_AA64PFR0_EL1], 15, 12,
haveSecurity ? 0x2 : 0x0);
// EL2
miscRegs[MISCREG_ID_AA64PFR0_EL1] = insertBits(
miscRegs[MISCREG_ID_AA64PFR0_EL1], 11, 8,
haveVirtualization ? 0x2 : 0x0);
// Large ASID support
miscRegs[MISCREG_ID_AA64MMFR0_EL1] = insertBits(
miscRegs[MISCREG_ID_AA64MMFR0_EL1], 7, 4,
haveLargeAsid64 ? 0x2 : 0x0);
// Physical address size
miscRegs[MISCREG_ID_AA64MMFR0_EL1] = insertBits(
miscRegs[MISCREG_ID_AA64MMFR0_EL1], 3, 0,
encodePhysAddrRange64(physAddrRange));
// Crypto
miscRegs[MISCREG_ID_AA64ISAR0_EL1] = insertBits(
miscRegs[MISCREG_ID_AA64ISAR0_EL1], 19, 4,
haveCrypto ? 0x1112 : 0x0);
}
void
ISA::startup(ThreadContext *tc)
{
pmu->setThreadContext(tc);
if (system) {
Gicv3 *gicv3 = dynamic_cast<Gicv3 *>(system->getGIC());
if (gicv3) {
haveGICv3CPUInterface = true;
gicv3CpuInterface.reset(gicv3->getCPUInterface(tc->contextId()));
gicv3CpuInterface->setISA(this);
}
}
}
RegVal
ISA::readMiscRegNoEffect(int misc_reg) const
{
assert(misc_reg < NumMiscRegs);
const auto &reg = lookUpMiscReg[misc_reg]; // bit masks
const auto &map = getMiscIndices(misc_reg);
int lower = map.first, upper = map.second;
// NB!: apply architectural masks according to desired register,
// despite possibly getting value from different (mapped) register.
auto val = !upper ? miscRegs[lower] : ((miscRegs[lower] & mask(32))
|(miscRegs[upper] << 32));
if (val & reg.res0()) {
DPRINTF(MiscRegs, "Reading MiscReg %s with set res0 bits: %#x\n",
miscRegName[misc_reg], val & reg.res0());
}
if ((val & reg.res1()) != reg.res1()) {
DPRINTF(MiscRegs, "Reading MiscReg %s with clear res1 bits: %#x\n",
miscRegName[misc_reg], (val & reg.res1()) ^ reg.res1());
}
return (val & ~reg.raz()) | reg.rao(); // enforce raz/rao
}
RegVal
ISA::readMiscReg(int misc_reg, ThreadContext *tc)
{
CPSR cpsr = 0;
PCState pc = 0;
SCR scr = 0;
if (misc_reg == MISCREG_CPSR) {
cpsr = miscRegs[misc_reg];
pc = tc->pcState();
cpsr.j = pc.jazelle() ? 1 : 0;
cpsr.t = pc.thumb() ? 1 : 0;
return cpsr;
}
#ifndef NDEBUG
if (!miscRegInfo[misc_reg][MISCREG_IMPLEMENTED]) {
if (miscRegInfo[misc_reg][MISCREG_WARN_NOT_FAIL])
warn("Unimplemented system register %s read.\n",
miscRegName[misc_reg]);
else
panic("Unimplemented system register %s read.\n",
miscRegName[misc_reg]);
}
#endif
switch (unflattenMiscReg(misc_reg)) {
case MISCREG_HCR:
{
if (!haveVirtualization)
return 0;
else
return readMiscRegNoEffect(MISCREG_HCR);
}
case MISCREG_CPACR:
{
const uint32_t ones = (uint32_t)(-1);
CPACR cpacrMask = 0;
// Only cp10, cp11, and ase are implemented, nothing else should
// be readable? (straight copy from the write code)
cpacrMask.cp10 = ones;
cpacrMask.cp11 = ones;
cpacrMask.asedis = ones;
// Security Extensions may limit the readability of CPACR
if (haveSecurity) {
scr = readMiscRegNoEffect(MISCREG_SCR);
cpsr = readMiscRegNoEffect(MISCREG_CPSR);
if (scr.ns && (cpsr.mode != MODE_MON) && ELIs32(tc, EL3)) {
NSACR nsacr = readMiscRegNoEffect(MISCREG_NSACR);
// NB: Skipping the full loop, here
if (!nsacr.cp10) cpacrMask.cp10 = 0;
if (!nsacr.cp11) cpacrMask.cp11 = 0;
}
}
RegVal val = readMiscRegNoEffect(MISCREG_CPACR);
val &= cpacrMask;
DPRINTF(MiscRegs, "Reading misc reg %s: %#x\n",
miscRegName[misc_reg], val);
return val;
}
case MISCREG_MPIDR:
case MISCREG_MPIDR_EL1:
return readMPIDR(system, tc);
case MISCREG_VMPIDR:
case MISCREG_VMPIDR_EL2:
// top bit defined as RES1
return readMiscRegNoEffect(misc_reg) | 0x80000000;
case MISCREG_ID_AFR0: // not implemented, so alias MIDR
case MISCREG_REVIDR: // not implemented, so alias MIDR
case MISCREG_MIDR:
cpsr = readMiscRegNoEffect(MISCREG_CPSR);
scr = readMiscRegNoEffect(MISCREG_SCR);
if ((cpsr.mode == MODE_HYP) || inSecureState(scr, cpsr)) {
return readMiscRegNoEffect(misc_reg);
} else {
return readMiscRegNoEffect(MISCREG_VPIDR);
}
break;
case MISCREG_JOSCR: // Jazelle trivial implementation, RAZ/WI
case MISCREG_JMCR: // Jazelle trivial implementation, RAZ/WI
case MISCREG_JIDR: // Jazelle trivial implementation, RAZ/WI
case MISCREG_AIDR: // AUX ID set to 0
case MISCREG_TCMTR: // No TCM's
return 0;
case MISCREG_CLIDR:
warn_once("The clidr register always reports 0 caches.\n");
warn_once("clidr LoUIS field of 0b001 to match current "
"ARM implementations.\n");
return 0x00200000;
case MISCREG_CCSIDR:
warn_once("The ccsidr register isn't implemented and "
"always reads as 0.\n");
break;
case MISCREG_CTR: // AArch32, ARMv7, top bit set
case MISCREG_CTR_EL0: // AArch64
{
//all caches have the same line size in gem5
//4 byte words in ARM
unsigned lineSizeWords =
tc->getSystemPtr()->cacheLineSize() / 4;
unsigned log2LineSizeWords = 0;
while (lineSizeWords >>= 1) {
++log2LineSizeWords;
}
CTR ctr = 0;
//log2 of minimun i-cache line size (words)
ctr.iCacheLineSize = log2LineSizeWords;
//b11 - gem5 uses pipt
ctr.l1IndexPolicy = 0x3;
//log2 of minimum d-cache line size (words)
ctr.dCacheLineSize = log2LineSizeWords;
//log2 of max reservation size (words)
ctr.erg = log2LineSizeWords;
//log2 of max writeback size (words)
ctr.cwg = log2LineSizeWords;
//b100 - gem5 format is ARMv7
ctr.format = 0x4;
return ctr;
}
case MISCREG_ACTLR:
warn("Not doing anything for miscreg ACTLR\n");
break;
case MISCREG_PMXEVTYPER_PMCCFILTR:
case MISCREG_PMINTENSET_EL1 ... MISCREG_PMOVSSET_EL0:
case MISCREG_PMEVCNTR0_EL0 ... MISCREG_PMEVTYPER5_EL0:
case MISCREG_PMCR ... MISCREG_PMOVSSET:
return pmu->readMiscReg(misc_reg);
case MISCREG_CPSR_Q:
panic("shouldn't be reading this register seperately\n");
case MISCREG_FPSCR_QC:
return readMiscRegNoEffect(MISCREG_FPSCR) & ~FpscrQcMask;
case MISCREG_FPSCR_EXC:
return readMiscRegNoEffect(MISCREG_FPSCR) & ~FpscrExcMask;
case MISCREG_FPSR:
{
const uint32_t ones = (uint32_t)(-1);
FPSCR fpscrMask = 0;
fpscrMask.ioc = ones;
fpscrMask.dzc = ones;
fpscrMask.ofc = ones;
fpscrMask.ufc = ones;
fpscrMask.ixc = ones;
fpscrMask.idc = ones;
fpscrMask.qc = ones;
fpscrMask.v = ones;
fpscrMask.c = ones;
fpscrMask.z = ones;
fpscrMask.n = ones;
return readMiscRegNoEffect(MISCREG_FPSCR) & (uint32_t)fpscrMask;
}
case MISCREG_FPCR:
{
const uint32_t ones = (uint32_t)(-1);
FPSCR fpscrMask = 0;
fpscrMask.len = ones;
fpscrMask.stride = ones;
fpscrMask.rMode = ones;
fpscrMask.fz = ones;
fpscrMask.dn = ones;
fpscrMask.ahp = ones;
return readMiscRegNoEffect(MISCREG_FPSCR) & (uint32_t)fpscrMask;
}
case MISCREG_NZCV:
{
CPSR cpsr = 0;
cpsr.nz = tc->readCCReg(CCREG_NZ);
cpsr.c = tc->readCCReg(CCREG_C);
cpsr.v = tc->readCCReg(CCREG_V);
return cpsr;
}
case MISCREG_DAIF:
{
CPSR cpsr = 0;
cpsr.daif = (uint8_t) ((CPSR) miscRegs[MISCREG_CPSR]).daif;
return cpsr;
}
case MISCREG_SP_EL0:
{
return tc->readIntReg(INTREG_SP0);
}
case MISCREG_SP_EL1:
{
return tc->readIntReg(INTREG_SP1);
}
case MISCREG_SP_EL2:
{
return tc->readIntReg(INTREG_SP2);
}
case MISCREG_SPSEL:
{
return miscRegs[MISCREG_CPSR] & 0x1;
}
case MISCREG_CURRENTEL:
{
return miscRegs[MISCREG_CPSR] & 0xc;
}
case MISCREG_L2CTLR:
{
// mostly unimplemented, just set NumCPUs field from sim and return
L2CTLR l2ctlr = 0;
// b00:1CPU to b11:4CPUs
l2ctlr.numCPUs = tc->getSystemPtr()->numContexts() - 1;
return l2ctlr;
}
case MISCREG_DBGDIDR:
/* For now just implement the version number.
* ARMv7, v7.1 Debug architecture (0b0101 --> 0x5)
*/
return 0x5 << 16;
case MISCREG_DBGDSCRint:
return 0;
case MISCREG_ISR:
return tc->getCpuPtr()->getInterruptController(tc->threadId())->getISR(
readMiscRegNoEffect(MISCREG_HCR),
readMiscRegNoEffect(MISCREG_CPSR),
readMiscRegNoEffect(MISCREG_SCR));
case MISCREG_ISR_EL1:
return tc->getCpuPtr()->getInterruptController(tc->threadId())->getISR(
readMiscRegNoEffect(MISCREG_HCR_EL2),
readMiscRegNoEffect(MISCREG_CPSR),
readMiscRegNoEffect(MISCREG_SCR_EL3));
case MISCREG_DCZID_EL0:
return 0x04; // DC ZVA clear 64-byte chunks
case MISCREG_HCPTR:
{
RegVal val = readMiscRegNoEffect(misc_reg);
// The trap bit associated with CP14 is defined as RAZ
val &= ~(1 << 14);
// If a CP bit in NSACR is 0 then the corresponding bit in
// HCPTR is RAO/WI
bool secure_lookup = haveSecurity &&
inSecureState(readMiscRegNoEffect(MISCREG_SCR),
readMiscRegNoEffect(MISCREG_CPSR));
if (!secure_lookup) {
RegVal mask = readMiscRegNoEffect(MISCREG_NSACR);
val |= (mask ^ 0x7FFF) & 0xBFFF;
}
// Set the bits for unimplemented coprocessors to RAO/WI
val |= 0x33FF;
return (val);
}
case MISCREG_HDFAR: // alias for secure DFAR
return readMiscRegNoEffect(MISCREG_DFAR_S);
case MISCREG_HIFAR: // alias for secure IFAR
return readMiscRegNoEffect(MISCREG_IFAR_S);
case MISCREG_ID_PFR0:
// !ThumbEE | !Jazelle | Thumb | ARM
return 0x00000031;
case MISCREG_ID_PFR1:
{ // Timer | Virti | !M Profile | TrustZone | ARMv4
bool haveTimer = (system->getGenericTimer() != NULL);
return 0x00000001
| (haveSecurity ? 0x00000010 : 0x0)
| (haveVirtualization ? 0x00001000 : 0x0)
| (haveTimer ? 0x00010000 : 0x0);
}
case MISCREG_ID_AA64PFR0_EL1:
return 0x0000000000000002 | // AArch{64,32} supported at EL0
0x0000000000000020 | // EL1
(haveVirtualization ? 0x0000000000000200 : 0) | // EL2
(haveSecurity ? 0x0000000000002000 : 0) | // EL3
(haveGICv3CPUInterface ? 0x0000000001000000 : 0);
case MISCREG_ID_AA64PFR1_EL1:
return 0; // bits [63:0] RES0 (reserved for future use)
// Generic Timer registers
case MISCREG_CNTHV_CTL_EL2:
case MISCREG_CNTHV_CVAL_EL2:
case MISCREG_CNTHV_TVAL_EL2:
case MISCREG_CNTFRQ ... MISCREG_CNTHP_CTL:
case MISCREG_CNTPCT ... MISCREG_CNTHP_CVAL:
case MISCREG_CNTKCTL_EL1 ... MISCREG_CNTV_CVAL_EL0:
case MISCREG_CNTVOFF_EL2 ... MISCREG_CNTPS_CVAL_EL1:
return getGenericTimer(tc).readMiscReg(misc_reg);
case MISCREG_ICC_PMR_EL1 ... MISCREG_ICC_IGRPEN1_EL3:
case MISCREG_ICH_AP0R0_EL2 ... MISCREG_ICH_LR15_EL2:
return getGICv3CPUInterface(tc).readMiscReg(misc_reg);
default:
break;
}
return readMiscRegNoEffect(misc_reg);
}
void
ISA::setMiscRegNoEffect(int misc_reg, RegVal val)
{
assert(misc_reg < NumMiscRegs);
const auto &reg = lookUpMiscReg[misc_reg]; // bit masks
const auto &map = getMiscIndices(misc_reg);
int lower = map.first, upper = map.second;
auto v = (val & ~reg.wi()) | reg.rao();
if (upper > 0) {
miscRegs[lower] = bits(v, 31, 0);
miscRegs[upper] = bits(v, 63, 32);
DPRINTF(MiscRegs, "Writing to misc reg %d (%d:%d) : %#x\n",
misc_reg, lower, upper, v);
} else {
miscRegs[lower] = v;
DPRINTF(MiscRegs, "Writing to misc reg %d (%d) : %#x\n",
misc_reg, lower, v);
}
}
void
ISA::setMiscReg(int misc_reg, RegVal val, ThreadContext *tc)
{
RegVal newVal = val;
bool secure_lookup;
SCR scr;
if (misc_reg == MISCREG_CPSR) {
updateRegMap(val);
CPSR old_cpsr = miscRegs[MISCREG_CPSR];
int old_mode = old_cpsr.mode;
CPSR cpsr = val;
if (old_mode != cpsr.mode || cpsr.il != old_cpsr.il) {
getITBPtr(tc)->invalidateMiscReg();
getDTBPtr(tc)->invalidateMiscReg();
}
DPRINTF(Arm, "Updating CPSR from %#x to %#x f:%d i:%d a:%d mode:%#x\n",
miscRegs[misc_reg], cpsr, cpsr.f, cpsr.i, cpsr.a, cpsr.mode);
PCState pc = tc->pcState();
pc.nextThumb(cpsr.t);
pc.nextJazelle(cpsr.j);
pc.illegalExec(cpsr.il == 1);
// Follow slightly different semantics if a CheckerCPU object
// is connected
CheckerCPU *checker = tc->getCheckerCpuPtr();
if (checker) {
tc->pcStateNoRecord(pc);
} else {
tc->pcState(pc);
}
} else {
#ifndef NDEBUG
if (!miscRegInfo[misc_reg][MISCREG_IMPLEMENTED]) {
if (miscRegInfo[misc_reg][MISCREG_WARN_NOT_FAIL])
warn("Unimplemented system register %s write with %#x.\n",
miscRegName[misc_reg], val);
else
panic("Unimplemented system register %s write with %#x.\n",
miscRegName[misc_reg], val);
}
#endif
switch (unflattenMiscReg(misc_reg)) {
case MISCREG_CPACR:
{
const uint32_t ones = (uint32_t)(-1);
CPACR cpacrMask = 0;
// Only cp10, cp11, and ase are implemented, nothing else should
// be writable
cpacrMask.cp10 = ones;
cpacrMask.cp11 = ones;
cpacrMask.asedis = ones;
// Security Extensions may limit the writability of CPACR
if (haveSecurity) {
scr = readMiscRegNoEffect(MISCREG_SCR);
CPSR cpsr = readMiscRegNoEffect(MISCREG_CPSR);
if (scr.ns && (cpsr.mode != MODE_MON) && ELIs32(tc, EL3)) {
NSACR nsacr = readMiscRegNoEffect(MISCREG_NSACR);
// NB: Skipping the full loop, here
if (!nsacr.cp10) cpacrMask.cp10 = 0;
if (!nsacr.cp11) cpacrMask.cp11 = 0;
}
}
RegVal old_val = readMiscRegNoEffect(MISCREG_CPACR);
newVal &= cpacrMask;
newVal |= old_val & ~cpacrMask;
DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
miscRegName[misc_reg], newVal);
}
break;
case MISCREG_CPTR_EL2:
{
const uint32_t ones = (uint32_t)(-1);
CPTR cptrMask = 0;
cptrMask.tcpac = ones;
cptrMask.tta = ones;
cptrMask.tfp = ones;
newVal &= cptrMask;
cptrMask = 0;
cptrMask.res1_13_12_el2 = ones;
cptrMask.res1_9_0_el2 = ones;
newVal |= cptrMask;
DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
miscRegName[misc_reg], newVal);
}
break;
case MISCREG_CPTR_EL3:
{
const uint32_t ones = (uint32_t)(-1);
CPTR cptrMask = 0;
cptrMask.tcpac = ones;
cptrMask.tta = ones;
cptrMask.tfp = ones;
newVal &= cptrMask;
DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
miscRegName[misc_reg], newVal);
}
break;
case MISCREG_CSSELR:
warn_once("The csselr register isn't implemented.\n");
return;
case MISCREG_DC_ZVA_Xt:
warn("Calling DC ZVA! Not Implemeted! Expect WEIRD results\n");
return;
case MISCREG_FPSCR:
{
const uint32_t ones = (uint32_t)(-1);
FPSCR fpscrMask = 0;
fpscrMask.ioc = ones;
fpscrMask.dzc = ones;
fpscrMask.ofc = ones;
fpscrMask.ufc = ones;
fpscrMask.ixc = ones;
fpscrMask.idc = ones;
fpscrMask.ioe = ones;
fpscrMask.dze = ones;
fpscrMask.ofe = ones;
fpscrMask.ufe = ones;
fpscrMask.ixe = ones;
fpscrMask.ide = ones;
fpscrMask.len = ones;
fpscrMask.stride = ones;
fpscrMask.rMode = ones;
fpscrMask.fz = ones;
fpscrMask.dn = ones;
fpscrMask.ahp = ones;
fpscrMask.qc = ones;
fpscrMask.v = ones;
fpscrMask.c = ones;
fpscrMask.z = ones;
fpscrMask.n = ones;
newVal = (newVal & (uint32_t)fpscrMask) |
(readMiscRegNoEffect(MISCREG_FPSCR) &
~(uint32_t)fpscrMask);
tc->getDecoderPtr()->setContext(newVal);
}
break;
case MISCREG_FPSR:
{
const uint32_t ones = (uint32_t)(-1);
FPSCR fpscrMask = 0;
fpscrMask.ioc = ones;
fpscrMask.dzc = ones;
fpscrMask.ofc = ones;
fpscrMask.ufc = ones;
fpscrMask.ixc = ones;
fpscrMask.idc = ones;
fpscrMask.qc = ones;
fpscrMask.v = ones;
fpscrMask.c = ones;
fpscrMask.z = ones;
fpscrMask.n = ones;
newVal = (newVal & (uint32_t)fpscrMask) |
(readMiscRegNoEffect(MISCREG_FPSCR) &
~(uint32_t)fpscrMask);
misc_reg = MISCREG_FPSCR;
}
break;
case MISCREG_FPCR:
{
const uint32_t ones = (uint32_t)(-1);
FPSCR fpscrMask = 0;
fpscrMask.len = ones;
fpscrMask.stride = ones;
fpscrMask.rMode = ones;
fpscrMask.fz = ones;
fpscrMask.dn = ones;
fpscrMask.ahp = ones;
newVal = (newVal & (uint32_t)fpscrMask) |
(readMiscRegNoEffect(MISCREG_FPSCR) &
~(uint32_t)fpscrMask);
misc_reg = MISCREG_FPSCR;
}
break;
case MISCREG_CPSR_Q:
{
assert(!(newVal & ~CpsrMaskQ));
newVal = readMiscRegNoEffect(MISCREG_CPSR) | newVal;
misc_reg = MISCREG_CPSR;
}
break;
case MISCREG_FPSCR_QC:
{
newVal = readMiscRegNoEffect(MISCREG_FPSCR) |
(newVal & FpscrQcMask);
misc_reg = MISCREG_FPSCR;
}
break;
case MISCREG_FPSCR_EXC:
{
newVal = readMiscRegNoEffect(MISCREG_FPSCR) |
(newVal & FpscrExcMask);
misc_reg = MISCREG_FPSCR;
}
break;
case MISCREG_FPEXC:
{
// vfpv3 architecture, section B.6.1 of DDI04068
// bit 29 - valid only if fpexc[31] is 0
const uint32_t fpexcMask = 0x60000000;
newVal = (newVal & fpexcMask) |
(readMiscRegNoEffect(MISCREG_FPEXC) & ~fpexcMask);
}
break;
case MISCREG_HCR:
{
if (!haveVirtualization)
return;
}
break;
case MISCREG_IFSR:
{
// ARM ARM (ARM DDI 0406C.b) B4.1.96
const uint32_t ifsrMask =
mask(31, 13) | mask(11, 11) | mask(8, 6);
newVal = newVal & ~ifsrMask;
}
break;
case MISCREG_DFSR:
{
// ARM ARM (ARM DDI 0406C.b) B4.1.52
const uint32_t dfsrMask = mask(31, 14) | mask(8, 8);
newVal = newVal & ~dfsrMask;
}
break;
case MISCREG_AMAIR0:
case MISCREG_AMAIR1:
{
// ARM ARM (ARM DDI 0406C.b) B4.1.5
// Valid only with LPAE
if (!haveLPAE)
return;
DPRINTF(MiscRegs, "Writing AMAIR: %#x\n", newVal);
}
break;
case MISCREG_SCR:
getITBPtr(tc)->invalidateMiscReg();
getDTBPtr(tc)->invalidateMiscReg();
break;
case MISCREG_SCTLR:
{
DPRINTF(MiscRegs, "Writing SCTLR: %#x\n", newVal);
scr = readMiscRegNoEffect(MISCREG_SCR);
MiscRegIndex sctlr_idx;
if (haveSecurity && !highestELIs64 && !scr.ns) {
sctlr_idx = MISCREG_SCTLR_S;
} else {
sctlr_idx = MISCREG_SCTLR_NS;
}
SCTLR sctlr = miscRegs[sctlr_idx];
SCTLR new_sctlr = newVal;
new_sctlr.nmfi = ((bool)sctlr.nmfi) && !haveVirtualization;
miscRegs[sctlr_idx] = (RegVal)new_sctlr;
getITBPtr(tc)->invalidateMiscReg();
getDTBPtr(tc)->invalidateMiscReg();
}
case MISCREG_MIDR:
case MISCREG_ID_PFR0:
case MISCREG_ID_PFR1:
case MISCREG_ID_DFR0:
case MISCREG_ID_MMFR0:
case MISCREG_ID_MMFR1:
case MISCREG_ID_MMFR2:
case MISCREG_ID_MMFR3:
case MISCREG_ID_ISAR0:
case MISCREG_ID_ISAR1:
case MISCREG_ID_ISAR2:
case MISCREG_ID_ISAR3:
case MISCREG_ID_ISAR4:
case MISCREG_ID_ISAR5:
case MISCREG_MPIDR:
case MISCREG_FPSID:
case MISCREG_TLBTR:
case MISCREG_MVFR0:
case MISCREG_MVFR1:
case MISCREG_ID_AA64AFR0_EL1:
case MISCREG_ID_AA64AFR1_EL1:
case MISCREG_ID_AA64DFR0_EL1:
case MISCREG_ID_AA64DFR1_EL1:
case MISCREG_ID_AA64ISAR0_EL1:
case MISCREG_ID_AA64ISAR1_EL1:
case MISCREG_ID_AA64MMFR0_EL1:
case MISCREG_ID_AA64MMFR1_EL1:
case MISCREG_ID_AA64MMFR2_EL1:
case MISCREG_ID_AA64PFR0_EL1:
case MISCREG_ID_AA64PFR1_EL1:
// ID registers are constants.
return;
// TLB Invalidate All
case MISCREG_TLBIALL: // TLBI all entries, EL0&1,
{
assert32(tc);
scr = readMiscReg(MISCREG_SCR, tc);
TLBIALL tlbiOp(EL1, haveSecurity && !scr.ns);
tlbiOp(tc);
return;
}
// TLB Invalidate All, Inner Shareable
case MISCREG_TLBIALLIS:
{
assert32(tc);
scr = readMiscReg(MISCREG_SCR, tc);
TLBIALL tlbiOp(EL1, haveSecurity && !scr.ns);
tlbiOp.broadcast(tc);
return;
}
// Instruction TLB Invalidate All
case MISCREG_ITLBIALL:
{
assert32(tc);
scr = readMiscReg(MISCREG_SCR, tc);
ITLBIALL tlbiOp(EL1, haveSecurity && !scr.ns);
tlbiOp(tc);
return;
}
// Data TLB Invalidate All
case MISCREG_DTLBIALL:
{
assert32(tc);
scr = readMiscReg(MISCREG_SCR, tc);
DTLBIALL tlbiOp(EL1, haveSecurity && !scr.ns);
tlbiOp(tc);
return;
}
// TLB Invalidate by VA
// mcr tlbimval(is) is invalidating all matching entries
// regardless of the level of lookup, since in gem5 we cache
// in the tlb the last level of lookup only.
case MISCREG_TLBIMVA:
case MISCREG_TLBIMVAL:
{
assert32(tc);
scr = readMiscReg(MISCREG_SCR, tc);
TLBIMVA tlbiOp(EL1,
haveSecurity && !scr.ns,
mbits(newVal, 31, 12),
bits(newVal, 7,0));
tlbiOp(tc);
return;
}
// TLB Invalidate by VA, Inner Shareable
case MISCREG_TLBIMVAIS:
case MISCREG_TLBIMVALIS:
{
assert32(tc);
scr = readMiscReg(MISCREG_SCR, tc);
TLBIMVA tlbiOp(EL1,
haveSecurity && !scr.ns,
mbits(newVal, 31, 12),
bits(newVal, 7,0));
tlbiOp.broadcast(tc);
return;
}
// TLB Invalidate by ASID match
case MISCREG_TLBIASID:
{
assert32(tc);
scr = readMiscReg(MISCREG_SCR, tc);
TLBIASID tlbiOp(EL1,
haveSecurity && !scr.ns,
bits(newVal, 7,0));
tlbiOp(tc);
return;
}
// TLB Invalidate by ASID match, Inner Shareable
case MISCREG_TLBIASIDIS:
{
assert32(tc);
scr = readMiscReg(MISCREG_SCR, tc);
TLBIASID tlbiOp(EL1,
haveSecurity && !scr.ns,
bits(newVal, 7,0));
tlbiOp.broadcast(tc);
return;
}
// mcr tlbimvaal(is) is invalidating all matching entries
// regardless of the level of lookup, since in gem5 we cache
// in the tlb the last level of lookup only.
// TLB Invalidate by VA, All ASID
case MISCREG_TLBIMVAA:
case MISCREG_TLBIMVAAL:
{
assert32(tc);
scr = readMiscReg(MISCREG_SCR, tc);
TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns,
mbits(newVal, 31,12), false);
tlbiOp(tc);
return;
}
// TLB Invalidate by VA, All ASID, Inner Shareable
case MISCREG_TLBIMVAAIS:
case MISCREG_TLBIMVAALIS:
{
assert32(tc);
scr = readMiscReg(MISCREG_SCR, tc);
TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns,
mbits(newVal, 31,12), false);
tlbiOp.broadcast(tc);
return;
}
// mcr tlbimvalh(is) is invalidating all matching entries
// regardless of the level of lookup, since in gem5 we cache
// in the tlb the last level of lookup only.
// TLB Invalidate by VA, Hyp mode
case MISCREG_TLBIMVAH:
case MISCREG_TLBIMVALH:
{
assert32(tc);
scr = readMiscReg(MISCREG_SCR, tc);
TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns,
mbits(newVal, 31,12), true);
tlbiOp(tc);
return;
}
// TLB Invalidate by VA, Hyp mode, Inner Shareable
case MISCREG_TLBIMVAHIS:
case MISCREG_TLBIMVALHIS:
{
assert32(tc);
scr = readMiscReg(MISCREG_SCR, tc);
TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns,
mbits(newVal, 31,12), true);
tlbiOp.broadcast(tc);
return;
}
// mcr tlbiipas2l(is) is invalidating all matching entries
// regardless of the level of lookup, since in gem5 we cache
// in the tlb the last level of lookup only.
// TLB Invalidate by Intermediate Physical Address, Stage 2
case MISCREG_TLBIIPAS2:
case MISCREG_TLBIIPAS2L:
{
assert32(tc);
scr = readMiscReg(MISCREG_SCR, tc);
TLBIIPA tlbiOp(EL1,
haveSecurity && !scr.ns,
static_cast<Addr>(bits(newVal, 35, 0)) << 12);
tlbiOp(tc);
return;
}
// TLB Invalidate by Intermediate Physical Address, Stage 2,
// Inner Shareable
case MISCREG_TLBIIPAS2IS:
case MISCREG_TLBIIPAS2LIS:
{
assert32(tc);
scr = readMiscReg(MISCREG_SCR, tc);
TLBIIPA tlbiOp(EL1,
haveSecurity && !scr.ns,
static_cast<Addr>(bits(newVal, 35, 0)) << 12);
tlbiOp.broadcast(tc);
return;
}
// Instruction TLB Invalidate by VA
case MISCREG_ITLBIMVA:
{
assert32(tc);
scr = readMiscReg(MISCREG_SCR, tc);
ITLBIMVA tlbiOp(EL1,
haveSecurity && !scr.ns,
mbits(newVal, 31, 12),
bits(newVal, 7,0));
tlbiOp(tc);
return;
}
// Data TLB Invalidate by VA
case MISCREG_DTLBIMVA:
{
assert32(tc);
scr = readMiscReg(MISCREG_SCR, tc);
DTLBIMVA tlbiOp(EL1,
haveSecurity && !scr.ns,
mbits(newVal, 31, 12),
bits(newVal, 7,0));
tlbiOp(tc);
return;
}
// Instruction TLB Invalidate by ASID match
case MISCREG_ITLBIASID:
{
assert32(tc);
scr = readMiscReg(MISCREG_SCR, tc);
ITLBIASID tlbiOp(EL1,
haveSecurity && !scr.ns,
bits(newVal, 7,0));
tlbiOp(tc);
return;
}
// Data TLB Invalidate by ASID match
case MISCREG_DTLBIASID:
{
assert32(tc);
scr = readMiscReg(MISCREG_SCR, tc);
DTLBIASID tlbiOp(EL1,
haveSecurity && !scr.ns,
bits(newVal, 7,0));
tlbiOp(tc);
return;
}
// TLB Invalidate All, Non-Secure Non-Hyp
case MISCREG_TLBIALLNSNH:
{
assert32(tc);
TLBIALLN tlbiOp(EL1, false);
tlbiOp(tc);
return;
}
// TLB Invalidate All, Non-Secure Non-Hyp, Inner Shareable
case MISCREG_TLBIALLNSNHIS:
{
assert32(tc);
TLBIALLN tlbiOp(EL1, false);
tlbiOp.broadcast(tc);
return;
}
// TLB Invalidate All, Hyp mode
case MISCREG_TLBIALLH:
{
assert32(tc);
TLBIALLN tlbiOp(EL1, true);
tlbiOp(tc);
return;
}
// TLB Invalidate All, Hyp mode, Inner Shareable
case MISCREG_TLBIALLHIS:
{
assert32(tc);
TLBIALLN tlbiOp(EL1, true);
tlbiOp.broadcast(tc);
return;
}
// AArch64 TLB Invalidate All, EL3
case MISCREG_TLBI_ALLE3:
{
assert64(tc);
TLBIALL tlbiOp(EL3, true);
tlbiOp(tc);
return;
}
// AArch64 TLB Invalidate All, EL3, Inner Shareable
case MISCREG_TLBI_ALLE3IS:
{
assert64(tc);
TLBIALL tlbiOp(EL3, true);
tlbiOp.broadcast(tc);
return;
}
// AArch64 TLB Invalidate All, EL2, Inner Shareable
case MISCREG_TLBI_ALLE2:
case MISCREG_TLBI_ALLE2IS:
{
assert64(tc);
scr = readMiscReg(MISCREG_SCR, tc);
TLBIALL tlbiOp(EL2, haveSecurity && !scr.ns);
tlbiOp(tc);
return;
}
// AArch64 TLB Invalidate All, EL1
case MISCREG_TLBI_ALLE1:
case MISCREG_TLBI_VMALLE1:
case MISCREG_TLBI_VMALLS12E1:
// @todo: handle VMID and stage 2 to enable Virtualization
{
assert64(tc);
scr = readMiscReg(MISCREG_SCR, tc);
TLBIALL tlbiOp(EL1, haveSecurity && !scr.ns);
tlbiOp(tc);
return;
}
// AArch64 TLB Invalidate All, EL1, Inner Shareable
case MISCREG_TLBI_ALLE1IS:
case MISCREG_TLBI_VMALLE1IS:
case MISCREG_TLBI_VMALLS12E1IS:
// @todo: handle VMID and stage 2 to enable Virtualization
{
assert64(tc);
scr = readMiscReg(MISCREG_SCR, tc);
TLBIALL tlbiOp(EL1, haveSecurity && !scr.ns);
tlbiOp.broadcast(tc);
return;
}
// VAEx(IS) and VALEx(IS) are the same because TLBs
// only store entries
// from the last level of translation table walks
// @todo: handle VMID to enable Virtualization
// AArch64 TLB Invalidate by VA, EL3
case MISCREG_TLBI_VAE3_Xt:
case MISCREG_TLBI_VALE3_Xt:
{
assert64(tc);
TLBIMVA tlbiOp(EL3, true,
static_cast<Addr>(bits(newVal, 43, 0)) << 12,
0xbeef);
tlbiOp(tc);
return;
}
// AArch64 TLB Invalidate by VA, EL3, Inner Shareable
case MISCREG_TLBI_VAE3IS_Xt:
case MISCREG_TLBI_VALE3IS_Xt:
{
assert64(tc);
TLBIMVA tlbiOp(EL3, true,
static_cast<Addr>(bits(newVal, 43, 0)) << 12,
0xbeef);
tlbiOp.broadcast(tc);
return;
}
// AArch64 TLB Invalidate by VA, EL2
case MISCREG_TLBI_VAE2_Xt:
case MISCREG_TLBI_VALE2_Xt:
{
assert64(tc);
scr = readMiscReg(MISCREG_SCR, tc);
TLBIMVA tlbiOp(EL2, haveSecurity && !scr.ns,
static_cast<Addr>(bits(newVal, 43, 0)) << 12,
0xbeef);
tlbiOp(tc);
return;
}
// AArch64 TLB Invalidate by VA, EL2, Inner Shareable
case MISCREG_TLBI_VAE2IS_Xt:
case MISCREG_TLBI_VALE2IS_Xt:
{
assert64(tc);
scr = readMiscReg(MISCREG_SCR, tc);
TLBIMVA tlbiOp(EL2, haveSecurity && !scr.ns,
static_cast<Addr>(bits(newVal, 43, 0)) << 12,
0xbeef);
tlbiOp.broadcast(tc);
return;
}
// AArch64 TLB Invalidate by VA, EL1
case MISCREG_TLBI_VAE1_Xt:
case MISCREG_TLBI_VALE1_Xt:
{
assert64(tc);
scr = readMiscReg(MISCREG_SCR, tc);
auto asid = haveLargeAsid64 ? bits(newVal, 63, 48) :
bits(newVal, 55, 48);
TLBIMVA tlbiOp(EL1, haveSecurity && !scr.ns,
static_cast<Addr>(bits(newVal, 43, 0)) << 12,
asid);
tlbiOp(tc);
return;
}
// AArch64 TLB Invalidate by VA, EL1, Inner Shareable
case MISCREG_TLBI_VAE1IS_Xt:
case MISCREG_TLBI_VALE1IS_Xt:
{
assert64(tc);
scr = readMiscReg(MISCREG_SCR, tc);
auto asid = haveLargeAsid64 ? bits(newVal, 63, 48) :
bits(newVal, 55, 48);
TLBIMVA tlbiOp(EL1, haveSecurity && !scr.ns,
static_cast<Addr>(bits(newVal, 43, 0)) << 12,
asid);
tlbiOp.broadcast(tc);
return;
}
// AArch64 TLB Invalidate by ASID, EL1
// @todo: handle VMID to enable Virtualization
case MISCREG_TLBI_ASIDE1_Xt:
{
assert64(tc);
scr = readMiscReg(MISCREG_SCR, tc);
auto asid = haveLargeAsid64 ? bits(newVal, 63, 48) :
bits(newVal, 55, 48);
TLBIASID tlbiOp(EL1, haveSecurity && !scr.ns, asid);
tlbiOp(tc);
return;
}
// AArch64 TLB Invalidate by ASID, EL1, Inner Shareable
case MISCREG_TLBI_ASIDE1IS_Xt:
{
assert64(tc);
scr = readMiscReg(MISCREG_SCR, tc);
auto asid = haveLargeAsid64 ? bits(newVal, 63, 48) :
bits(newVal, 55, 48);
TLBIASID tlbiOp(EL1, haveSecurity && !scr.ns, asid);
tlbiOp.broadcast(tc);
return;
}
// VAAE1(IS) and VAALE1(IS) are the same because TLBs only store
// entries from the last level of translation table walks
// AArch64 TLB Invalidate by VA, All ASID, EL1
case MISCREG_TLBI_VAAE1_Xt:
case MISCREG_TLBI_VAALE1_Xt:
{
assert64(tc);
scr = readMiscReg(MISCREG_SCR, tc);
TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns,
static_cast<Addr>(bits(newVal, 43, 0)) << 12, false);
tlbiOp(tc);
return;
}
// AArch64 TLB Invalidate by VA, All ASID, EL1, Inner Shareable
case MISCREG_TLBI_VAAE1IS_Xt:
case MISCREG_TLBI_VAALE1IS_Xt:
{
assert64(tc);
scr = readMiscReg(MISCREG_SCR, tc);
TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns,
static_cast<Addr>(bits(newVal, 43, 0)) << 12, false);
tlbiOp.broadcast(tc);
return;
}
// AArch64 TLB Invalidate by Intermediate Physical Address,
// Stage 2, EL1
case MISCREG_TLBI_IPAS2E1_Xt:
case MISCREG_TLBI_IPAS2LE1_Xt:
{
assert64(tc);
scr = readMiscReg(MISCREG_SCR, tc);
TLBIIPA tlbiOp(EL1, haveSecurity && !scr.ns,
static_cast<Addr>(bits(newVal, 35, 0)) << 12);
tlbiOp(tc);
return;
}
// AArch64 TLB Invalidate by Intermediate Physical Address,
// Stage 2, EL1, Inner Shareable
case MISCREG_TLBI_IPAS2E1IS_Xt:
case MISCREG_TLBI_IPAS2LE1IS_Xt:
{
assert64(tc);
scr = readMiscReg(MISCREG_SCR, tc);
TLBIIPA tlbiOp(EL1, haveSecurity && !scr.ns,
static_cast<Addr>(bits(newVal, 35, 0)) << 12);
tlbiOp.broadcast(tc);
return;
}
case MISCREG_ACTLR:
warn("Not doing anything for write of miscreg ACTLR\n");
break;
case MISCREG_PMXEVTYPER_PMCCFILTR:
case MISCREG_PMINTENSET_EL1 ... MISCREG_PMOVSSET_EL0:
case MISCREG_PMEVCNTR0_EL0 ... MISCREG_PMEVTYPER5_EL0:
case MISCREG_PMCR ... MISCREG_PMOVSSET:
pmu->setMiscReg(misc_reg, newVal);
break;
case MISCREG_HSTR: // TJDBX, now redifined to be RES0
{
HSTR hstrMask = 0;
hstrMask.tjdbx = 1;
newVal &= ~((uint32_t) hstrMask);
break;
}
case MISCREG_HCPTR:
{
// If a CP bit in NSACR is 0 then the corresponding bit in
// HCPTR is RAO/WI. Same applies to NSASEDIS
secure_lookup = haveSecurity &&
inSecureState(readMiscRegNoEffect(MISCREG_SCR),
readMiscRegNoEffect(MISCREG_CPSR));
if (!secure_lookup) {
RegVal oldValue = readMiscRegNoEffect(MISCREG_HCPTR);
RegVal mask =
(readMiscRegNoEffect(MISCREG_NSACR) ^ 0x7FFF) & 0xBFFF;
newVal = (newVal & ~mask) | (oldValue & mask);
}
break;
}
case MISCREG_HDFAR: // alias for secure DFAR
misc_reg = MISCREG_DFAR_S;
break;
case MISCREG_HIFAR: // alias for secure IFAR
misc_reg = MISCREG_IFAR_S;
break;
case MISCREG_ATS1CPR:
case MISCREG_ATS1CPW:
case MISCREG_ATS1CUR:
case MISCREG_ATS1CUW:
case MISCREG_ATS12NSOPR:
case MISCREG_ATS12NSOPW:
case MISCREG_ATS12NSOUR:
case MISCREG_ATS12NSOUW:
case MISCREG_ATS1HR:
case MISCREG_ATS1HW:
{
Request::Flags flags = 0;
BaseTLB::Mode mode = BaseTLB::Read;
TLB::ArmTranslationType tranType = TLB::NormalTran;
Fault fault;
switch(misc_reg) {
case MISCREG_ATS1CPR:
flags = TLB::MustBeOne;
tranType = TLB::S1CTran;
mode = BaseTLB::Read;
break;
case MISCREG_ATS1CPW:
flags = TLB::MustBeOne;
tranType = TLB::S1CTran;
mode = BaseTLB::Write;
break;
case MISCREG_ATS1CUR:
flags = TLB::MustBeOne | TLB::UserMode;
tranType = TLB::S1CTran;
mode = BaseTLB::Read;
break;
case MISCREG_ATS1CUW:
flags = TLB::MustBeOne | TLB::UserMode;
tranType = TLB::S1CTran;
mode = BaseTLB::Write;
break;
case MISCREG_ATS12NSOPR:
if (!haveSecurity)
panic("Security Extensions required for ATS12NSOPR");
flags = TLB::MustBeOne;
tranType = TLB::S1S2NsTran;
mode = BaseTLB::Read;
break;
case MISCREG_ATS12NSOPW:
if (!haveSecurity)
panic("Security Extensions required for ATS12NSOPW");
flags = TLB::MustBeOne;
tranType = TLB::S1S2NsTran;
mode = BaseTLB::Write;
break;
case MISCREG_ATS12NSOUR:
if (!haveSecurity)
panic("Security Extensions required for ATS12NSOUR");
flags = TLB::MustBeOne | TLB::UserMode;
tranType = TLB::S1S2NsTran;
mode = BaseTLB::Read;
break;
case MISCREG_ATS12NSOUW:
if (!haveSecurity)
panic("Security Extensions required for ATS12NSOUW");
flags = TLB::MustBeOne | TLB::UserMode;
tranType = TLB::S1S2NsTran;
mode = BaseTLB::Write;
break;
case MISCREG_ATS1HR: // only really useful from secure mode.
flags = TLB::MustBeOne;
tranType = TLB::HypMode;
mode = BaseTLB::Read;
break;
case MISCREG_ATS1HW:
flags = TLB::MustBeOne;
tranType = TLB::HypMode;
mode = BaseTLB::Write;
break;
}
// If we're in timing mode then doing the translation in
// functional mode then we're slightly distorting performance
// results obtained from simulations. The translation should be
// done in the same mode the core is running in. NOTE: This
// can't be an atomic translation because that causes problems
// with unexpected atomic snoop requests.
warn("Translating via %s in functional mode! Fix Me!\n",
miscRegName[misc_reg]);
auto req = std::make_shared<Request>(
0, val, 0, flags, Request::funcMasterId,
tc->pcState().pc(), tc->contextId());
fault = getDTBPtr(tc)->translateFunctional(
req, tc, mode, tranType);
TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR);
HCR hcr = readMiscRegNoEffect(MISCREG_HCR);
RegVal newVal;
if (fault == NoFault) {
Addr paddr = req->getPaddr();
if (haveLPAE && (ttbcr.eae || tranType & TLB::HypMode ||
((tranType & TLB::S1S2NsTran) && hcr.vm) )) {
newVal = (paddr & mask(39, 12)) |
(getDTBPtr(tc)->getAttr());
} else {
newVal = (paddr & 0xfffff000) |
(getDTBPtr(tc)->getAttr());
}
DPRINTF(MiscRegs,
"MISCREG: Translated addr 0x%08x: PAR: 0x%08x\n",
val, newVal);
} else {
ArmFault *armFault = static_cast<ArmFault *>(fault.get());
armFault->update(tc);
// Set fault bit and FSR
FSR fsr = armFault->getFsr(tc);
newVal = ((fsr >> 9) & 1) << 11;
if (newVal) {
// LPAE - rearange fault status
newVal |= ((fsr >> 0) & 0x3f) << 1;
} else {
// VMSA - rearange fault status
newVal |= ((fsr >> 0) & 0xf) << 1;
newVal |= ((fsr >> 10) & 0x1) << 5;
newVal |= ((fsr >> 12) & 0x1) << 6;
}
newVal |= 0x1; // F bit
newVal |= ((armFault->iss() >> 7) & 0x1) << 8;
newVal |= armFault->isStage2() ? 0x200 : 0;
DPRINTF(MiscRegs,
"MISCREG: Translated addr 0x%08x fault fsr %#x: PAR: 0x%08x\n",
val, fsr, newVal);
}
setMiscRegNoEffect(MISCREG_PAR, newVal);
return;
}
case MISCREG_TTBCR:
{
TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR);
const uint32_t ones = (uint32_t)(-1);
TTBCR ttbcrMask = 0;
TTBCR ttbcrNew = newVal;
// ARM DDI 0406C.b, ARMv7-32
ttbcrMask.n = ones; // T0SZ
if (haveSecurity) {
ttbcrMask.pd0 = ones;
ttbcrMask.pd1 = ones;
}
ttbcrMask.epd0 = ones;
ttbcrMask.irgn0 = ones;
ttbcrMask.orgn0 = ones;
ttbcrMask.sh0 = ones;
ttbcrMask.ps = ones; // T1SZ
ttbcrMask.a1 = ones;
ttbcrMask.epd1 = ones;
ttbcrMask.irgn1 = ones;
ttbcrMask.orgn1 = ones;
ttbcrMask.sh1 = ones;
if (haveLPAE)
ttbcrMask.eae = ones;
if (haveLPAE && ttbcrNew.eae) {
newVal = newVal & ttbcrMask;
} else {
newVal = (newVal & ttbcrMask) | (ttbcr & (~ttbcrMask));
}
// Invalidate TLB MiscReg
getITBPtr(tc)->invalidateMiscReg();
getDTBPtr(tc)->invalidateMiscReg();
break;
}
case MISCREG_TTBR0:
case MISCREG_TTBR1:
{
TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR);
if (haveLPAE) {
if (ttbcr.eae) {
// ARMv7 bit 63-56, 47-40 reserved, UNK/SBZP
// ARMv8 AArch32 bit 63-56 only
uint64_t ttbrMask = mask(63,56) | mask(47,40);
newVal = (newVal & (~ttbrMask));
}
}
// Invalidate TLB MiscReg
getITBPtr(tc)->invalidateMiscReg();
getDTBPtr(tc)->invalidateMiscReg();
break;
}
case MISCREG_SCTLR_EL1:
case MISCREG_CONTEXTIDR:
case MISCREG_PRRR:
case MISCREG_NMRR:
case MISCREG_MAIR0:
case MISCREG_MAIR1:
case MISCREG_DACR:
case MISCREG_VTTBR:
case MISCREG_SCR_EL3:
case MISCREG_HCR_EL2:
case MISCREG_TCR_EL1:
case MISCREG_TCR_EL2:
case MISCREG_TCR_EL3:
case MISCREG_SCTLR_EL2:
case MISCREG_SCTLR_EL3:
case MISCREG_HSCTLR:
case MISCREG_TTBR0_EL1:
case MISCREG_TTBR1_EL1:
case MISCREG_TTBR0_EL2:
case MISCREG_TTBR1_EL2:
case MISCREG_TTBR0_EL3:
getITBPtr(tc)->invalidateMiscReg();
getDTBPtr(tc)->invalidateMiscReg();
break;
case MISCREG_NZCV:
{
CPSR cpsr = val;
tc->setCCReg(CCREG_NZ, cpsr.nz);
tc->setCCReg(CCREG_C, cpsr.c);
tc->setCCReg(CCREG_V, cpsr.v);
}
break;
case MISCREG_DAIF:
{
CPSR cpsr = miscRegs[MISCREG_CPSR];
cpsr.daif = (uint8_t) ((CPSR) newVal).daif;
newVal = cpsr;
misc_reg = MISCREG_CPSR;
}
break;
case MISCREG_SP_EL0:
tc->setIntReg(INTREG_SP0, newVal);
break;
case MISCREG_SP_EL1:
tc->setIntReg(INTREG_SP1, newVal);
break;
case MISCREG_SP_EL2:
tc->setIntReg(INTREG_SP2, newVal);
break;
case MISCREG_SPSEL:
{
CPSR cpsr = miscRegs[MISCREG_CPSR];
cpsr.sp = (uint8_t) ((CPSR) newVal).sp;
newVal = cpsr;
misc_reg = MISCREG_CPSR;
}
break;
case MISCREG_CURRENTEL:
{
CPSR cpsr = miscRegs[MISCREG_CPSR];
cpsr.el = (uint8_t) ((CPSR) newVal).el;
newVal = cpsr;
misc_reg = MISCREG_CPSR;
}
break;
case MISCREG_AT_S1E1R_Xt:
case MISCREG_AT_S1E1W_Xt:
case MISCREG_AT_S1E0R_Xt:
case MISCREG_AT_S1E0W_Xt:
case MISCREG_AT_S1E2R_Xt:
case MISCREG_AT_S1E2W_Xt:
case MISCREG_AT_S12E1R_Xt:
case MISCREG_AT_S12E1W_Xt:
case MISCREG_AT_S12E0R_Xt:
case MISCREG_AT_S12E0W_Xt:
case MISCREG_AT_S1E3R_Xt:
case MISCREG_AT_S1E3W_Xt:
{
RequestPtr req = std::make_shared<Request>();
Request::Flags flags = 0;
BaseTLB::Mode mode = BaseTLB::Read;
TLB::ArmTranslationType tranType = TLB::NormalTran;
Fault fault;
switch(misc_reg) {
case MISCREG_AT_S1E1R_Xt:
flags = TLB::MustBeOne;
tranType = TLB::S1E1Tran;
mode = BaseTLB::Read;
break;
case MISCREG_AT_S1E1W_Xt:
flags = TLB::MustBeOne;
tranType = TLB::S1E1Tran;
mode = BaseTLB::Write;
break;
case MISCREG_AT_S1E0R_Xt:
flags = TLB::MustBeOne | TLB::UserMode;
tranType = TLB::S1E0Tran;
mode = BaseTLB::Read;
break;
case MISCREG_AT_S1E0W_Xt:
flags = TLB::MustBeOne | TLB::UserMode;
tranType = TLB::S1E0Tran;
mode = BaseTLB::Write;
break;
case MISCREG_AT_S1E2R_Xt:
flags = TLB::MustBeOne;
tranType = TLB::S1E2Tran;
mode = BaseTLB::Read;
break;
case MISCREG_AT_S1E2W_Xt:
flags = TLB::MustBeOne;
tranType = TLB::S1E2Tran;
mode = BaseTLB::Write;
break;
case MISCREG_AT_S12E0R_Xt:
flags = TLB::MustBeOne | TLB::UserMode;
tranType = TLB::S12E0Tran;
mode = BaseTLB::Read;
break;
case MISCREG_AT_S12E0W_Xt:
flags = TLB::MustBeOne | TLB::UserMode;
tranType = TLB::S12E0Tran;
mode = BaseTLB::Write;
break;
case MISCREG_AT_S12E1R_Xt:
flags = TLB::MustBeOne;
tranType = TLB::S12E1Tran;
mode = BaseTLB::Read;
break;
case MISCREG_AT_S12E1W_Xt:
flags = TLB::MustBeOne;
tranType = TLB::S12E1Tran;
mode = BaseTLB::Write;
break;
case MISCREG_AT_S1E3R_Xt:
flags = TLB::MustBeOne;
tranType = TLB::S1E3Tran;
mode = BaseTLB::Read;
break;
case MISCREG_AT_S1E3W_Xt:
flags = TLB::MustBeOne;
tranType = TLB::S1E3Tran;
mode = BaseTLB::Write;
break;
}
// If we're in timing mode then doing the translation in
// functional mode then we're slightly distorting performance
// results obtained from simulations. The translation should be
// done in the same mode the core is running in. NOTE: This
// can't be an atomic translation because that causes problems
// with unexpected atomic snoop requests.
warn("Translating via %s in functional mode! Fix Me!\n",
miscRegName[misc_reg]);
req->setVirt(0, val, 0, flags, Request::funcMasterId,
tc->pcState().pc());
req->setContext(tc->contextId());
fault = getDTBPtr(tc)->translateFunctional(req, tc, mode,
tranType);
RegVal newVal;
if (fault == NoFault) {
Addr paddr = req->getPaddr();
uint64_t attr = getDTBPtr(tc)->getAttr();
uint64_t attr1 = attr >> 56;
if (!attr1 || attr1 ==0x44) {
attr |= 0x100;
attr &= ~ uint64_t(0x80);
}
newVal = (paddr & mask(47, 12)) | attr;
DPRINTF(MiscRegs,
"MISCREG: Translated addr %#x: PAR_EL1: %#xx\n",
val, newVal);
} else {
ArmFault *armFault = static_cast<ArmFault *>(fault.get());
armFault->update(tc);
// Set fault bit and FSR
FSR fsr = armFault->getFsr(tc);
CPSR cpsr = tc->readMiscReg(MISCREG_CPSR);
if (cpsr.width) { // AArch32
newVal = ((fsr >> 9) & 1) << 11;
// rearrange fault status
newVal |= ((fsr >> 0) & 0x3f) << 1;
newVal |= 0x1; // F bit
newVal |= ((armFault->iss() >> 7) & 0x1) << 8;
newVal |= armFault->isStage2() ? 0x200 : 0;
} else { // AArch64
newVal = 1; // F bit
newVal |= fsr << 1; // FST
// TODO: DDI 0487A.f D7-2083, AbortFault's s1ptw bit.
newVal |= armFault->isStage2() ? 1 << 8 : 0; // PTW
newVal |= armFault->isStage2() ? 1 << 9 : 0; // S
newVal |= 1 << 11; // RES1
}
DPRINTF(MiscRegs,
"MISCREG: Translated addr %#x fault fsr %#x: PAR: %#x\n",
val, fsr, newVal);
}
setMiscRegNoEffect(MISCREG_PAR_EL1, newVal);
return;
}
case MISCREG_SPSR_EL3:
case MISCREG_SPSR_EL2:
case MISCREG_SPSR_EL1:
// Force bits 23:21 to 0
newVal = val & ~(0x7 << 21);
break;
case MISCREG_L2CTLR:
warn("miscreg L2CTLR (%s) written with %#x. ignored...\n",
miscRegName[misc_reg], uint32_t(val));
break;
// Generic Timer registers
case MISCREG_CNTHV_CTL_EL2:
case MISCREG_CNTHV_CVAL_EL2:
case MISCREG_CNTHV_TVAL_EL2:
case MISCREG_CNTFRQ ... MISCREG_CNTHP_CTL:
case MISCREG_CNTPCT ... MISCREG_CNTHP_CVAL:
case MISCREG_CNTKCTL_EL1 ... MISCREG_CNTV_CVAL_EL0:
case MISCREG_CNTVOFF_EL2 ... MISCREG_CNTPS_CVAL_EL1:
getGenericTimer(tc).setMiscReg(misc_reg, newVal);
break;
case MISCREG_ICC_PMR_EL1 ... MISCREG_ICC_IGRPEN1_EL3:
case MISCREG_ICH_AP0R0_EL2 ... MISCREG_ICH_LR15_EL2:
getGICv3CPUInterface(tc).setMiscReg(misc_reg, newVal);
return;
}
}
setMiscRegNoEffect(misc_reg, newVal);
}
BaseISADevice &
ISA::getGenericTimer(ThreadContext *tc)
{
// We only need to create an ISA interface the first time we try
// to access the timer.
if (timer)
return *timer.get();
assert(system);
GenericTimer *generic_timer(system->getGenericTimer());
if (!generic_timer) {
panic("Trying to get a generic timer from a system that hasn't "
"been configured to use a generic timer.\n");
}
timer.reset(new GenericTimerISA(*generic_timer, tc->contextId()));
timer->setThreadContext(tc);
return *timer.get();
}
BaseISADevice &
ISA::getGICv3CPUInterface(ThreadContext *tc)
{
panic_if(!gicv3CpuInterface, "GICV3 cpu interface is not registered!");
return *gicv3CpuInterface.get();
}
}
ArmISA::ISA *
ArmISAParams::create()
{
return new ArmISA::ISA(this);
}